

Ministério da Saúde Instituto Nacional de Câncer Coordenação de Pós-Graduação

INSTITUTO NACIONAL DE CÂNCER Pós-Graduação em Oncologia

RENAN GABRIEL GOMES JÚNIOR

IDENTIFICAÇÃO DE VARIANTES EM GENES RELACIONADOS AO CÂNCER DE MAMA HEREDITÁRIO POR SEQUENCIAMENTO DE NOVA GERAÇÃO

Orientador: Professor Dr. Miguel A. Martins Moreira

Rio de Janeiro – RJ Abril, 2019

Ministério da Saúde Instituto Nacional de Câncer Coordenação de Pós-Graduação

INSTITUTO NACIONAL DE CÂNCER Pós-Graduação em Oncologia

RENAN GABRIEL GOMES JÚNIOR

IDENTIFICAÇÃO DE VARIANTES EM GENES RELACIONADOS AO CÂNCER DE MAMA HEREDITÁRIO POR SEQUENCIAMENTO DE NOVA GERAÇÃO

Tese de Doutorado apresentada ao programa de pós-graduação em oncologia como parte dos requisitos para a obtenção do grau de Doutor em Oncologia.

Orientador: Professor Dr. Miguel A. Martins Moreira

Rio de Janeiro – RJ Abril, 2019

DEDICATÓRIA

Dedico esse trabalho a minha família, meu porto seguro.

AGRADECIMENTOS

Ao meu orientador, Dr. Miguel Moreira, pela oportunidade, pelo grande aprendizado, confiança e apoio.

Aos pacientes e familiares que permitiram a realização deste trabalho

Aos pesquisadores da divisão de genética, por oferecerem uma excelente estrutura para pesquisa.

A todos os amigos do laboratório de genética pelo convívio diário, pelo apoio, pelos cafés e pela amizade. Agradeço também aos que passaram pelo laboratório. Foi muito bom conhecer e dividir meu tempo com todos vocês.

Aos funcionários do Centro de pesquisas, especialmente aos docentes do curso de pós-graduação pelos ensinamentos.

Aos membros da banca de qualificação, pelas críticas e sugestões.

A CAPES e ao Ministério da Saúde pelo apoio financeiro.

Aos meus pais, Renan e Rosangela, pelo incentivo incondicional, por acreditarem em mim e se fazerem sempre presentes.

Aos meus irmão pelas palavras de incentivo.

A Ingrid, pelo companheirismo, suporte e incentivo em todos os momentos.

Ministério da Saúde Instituto Nacional de Câncer Coordenação de Pós-Graduação

IDENTIFICAÇÃO DE VARIANTES EM GENES RELACIONADOS AO CÂNCER DE MAMA HEREDITÁRIO POR SEQUENCIAMENTO DE NOVA GERAÇÃO

RESUMO

BRCA1 e BRCA2 são os principais genes de suscetibilidade ao câncer hereditário de mama e ovário. Ambos codificam proteínas extensas, o que faz do sequenciamento pelo método de Sanger um processo laborioso e dispendioso. Além disso, outros genes estão associados ao surgimento do fenótipo. As novas tecnologias de sequenciamento possibilitam analisar múltiplos genes e amostras de forma simultânea, agilizando o processo e com custo cada vez menor. Este trabalho teve como objetivo estabelecer uma estratégia de seguenciamento de regiões alvo baseada em multiplex-PCR e long range PCR (LR-PCR) para o sequenciamento de nova geração (NGS), para nove genes associados ao câncer de mama hereditário, e utilizá-los na identificação de variantes germinativas em pacientes com critérios clínicos para câncer hereditário de mama. Foram selecionados 96 pacientes com base nos critérios clínicos da National Comprehensive Cancer Network, e divididos em dois grupos. O primeiro grupo foi composto por 25 pacientes portadores de variantes deletérias nos genes BRCA1 ou BRCA2 previamente identificadas pelo sequenciamento de Sanger. Este grupo foi sequenciado pelo NGS para os genes BRCA1 e BRCA2, visando validar a metodologia. O segundo grupo foi composto por 71 pacientes negativos para variantes patogênicas nos genes BRCA1 e BRCA2. Este grupo teve por objetivo avaliar a prevalência de mutações nos genes ATM, CHEK2, CDH1, PALB2, PTEN, RAD51D e TP53. Seis LR-PCR foram padronizadas para o gene BRCA1, e 6 multiplex-PCR para o gene BRCA2. O sequenciamento do grupo 1 foi realizado em dois experimentos. No primeiro, foi observada uma variação acentuada de cobertura entre os amplicons, 7,3% deles apresentaram cobertura <27x. No segundo experimento, após os ajustes no protocolo, apenas 1,53% dos amplicons apresentaram cobertura <27x, e a dispersão da cobertura foi menor. Entre as 241 variantes identificadas pelo método de Sanger, 238 foram corretamente identificadas pelo NGS, resultando em uma sensibilidade de, valor preditivo positivo e concordância de 94,8%, 97,9% e 91,9%, respectivamente. Para as amostras do segundo grupo 22 PCR foram padronizadas. A cobertura das regiões alvo foi de 97%. Foram identificada 689 variantes, 110 diferentes entre si: 78 benignas e 31 variantes de significado incerto (VUS). A ausência de variantes comprovadamente patogênicas nesse grupo pode se dever a uma série de fatores: critérios inapropriados de seleção dos pacientes, pequeno número de amostras avaliadas, ou a presença de variantes em regiões não cobertas. Entre as VUS identificadas no presente trabalho 13 delas foram preditas como potencialmente patogênicas por pelo menos 3 programas de predição, e podem ter associação com o surgimento do câncer nos pacientes. O protocolo de obtenção das regiões alvo demonstrou ser adequado, tendo em vista a cobertura elevada obtida para essas regiões nos dois grupos. As medidas de sensibilidade, concordância, e valor preditivo positivo alcançados demonstram que o *pipeline* de análises é adequado na identificação de variantes nos genes associados ao câncer hereditário de mama.

