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•

Shayany Pinto Felix2
• Laine Celestino Pinto3

• Bruno Moreira Soares3
•

Luis Felipe Martins4
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Abstract In Brazil, most studies of intra-type variants of

human papillomavirus (HPV) have focused on HPV16 and

HPV18, but other high-risk HPV types have not been

studied. Here, we report the prevalence of lineages and

variants of HPV35, HPV45 and HPV58 in cervical cancers

from the Amazonian and Southeast Brazilian regions. The

most frequent sublineages were A1 for HPV35, B2 for

HPV45, and A2 for HPV58. The Southeast region had a

higher frequency of the B2 sublineage of HPV45, and for

HPV35, the genetic and nucleotide sequence diversity were

higher in the Southeast region, suggesting that regional

factors are influencing the diversity and lineage prevalence.

Keywords Cervical cancer � Papillomavirus � HPV35 �
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Cervical cancer is the fourth most common cancer in

women, with 527,000 cases and 265,000 deaths in 2012

[1]. In Brazil, this cancer accounted for 5,430 deaths in

2013 (https://mortalidade.inca.gov.br/MortalidadeWeb/)

and approximately 16,300 new cases in 2016 [2]. Human

papillomavirus (HPV) infection is considered an indis-

pensable factor, albeit not sufficient, for the development

of cervical cancer [3]. Fifteen HPV types have been asso-

ciated with a high risk for development of cervical cancer

(HR-HPV) [4], and among them, HPV16 and HPV18 are

associated with approximately 75% of cervical cancer

cases worldwide. Two commercially available vaccines for

cervical cancer prevention have been developed against

these two types. Recently, a new vaccine was approved,

protecting against seven high-risk HPV types and two low-

risk HPV types [5].

HPV taxonomy is based on the sequence variation of the

L1 gene, with differences greater than 10% defining HPV

types [6]. Burk et al. [7] proposed a criterion for classifying

intra-type HPV diversity based on overall genomic diver-

gence, ranging from 1% to 10%, for defining different

lineages within HPV types and differences between 0.5%

to 1% for defining sublineages. They suggested an

alphanumeric nomenclature for all HPVs lineages and

sublineages, which we have used in this study, where lin-

eages are identified by letters (A, B, C, D,…) and sublin-

eages by letters and numbers (A1, A2, A3, B1, B2, B3,…).

HPV lineages have been associated with different risks for

cervical cancer. This is the case for specific HPV16 lin-

eages and variants [8–11] as well as for HPV45 lineages

[12]. Moreover, specific sequence variants of HPV58 are

associated with the risk of developing CIN3 (cervical

intraepithelial neoplasia grade 3) and invasive cancer [13].

In Brazil, most studies of intra-type variants of HPV

have focused on HPV16 and HPV18 [9, 14–18], but other
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relevant, high-risk types with different prevalence in dif-

ferent countries and continents have not been studied.

Brazil has an admixed population, with Amerindian,

African and European ethnic components with regional

disparities, and Amazonian populations show a higher

Amerindian genetic contribution than is observed in the

southern regions [19]. This scenario makes the intra-type

genetic diversity of high-risk HPV types relevant for ana-

lyzing the prevalence of HPV lineages and variants in

different Brazilian regions. In this study, our objective was

to describe and to compare the prevalence and the genetic

diversity of lineages and variants, sensu Burk et al. [7], of

the high-risk viruses HPV35, HPV45 and HPV58 in cer-

vical cancer in women diagnosed in the Amazonian Region

(Belém do Pará, Pará State, Brazil) and the Southeast

Region (City of Rio de Janeiro, Rio de Janeiro State,

Brazil). The genetic diversity of these HPV types was

assessed by sequencing a contiguous HPV genomic region

encompassing the LCR (long control region), E6 and E7,

which have been considered adequate for lineage and

sublineage identification in previous work [20–22].

The study was carried out with a cohort of 1,275 women

with cervical cancer, 634 from Instituto Nacional de Cân-

cer (Rio de Janeiro, Southeast region) and 641 from

Hospital Ophir Loyola in Belém (State of Pará, Amazonian

region) following approval by the Ethics Committee of

each institution. The identification and frequency of HPV

types present in these tumor biopsies were carried out by

PCR amplification of the L1 gene using the primers

PGMY09/11 and GP05?/06? [23, 24]. Samples from

patients (n = 96) infected with HPV35 (n = 26), HPV45

(n = 53) and HPV58 (n = 17) in single infections were

selected for this study (Supplementary Table 1).