Ministério da Saúde Instituto Nacional de Câncer Coordenação de Pós-Graduação

SCREENING OF VARIANTES LOCATED IN GENES RELATED WITH HEREDITARY BREAST CANCER BY NEXT GENERATION SEQUENCING

ABSTRACT

BRCA1 and BRCA2 are the main susceptibility genes related with hereditary breast and ovarian cancer. Both genes encode large proteins, consequently, to sequence all regions using Sanger method is time-consuming and expensive. coding Nevertheless, other genes have been shown to be associated with hereditary breast cancer phenotype. Next generation sequencing (NGS) allows to analyze simultaneously different genes and samples, reducing the time of analysis and overall cost. In this study, we propose to develop an approach using *multiplex* and Long Range PCR-based assays for NGS screening of mutation in nine genes related with hereditary breast cancer in patients with clinical criteria. We selected 96 high-risk patients using National Comprehensive Cancer Network clinical criteria, and divided in two groups. A set of 25 samples harboring BRCA1 or BRCA2 pathogenic mutation that have undergone mutation screening by Sanger Sequencing composed the first group. This group was sequenced for BRCA1 and BRCA2 by NGS and compared with Sanger sequencing results. A set of 71 samples negative for mutation in BRCA1 or BRCA2 composed the second group, in which the genes ATM, CHEK2, CDH1, PALB2, PTEN, RAD51D and TP53 were sequenced to evaluate the genetic profile. Six Long range PCR reactions were optimized to BRCA1 gene, and six multiplex-PCR reactions for BRCA2 gene. The sequencing of the group number one was initially divided in two experiments. In the first experiment, a high variation of coverage was observed between all amplicons, 7.3% of the amplicons did not meet a coverage of at least 27x. In the second one, after PCR optimization, just 1.53% of the amplicons did not reach 27x of coverage, and an uniform coverage distribution was obtained. Of the 241 sequence variants identified by Sanger sequencing, 238 were also identified by NGS. The overall sensitivity, the positive predictive value and the concordance of NGS were estimated to be 94.8%, 97.9% and 91,9%, respectively. Twenty-two PCR were standardized to obtain the target regions for samples of second group. The coverage was 97%. We identified 689 variants, 110 were unique, being: 78 benign and 31 variants of uncertain significance (VUS). Pathogenic variant were absent probably due to small size of sample, inappropriate clinical criteria or hidden pathogenic variants within uncovered regions. Among VUS identified, 13 were predicted to be likely deleterious by at least three algorithms and could be clinically relevant for hereditary breast cancer. Our approach to analyze target regions shows to be efficient according to the deep coverage achieved in both groups. The sensitivity, concordance, and positive predictive value reached demonstrate that analysis pipeline is appropriated to identify variants in genes associated with hereditary breast cancer.

LISTA DE FIGURAS

Figura 4.1 -	llustração	da metodologia	utilizada na	a mistura	dos	produtos	da	PCR e
preparação d	as biblioted	cas para cada ar	mostra					12

Figura 5.1 - Desenho experimental15

Figura 5.3 - Distribuição média da cobertura dos amplicons dos genes. A) Primeiro experimento contendo 24 amostras. B) Segundo experimento contendo 44 amostras. A linha tracejada horizontal indica a cobertura igual a 27 vezes. A linha pontilhada vertical separa cada genes analisado . As barras horizontais indicam a mediana....25

LISTA DE TABELAS

Tabela 1.1 - Risco cumulativo de câncer estimado para portadores de mutaçõespatogênicas nos genes ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, PTEN,RAD51D e TP53
Tabela 4.1 - Características clínicas e patológicas dos pacientes avaliados nesse estudo
Tabela 5.1 – Características gerais dos genes BRCA1 e BRCA2, e número dereações de PCR necessárias para amplificação das regiões codificantes
Tabela 5.2 - Métricas do NGS para o grupo de pacientes com variantes patogênicasem BRCA1 e BRCA2
Tabela 5.3 - Número de variantes detectadas pelo sequenciamento de Sanger e NGS.
Tabela 5.4 - Variantes identificadas pelo sequenciamento de Sanger não detectadas pelo NGS.
Tabela 5.5 – Características gerais dos ATM, CDH1, CHEK2, PALB2, PTEN,RAD51D e TP53, e número de reações de PCR necessárias para amplificação dasregiões codificantes
Tabela 5.6 - Métricas do NGS para as amostras amplificadas para os 7 genes23
Tabela 5.7 - Resultado da análise in silico das VUS identificadas nos pacientes do grupo 2.
Tabela 5.8 - Características clinico-patológicas dos pacientes portadores de VUSpreditas como deletérias
Tabela 6.1 - Variantes localizadas em regiões próximas ao sítio de pareamento dos primers.
Tabela 6.2 - Lista dos principais insumos e custos para o sequenciamento de
Sanger dos genes <i>BRCA1</i> e <i>BRCA2</i> 41

LISTA DE SIGLAS ABREVIATURAS

ACMG American College of Medical Genetics and Genomics

Alu Conjunto de elementos repetitivos retrotransponíveis classificados como short interspersed elements (SINEs) presentes no genoma dos primatas

ATM ATM serine/threonine kinase

BRCA1 Breast cancer gene 1

BRCA2 Breast cancer gene 2

CDS Região codificante do gene

CDH1 Gene Chadherin 1

CHEK2 Checkpoint kinase 2

CNV Variantes de número de cópias

dbSNP Banco de dados de variantes nucleotídicas

ExAc Exome Agregation Consortium

HBOC Câncer hereditário de mama e ovário

HBC Câncer hereditário de mama

HER-2 Human Epidermal growth factor Receptor-type 2

HGVS Human Genome Variation Society

INDEL Variantes dos tipo Inserções ou deleções

LGR Grandes rearranjos genômicos

LR-PCR PCR de longo alcance

NCBI National Center for Biotechnology Information

NCCN National Comprehensive Cancer Network

NGS Sequenciamento de nova geração

pb Pares de base

PCR Reação em cadeia da polimerase

PALB2 partner and localizer of BRCA2

PTEN Phosphatase and tesin homolog

qPCR PCR quantitativo

RAD51D Gene RAD51 paralog D

SNV Variante de único nucleotídeo

TA temperatura de pareamento do primer

TP53 Gene Tumor protein p53

UTR Untranslated region

VPP Valor preditivo positivo

VUS Variante de significado incerto

SUMARIO

1	INTR	20DUÇÃO1	
	1.1	O câncer de mama no mundo e no Brasil	L
	1.2	O câncer de mama hereditário	L
	1.3	Os genes BRCA1 e BRCA2 e o câncer de mama hereditário2	<u>)</u>
	1.4	Genes de suscetibilidade ao câncer de mama	ŀ
	1.5 genéti	Tecnologias de sequenciamento utilizadas no rastreamento de alterações icas	5
	1.6	A importância do diagnóstico genético	,
2	JUS	TIFICATIVA8	;
3	OBJ	ETIVOS8	}
	3.1	Objetivo geral	3
	3.2	Objetivos específicos)
4	MET	ODOLOGIA9)
	4.1	Caracterização amostral)
	4.2	Obtenção das sequências alvo 10)
	4.3	Preparo das bibliotecas, clusterização e sequenciamento11	L
	4.4	Processamento e análise de dados 13	3
	4.5	Nomenclatura e classificação das variantes 13	3
	4.6	Comparação com o sequenciamento de Sanger14	ŀ
	4.7	Validação do pipeline14	ŀ
5	RES	ULTADOS15	;
	5.1 em <i>Bl</i>	Avaliação da estratégia de NGS na identificação de variantes deletérias conhecidas RCA1 e BRCA2	5
	5.2 demai	Avaliação da metodologia de obtenção das regiões alvo para o NGS para os is genes23	5
	5.2.1 assoc	Caracterização das variantes detectadas pelo NGS, predição <i>in silico</i> e) 7
c			
Ø	DI2C	,0994032	
	6.1	Amplificação e cobertura dos genes BRCA1 e BRCA2, e medidas de validação da	4