The LCR and E6/E7 regions of HPV35, HPV45 and

HPV58 were amplified using type-specific primers (Supple-

mentary Table 2). PCR reactions were carried out with 1X

PCRbuffer, 2.5mMMgCl2, 0.25mMeachDNTP, 10 pmol of

forward and reverse primers per reaction, 50–100 ng of

genomic DNA and 2.5 U of Platinum Taq DNA Polymerase

(Life Technologies) in a final volume of 50 ll. The PCR

conditions were 94 �C for initial DNA denaturation (5 min)

followed by 35 cycles of 94 �C (1 min), 58 �C (1 min), and

72 �C (1 min), with final extension at 72 �C (15 min). PCR

products were purified and sequenced as described above.

A contig encompassing the LCR, E6, and E7 genomic

regions was built for each sample (GenBank accession

numbers KY565580 to KY565668). Sequences of each

HPV type were aligned with reference sequences according

to Burk et al. [7], and sequence variants (haplotypes) were

identified with DNASP [25]. Maximum-likelihood (ML)

phylogenetic reconstructions were carried out for each

haplotype set with a reference sequence for each HPV type

according to the GTR?I?G evolutionary model [26, 27].

ML was carried out with PHYML v.3.0 [28] with node

support based on 1,000 bootstrap pseudoreplicates. Phy-

logenetic trees were rooted by the mid-point method.

Median-joining analysis was carried out using Network

v.4.6.1.1 [29]. Genetic and nucleotide diversity indices

were estimated with Arlequin v.3.5.2.2 [30].

Analysis of HPV35, encompassing 1,587 nucleotides,

showed 13 haplotypes in 24 samples (Table 1 and Sup-

plementary Table 3A and B), two samples were excluded

because the PCR for the LCR did not work. ML analysis

(Fig. 1A) grouped reference sequence A1 with eight hap-

lotypes (H2, H3, H5, H7, H9, H11, H12 and H13) in one

group and with two others (H1 and H10) in a sister group.

The eight haplotypes showed an exclusive insertion of 16

bp between positions 229 and 244. Three other haplotypes

(H4, H6 and H8) grouped with sublineage reference

sequence A2. The network arrangement (Supplementary

Figure 1) was coincident with the ML topology. All hap-

lotypes with frequency[1 were present in both localities.

Haplotypes grouped with sublineage A1 were more fre-

quent (in 20 women), with haplotype H2 in 11 patients,

eight from Belém do Pará and three from Rio de Janeiro

(Table 1). HPV35 from Belém do Pará showed less genetic

and nucleotide sequence diversity with respect to samples

from Rio de Janeiro. HPV35 showed the least genetic and

nucleotide sequence diversity when compared with HPV45

and HPV58 (Table 2).

Although some nucleotide substitutions could have

resulted from mutations that occurred during cancer pro-

gression, the phylogenetic analysis supported haplotype

identification at the sublineage level with bootstrap values

[80%. HPV35 analysis showed less intra-type genetic

diversity than the other types, in agreement with previous

evidence that this type shows less intra-type genetic

diversity than other HR-HPV types [7]. In this study, A1

was the most frequent HPV35 sublineage, in 20 of 24

isolates, as has been seen in different regions of the world

[21, 31–33]. This sublineage was reported to have a

higher persistence and oncogenicity than sublineage A2

[21, 34]. The ML topology showed a distinct group of

eight haplotypes (H2, H3, H5, H7, H9, H11, H12 and

H13) of sublineage A1 comprising the largest number of

HPV35 isolates reported herein (18/24). These haplotypes,

associated with invasive cancer, are common in other

regions of the world, sharing a characteristic 16 bp

insertion in their LCR [29, 33, 35]. The high frequency of

these haplotypes, however, must be evaluated in women

with normal cervix and pre-neoplastic lesions to deter-

mine whether this group is associated with higher

oncogenicity.

HPV45 was detected in 53 women, 33 from Rio de

Janeiro and 20 from Belém do Pará. Analysis of 51 of these

samples, covering 1,569 nucleotide positions
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Table 1 Number of samples

(n) with respect to lineages,

sublineages and haplotypes per

locality for each HPV type

HPV type Lineage/sublineage (n) Haplotype n - Rio de Janeiro n - Belem do Pará

HPV35 A1(20) H1 1 -

H2 3 8

H3 1 -

H5 1 -

H7 1 -

H9 - 1

H10 - 1

H11 - 1

H12 - 1

H13 - 1

A2(4) H4 1 -

H6 1 1

H8 1 -

HPV45 A1(12) H4 1 -

H5 1 -

H7 5 -

H10 1 -

H16 1 -

H20 1 -

H21 - 1

H23 - 1

A2(6) H15 2 1

H27 - 3

A3(1) H9 1 -

B1(7) H14 1 -

H18 1 3

H24 - 1

H26 - 1

B2(25) H1 2 -

H2 4 5

H3 1 -

H6 1 -

H8 1 -

H11 1 -

H12 2 -

H13 2 -

H17 1 -

H19 1 -

H22 - 3

H25 - 1

HPV58 A2(10) H1 1 1

H2 1 -

H3 2 -

H4 1 2

H6 1 -

H9 - 1

A3(2) H5 1 -

H7 1 -

C(2) H8 1 1
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Fig. 1 Maximum-likelihood topologies for the haplotypes of each

HPV type analyzed. The topologies were generated using the

concatenated nucleotide sequences of the LCR, E6 and E7 regions

for each haplotype. Numbers at the nodes are bootstrap values C 70%,

based on 1000 replicates. (A) HPV35. (B) HPV45. (C) HPV58.