6.1 Amplificação e cobertura dos genes *BRCA1* e *BRCA2*, e medidas de validação da metodologia de obtenção das regiões alvo ------ 32

6.2 adicio	Desempenho da metodologia na obtenção das regiões alvo para os s nais	ete genes 36
6.2.1	Identificação de variantes	36
6.3	Variantes de significado incerto e análise in silico	39
6.4	Custos do teste genético	40
6.5	Considerações finais e perspectivas	42
7 CON	CLUSÕES	43
8 REF	ERÊNCIAS	44
9 ANE	XOS	56
Anex seque	 9.1 – Características clínicas e variantes patogênicas identifica enciamento de Sanger para os pacientes selecionados para o grupo 1 	adas pelo 56
Anexo BRCA	 9.2 – Características clínicas dos pacientes negativos para mutações n 1 e BRCA2 selecionados para o grupo 2. 	nos genes 57
Anexo tempe	o 9.3 - Lista de primers utilizados na amplificação do gene BRCA1 e eratura de anelamento e Taq DNA polimerase utilizada em cada reação	e <i>BRCA2</i> , 59
Anexo BRCA	o 9.4 - Composição e especificações das reações de PCR <i>multiplex</i> pa	ira o gene 61
Anexo	o 9.5 - Ciclo utilizado na amplificação dos mix de BRCA2	61
Anexo	o 9.6 - Componentes para a PCR dos mix de BRCA2	61
Anexo	o 9.7 - Ciclo utilizado na amplificação do gene BRCA1	62
Anexo	o 9.8 - Componentes para as reações de PCR 1, 4, 5 e 6 do gene BRCA1.	62
Anexo	o 9.9 - Componentes para as reações da PCR 2 e 3 do gene BRCA1	62
Anex genes	o 9.10 - Lista de primers utilizados na amplificação das regiões codific ATM, CHEK2, CDH1, PALB2, PTEN, RAD51D e TP53	antes dos 63
Anexo ATM.	o 9.11 - Composição e especificações das reações de PCR <i>multiplex</i> pa	ara o gene 65
Anexo	o 9.12 - Ciclo utilizado na amplificação do gene ATM	66
Anexo	o 9.13 - Componentes para as reações de PCR para gene ATM	66
Anexo	o 9.14 - Composição das reações de PCR <i>multiplex</i> para o gene CDH1	67
Anexo	o 9.15 - Componentes para as reações de PCR para gene CDH1	67
Anexo	o 9.16 - Ciclo utilizado na amplificação do gene CDH1	67
Anexo	o 9.17 - Componentes para as reações de PCR para gene CHEK2	68
Anexo	o 9.18 - Ciclo utilizado na amplificação do gene CHEK2	68
Anexo	o 9.19 - Composição das reações de PCR <i>multiplex</i> para o gene PALB2	68

Anexo 9.20 - Componentes para as reações de PCR para gene PALB2	69
Anexo 9.21 - Ciclo utilizado na amplificação do gene PALB2	69
Anexo 9.22 - Composição das reações de PCR multiplex para o gene PTEN	69
Anexo 9.23 - Componentes para as reações de PCR para gene PTEN	70
Anexo 9.24 - Ciclo utilizado na amplificação do gene PTEN	70
Anexo 9.25 - Composição das reações de PCR multiplex para o gene RAD51D	70
Anexo 9.26 - Componentes para as reações de PCR para gene RAD51D	71
Anexo 9.27 - Ciclo utilizado na amplificação do gene RAD51D	71
Anexo 9.28 - Composição das reações de PCR multiplex para o gene TP53	72
Anexo 9.29 - Componentes para as reações de PCR para gene TP53	72
Anexo 9.30 - Ciclo utilizado na amplificação do gene TP53	72
Anexo 9.31 - Eletroforese em gel de agarose para as amostras do <i>mix</i> número 2 do gel <i>PALB2</i> . A seta indica a altura do fragmento referente ao éxon 5 e 6 do gene <i>PALB2</i> . Padrão de bandas observado para as amostras do primeiro experimento. B) Padrão de bandas observado para as amostras do segundo experimento.	ne A) de 73
Anexo 9.32 - Variantes encontradas para o gene BRCA2 para cada paciente	73
Anexo 9.33 - Variantes identificadas para o gene BRCA1	82
Anexo 9.34 – Critérios clínicos da National Comprehensive Cancer Network para o tes genético	ste 87

Anexo 9.35 - Padrão de bandas esperados para as PCR *multiplex* para os sete genes relacionados ao câncer hereditário de mama. A - Mix 1 gene *ATM*; B - Mix 2 gene *ATM*; C - Mix 3 gene *ATM*; D - Mix 4 gene *ATM*; E - Mix 5 gene *ATM*; F - Mix 6 gene *ATM*; G - Mix 7 gene *ATM*; H - Mix 8 gene *ATM*; I - Mix 9 gene *ATM*; J - Mix 1 *CDH1*; K - Mix 2 *CDH1*; L -Mix 1 gene *PALB2*; M- Mix 2 gene *PALB2*; N - Mix 1 gene *PTEN*; O - Mix 2 gene *PTEN*;P -Mix gene *RAD51D*; Q - Mix gene *TP53*.------88

1 INTRODUÇÃO

1.1 O câncer de mama no mundo e no Brasil

O câncer de mama é o tipo mais comum e a causa mais frequente de morte por câncer em mulheres no mundo (Apostolou e Fostira, 2013). Para o ano de 2018 foram estimados 2,08 milhões de novos casos, representando cerca de 25,2% de todos os tipos de câncer diagnosticados em mulheres (GLOBOCAN, 2018). A incidência é maior em países desenvolvidos (75,2/100,000 mulheres) quando comparado à incidência em países em desenvolvimento (32,8/100,000 mulheres), no entanto, a taxa de mortalidade por câncer é superior nos países menos desenvolvidos (17,1/100,000 mulheres), quando comparado a países desenvolvidos (13,1/100,000 mulheres) (GLOBOCAN, 2018).

No Brasil foi estimado a ocorrência de aproximadamente 59,700 mil novos casos para o ano de 2018, com uma incidência de 56,33 casos para cada 100 mil mulheres, e taxa de mortalidade de 12,9 para cada 100 mil mulheres (INCA, 2018). Embora o câncer de mama apresente uma letalidade considerada baixa, a taxa de mortalidade é a maior entre todos os tipos de câncer (INCA, 2018). Segundo as estimativas do INCA (2018), com exceção dos tumores de pele não melanoma, esse tipo de câncer é o mais incidente em mulheres nas regiões sul (73,07/100,000), sudeste (69,5/100,000 mulheres), centro-oeste (51,96/100,000 mulheres) e nordeste (40,3/100,000 mulheres). Nos últimos anos têm sido observado uma tendência de aumento no número de casos diagnosticados, bem como na taxa de mortalidade (INCA, 2018). Entre os fatores de risco na etiologia do câncer de mama, a predisposição genética é a mais bem estabelecida.

1.2 O câncer de mama hereditário

Entre os pacientes diagnosticados com câncer de mama, um subgrupo com padrão hereditário pode ser caracterizado com base em fatores de risco previamente identificados, são eles: surgimento de câncer em idade precoce (<50 anos), tumores bilaterais em órgãos pares, surgimento de tumores primários em outros órgãos, e presença de outros familiares com câncer (Lynch *et al.*, 2008). Esse grupo é composto por pacientes que apresentam um risco ao longo da vida significativamente maior de desenvolver diferentes tipos de câncer (Ngeow e Eng,

2016), logo, essas características são utilizadas na classificação desses pacientes como prováveis portadores de variantes genéticas que predispõem ao câncer.

Alterações germinativas em genes específicos são responsáveis por cerca de 10% dos casos de câncer de mama (Cancer Genome Atlas Network, 2012), e elevam o risco de desenvolvimento de outras neoplasias malignas, inclusive em homens (Nagy *et al.*, 2004; Garber e Offit, 2005; Guan *et al.*, 2015). Entre os pacientes diagnosticados clinicamente como portadores de câncer hereditário de mama (HBC), 20-30% apresentam mutações nos genes *BRCA1* ou *BRCA2* (Couch *et al.*, 2014; Pinto *et al.*, 2016; Wong *et al.*, 2016), e são classificados como portadores da Síndrome do Câncer de Mama e Ovário hereditário.

Comparado à população em geral, onde o risco de desenvolvimento de câncer de mama e ovário ao longo da vida é 13% e 1%, respectivamente, portadores de variantes patogênicas em *BRCA1*, tem um risco para o desenvolvimento de uma neoplasia de mama entre 47 - 66%, e entre 35 - 46% para câncer de ovário, até os 70 anos de idade (Ngeow e Eng, 2016). Homens portadores de mutações em *BRCA2* apresentam ao longo da vida maior risco para câncer de próstata (20%), mama (6%) e pâncreas (3%). Mulheres portadoras de mutações em *BRCA2* apresentam risco para câncer de mama entre 26 - 84%, e para câncer de ovário 20%, até os 70 anos de idade, entre outros tipos de câncer (Miki *et al.*, 1994; Wooster *et al.*, 1995; Thorlacius *et al.*, 1996; Easton, 1999; Chen *et al.*, 2006; Couch *et al.*, 2014; Ngeow e Eng, 2016).