*Reference sequences [7] for each HPV lineage/sublineage are

identified with the respective GenBank accession number

Table 2 Genetic and

nucleotide sequence diversity

for each HPV type per locality

HPV type/ locality Number of samples Gene diversity Nucleotide sequence diversity

HPV35 RJ 10 0.9333 ± (0.0773) 0.004979 ± (0.002866)

HPV35 PA 14 0.6923 ± (0.1366) 0.002293 ± (0.001390)

HPV45 RJ 31 0.9570 ± (0.0212) 0.009324 ± (0.004773)

HPV45 PA 20 0.8842 ± (0.0416) 0.009788 ± (0.005099)

HPV58 RJ 9 0.9722 ± (0.0640) 0.007416 ± (0.004217)

HPV58 PA 5 0.9000 ± (0.1610) 0.007350 ± (0.004709)
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(encompassing the LCR, E6, and a portion of the E7

region), identified 27 haplotypes (Table 1 and Supple-

mentary Table 3C and D), two samples were excluded

because PCR for the LCR did not work. The ML topology

(Fig. 1B) showed haplotypes grouping with one reference

sequence of each sublineage: A1 with eight haplotypes, A2

with two, A3 with one, B1 with four, and B2 with 12. In

this last group, a larger number of haplotypes was present

in samples from Rio de Janeiro than in those from Belém

do Pará (10 vs. 3). The results of median-joining network

analysis (Supplementary Figure 2) coincided with the ML

topology. Sublineages were present in both localities

except for A3 (H9), which occurred in Rio de Janeiro. A

large number of haplotypes (20 in 31 samples) was found

in samples from Rio de Janeiro. HPV45 showed the highest

nucleotide sequence diversity with respective to the other

HPV types analyzed (Table 2). Previous reports showed

that the HPV45 B2 sublineage was associated with a larger

risk for cervical cancer than other sublineages [12, 21]. Our

findings showed that B2 was the most frequent HPV45

sublineage, with a higher number of haplotypes in Rio de

Janeiro than in Belém do Pará (Table 1).

HPV58 was detected in 17 patients. Analysis of 14

samples (nine from Rio de Janeiro and five from Belém do

Pará), covering 1,567 nucleotide positions encompassing

the LCR, E6, and E7 showed nine haplotypes (Table 1 and

Supplementary Table 3E and F), three samples were

excluded because the PCR for the LCR,E6 and E7 did not

work. ML topology (Fig. 1C) showed six haplotypes

grouping with the reference sequence of sublineage A2,

two with A3, and one with C. None of these haplotypes

grouped with representative sequences of sublineages A1,

B1, B2, D1, and D2. The results of median joining network

analysis (Supplementary Figure 3) showed was coincident

with the ML topology, with three groups respective to

sublineages A2 and A3 and lineage C. A larger number of

haplotypes was found in Rio de Janeiro than in Belém do

Pará (Table 1), but these localities showed similar genetic

and nucleotide sequence diversity (Table 2).

HPV58 is the third most frequent papillomavirus

infecting women with cervical cancer in Eastern Asia

[36]. The frequency of HPV58 varies around the globe

and is more frequent in East Asia, where lineage A is

the most frequent one, followed by lineage C [37]. Our

findings showed the presence of two sublineages (A2 and

A3) and one lineage (C), with A2 showing the highest

frequent in both regions (58.8%). These findings are in

agreement with those of Chan et al. [13, 37], who

reported the highest frequency of A2 in cervical samples

worldwide.

Our findings show differences in the frequency and

presence of specific HPV variants between the Southeast

and Amazonian regions, and this may be associated with

differences in ethnic genetic background of the patients, as

reported by Lopera et al. [38] for the Colombian population

and HPV16 lineages. The higher proportion of Amerindian

ethnic component in the Brazilian Amazonian population

in comparison to the Southeast population has been

reported by many authors [19, 39, 40]. However, to access

the possible association between the ethnic component

with specific lineages/sublineages of HPV35, HPV45, or

HPV58 a larger sample size will be required, taking into

account the prevalence of these three HPV types in the

populations studied: only in 96 of the 1275 patients

included (8.1%), was the presence of HPV35 or HPV45 or

HPV58 detected.
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