Aproximadamente 70% dos pacientes encaminhados para o teste genético tem resultado negativo para a presença de variantes patogênicas nos genes *BRCA1* e *BRCA2*, mesmo em famílias onde os casos de câncer são recorrentes e a suspeita de hereditariedade é grande (Castéra *et al.*, 2014; Couch *et al.*, 2014; Pinto *et al.*, 2016). Apesar disso, esse resultado não isenta a família de ser portadora de outras mutações patogênicas hereditárias.

1.3 Os genes BRCA1 e BRCA2 e o câncer de mama hereditário

Variantes patogênicas são mais frequentemente detectadas nos genes *BRCA1* e *BRCA2* nos casos hereditários de câncer de mama, com isso esses genes são classificados como de alta penetrância. Entretanto, observa-se uma grande variação na prevalência de mutações patogênicas nas populações de diferentes regiões e etnias (Hall *et al.*, 2009; Rebbeck *et al.*, 2015). Na Suécia, por exemplo, entre as

famílias consideradas de alto risco, 34% apresentam mutações no gene *BRCA1*, e menos de 2% apresentam mutações no gene *BRCA2* (Bergman *et al.*, 2005). Na Polônia, 64% das famílias consideradas em risco para o HBC apresentam mutações nos genes *BRCA1*, e raramente no gene *BRCA2* (Górski *et al.*, 2004). Na Coréia, China e Japão, 21,7%, 10,4% e 23,4%, respectivamente, apresentam mutações nos genes *BRCA1* e *BRCA2*, dependendo dos critérios clínicos adotados (Kim e Choi, 2013). Na população africana, 10,2% das mulheres testadas apresentam mutação no gene *BRCA1*, enquanto 5,7% apresentam variantes deletérias no gene *BRCA2* (Hall *et al.*, 2009; Churpek *et al.*, 2015).

No Brasil, os dados relacionados à frequência e prevalência de mutações patogênicas em BRCA1 e BRCA2 em pacientes que preenchem critérios clínicos para o câncer hereditário são limitados, 70-80% da população dependem do sistema público de saúde, o qual não disponibiliza o diagnóstico genético para HBOC, consequentemente, o perfil mutacional é pouco conhecido (Alemar et al., 2017; Palmero et al., 2018). No compilado realizado por Palmero et al., 2018, que inclui dados de 28 instituições públicas e privadas localizadas em 11 estados brasileiros, é possível inferir que no período de 14 anos foram realizados 3026 testes genéticos, 216 testes/ano, uma taxa inferior a 10% dos casos de câncer de mama hereditários estimados anualmente, além disso, apenas 1041 foram testes considerados completos (LGR, CNV e sequenciamento direto), e mais de 50% destes foram realizados no estado de São Paulo, seguido pelo estado do Rio Grande do Sul (Palmero et al., 2018). Os resultados obtidos por Palmero et al., 2018 mostram ainda que houveram variantes patogênicas exclusivas identificadas no estado do Pará, Rio Grande do Sul e São Paulo, reforçando a heterogeneidade genética presente no Brasil.

Apesar dos critérios clínicos utilizados na seleção dos pacientes refletirem diretamente na prevalência de mutações, a variação na prevalência e no tipo de mutações patogênicas entre os diferentes países e populações é considerável (Balmaña *et al.*, 2011; Kim e Choi, 2013; Hirotsu *et al.*, 2015; Palmero *et al.*, 2018). O Brasil, especialmente, têm uma população diversificada, com forte contribuição genética dos portugueses, índios e africanos, mas também dos espanhóis e italianos (Kehdy *et al.*, 2015). Esses dados reforçam a necessidade e importância de mais estudos, visando esclarecer a prevalência regional, os principais tipos de mutações

em *BRCA1* e *BRCA2*, e em outros genes relacionados a esse fenótipo em nossa população.

1.4 Genes de suscetibilidade ao câncer de mama

Apesar do câncer de mama não ser o fenótipo primário observado em outras síndromes hereditárias, ele pode ser frequente em algumas delas (Vasen et al., 2001). Uma característica comum encontrada em famílias com síndrome de Li-Fraumeni, por exemplo, é o desenvolvimento de câncer de mama em idade precoce, uma particularidade que se sobrepõe às famílias com a síndrome de câncer de mama e ovário hereditários (Malkin et al., 1990; Garber et al., 1991). Segundo Tinat et al., (2009) e Gonzalez et al., (2009), 7% dos pacientes com câncer de mama antes dos 36 anos, e negativos para mutação nos genes BRCA1 e BRCA2, apresentam mutação no gene TP53. Nesse contexto, genes relacionados a outras síndromes hereditárias do câncer foram recorrentemente descritos como alterados em casos hereditários de câncer de mama, e por esse motivo foram relacionados ao surgimento do fenótipo, e passaram a ser avaliados na maior parte dos estudos (Miki et al., 1994; Wooster et al., 1994; Easton, 1999; Keller et al., 1999; Meijers-Heijboer et al., 2002; Vaarley, 2003; Rodríguez-López et al., 2004; Ahmed e Rahman, 2006; Renwick, 2006; Schrader et al., 2008; Jensen et al., 2010; Loveday et al., 2011; Engel et al., 2012; Gracia-Aznarez et al., 2013;; Thompson et al., 2013).

Entre os genes que apresentam variantes que conferem um aumento de risco para o desenvolvimento do câncer de mama, estão aqueles envolvidos nas vias de reparo de DNA por recombinação homologa, tal como *BRCA1* e *BRCA2*, sendo os principais: *ATM*, *CHEK2*, *PALB2*, *TP53* entre outros (Tabela 1; Gracia-Aznarez et al., 2013; Castéra et al., 2014; Couch et al., 2014). Juntos, a estimativa é que eles representem metade de todos os casos hereditários de câncer de mama (Couch *et al., 2014)*. Alguns trabalhos classificam variantes dos genes *ATM*, *TP53*, *CDH1* como de alto a moderado risco para o câncer de mama (FitzGerald *et al., 1998; Hearle et al., 2006; Schrader et al., 2008; Gonzalez et al., 2009; Walsh et al., 2010)*, no entanto, estudos mais recentes afirmam que a contribuição e penetrância dos mesmos ainda não são bem caracterizadas (Castéra *et al., 2014)*.

Gene	Risco cumulativo para câncer de mama	Principais tipos de câncer associados
ATM	60%	Pâncreas
BRCA1	40-80%	Ovário
BRCA2	40-80%	Ovário, próstata, pâncreas e mama masculino
CDH1	30-50%	Câncer gástrico difuso
CHEK2	25-39%	Câncer colorretal
PALB2	58%	Pâncreas
PTEN	25-50%	Tireoide, endométrio
	F6 00%	Sarcoma, leucemia, cérebro, tireoide,
1755	38-90%	adrenocortical, endométrio
RAD51D	~10%	Câncer de ovário

Tabela 1.1 ·	Risco cu	umulativo	de cânce	er estimado	para porta	adores de	mutações p	patogênicas nos
genes ATM	BRCA1.	BRCA2.	CDH1, C	HEK2, PAL	.B2, PTEN	I. RAD51E) e TP53.	

Modificado de Pilgrim, 2014 e Nielsen et al, 2016

Levando em consideração o Brasil, onde mesmo os dados relacionados aos genes *BRCA1* e *BRCA2* são vistos como insuficientes, as informações quanto aos outros genes associados ao HBC são ainda mais escassas. A pesquisa conduzida por Abud *et al.* (2012), por exemplo, buscou identificar a mutação *c.1100delC* no gene *CHEK2*. Silva *et al.* (2014), além de avaliarem a presença da variante *c.1100delC* no gene *CHEK2*, buscaram também a identificação de CNV em 14 genes. Neste mesmo ano, Felix *et al.*, (2014) investigaram a presença de variantes no genes *BRCA1*, *BRCA2*, *TP53* e *CHEK2*, em pacientes do estado da Bahia. Os dados mais recentemente e abrangentes foram publicados por Guindalini *et al.*, (2018) em uma coorte de 1554 brasileiros, onde 146 apresentaram alguma variantes deletéria, incluindo os genes *TP53*, *MUTYH*, *ATM*, *CHEK2* e *PALB2*.

A escassez de dados e a diferença quanto a frequência de variantes patogênicas nos genes associados ao câncer hereditário de mama reforçam a necessidades de identificar variantes patogênicas em outros genes além de *BRCA1* e *BRCA2*, estabelecendo a prevalência das variantes, a heterogeneidade genética e a penetrância nas diferentes populações (Walsh *et al.*, 2010; Castéra *et al.*, 2014; Easton *et al.*, 2015).

1.5 Tecnologias de sequenciamento utilizadas no rastreamento de alterações genéticas

O sequenciamento de Sanger é uma técnica de alta acurácia e amplamente utilizada em laboratórios de biologia molecular, ela permite analisar individualmente cada região codificante do gene alvo e, até então, é considerada o padrão ouro no rastreamento de alterações genéticas (Osório *et al.*, 1998; Minucci *et al.*, 2015; Ahmadloo *et al.*, 2017). Entretanto, esta metodologia é laboriosa, dispendiosa e gera pouca quantidade de dados (Gracia-Aznarez *et al.*, 2013; Dacheva *et al.*, 2015; Hirotsu *et al.*, 2015). Considerando que os principais genes relacionados ao câncer de mama hereditário são grandes e não apresentam um *hotspot* definido, é preciso sequenciar toda a região codificante, sendo necessárias muitas reações de PCR, entre outras etapas que antecedem o sequenciamento, até a obtenção dos resultados (Dacheva *et al.*, 2015; Guan *et al.*, 2015; Hirotsu *et al.*, 2015; Minucci *et al.*, 2015; Ahmadloo *et al.*, 2017).

A introdução de plataformas de sequenciamento de nova geração possibilitou analisar múltiplos genes e amostras de forma simultânea, ampliando e agilizando o processo de rastreamento de alterações genéticas, com custo cada vez menor (Jia *et al.*, 2012; Castéra *et al.*, 2014; Pilgrim *et al.*, 2014; Minucci *et al.*, 2015; Rajkumar *et al.*, 2015; Ahmadloo *et al.*, 2017; Kurian *et al.*, 2017). Além disso, vem sendo mostrado que os resultados do NGS são consistentes com os resultados obtidos no sequenciamento de Sanger, revelando uma alta sensibilidade e especificidade (Walsh *et al.*, 2010; Castéra el al., 2014; Ahmadloo *et al.*, 2017).

Com isso, diversos laboratórios passaram a oferecer painéis para o diagnóstico genético para diferentes tipos de câncer hereditário abrangendo uma série de genes (Susswein *et al.*, 2016). Por um lado esses painéis estão sendo úteis para os casos de câncer hereditário, pela possibilidade do paciente preencher os critérios clínicos para mais de uma síndrome, e por permitir o teste simultâneo dos diferentes genes. Logo, essa metodologia torna mais rápido o teste genético, e reduz o número de diagnósticos inconclusivos (Rehm, 2013).

Em contrapartida, a inclusão de genes que não possuem associação bem estabelecida com fenótipo pode gerar um aumento no número de variantes de significado incerto (VUS), e variantes sem relevância clínica, causando ansiedade para o paciente, e dificuldade em determinar o procedimento mais indicado pelo oncologista já que não há diretrizes estabelecidas (LaDuca *et al.*, 2014, Tung *et al.*, 2015). Além disso, dados recentes abrangendo coortes amplas de pacientes em risco para o HBC mostram que entre uma série de genes avaliados em diferentes painéis, entre 4 e 5 genes, além *BRCA1* e *BRCA2*, foram de fato associados com um risco alto ou moderado para câncer de mama (Couch *et al.*, 2014; Slavin *et al.*, 2017; Hauke *et al.*, 2018; Lu *et al.*, 2019). Dessa forma, a utilização de painéis para

câncer hereditário implica no aumento do custo do teste genético por sequenciamento de nova geração, redução da capacidade de sequenciamento das plataformas, e aumento do tempo necessário para as análises. Além disso, identificam variantes consideradas deletérias em genes para os quais não há relação estabelecida com o fenótipo, tampouco diretrizes quanto ao manuseio clínico dos portadores (Walsh *et al.*, 2010; Chong *et al.*, 2014).

1.6 A importância do diagnóstico genético

A identificação de indivíduos sob alto risco para o desenvolvimento de câncer oferece uma oportunidade importante para a utilização de estratégias de prevenção em diferentes níveis. Câncer de mama relacionado à mutações em *BRCA1*, por exemplo, apresenta perfil patológico distinto, e são geralmente caracterizados pela ausência de expressão de proteínas *HER-2*, receptores de estrogênio e progesterona (Fostira *et al.*, 2012). Em contrapartida, tumores de mama associados a alterações germinativas em *BRCA2* expressam receptores de estrogênio e progesterona, e apresentam características patológicas similares aos tumores esporádicos (Lakhani *et al.*, 1998; Foulkes, 2006).

Em pacientes portadores de mutações germinativas no gene *TP53*, o risco para o desenvolvimento de tumores secundários quando expostos a radioterapia é alto. Em contrapartida, portadores de mutações no gene *ATM* apresentam um aumento à radiossensibilidade, e eficácia para algumas quimioterapias específicas (Ahmed e Rahman, 2006). Já pacientes com mutações em *RAD51D*, assim como os portadores de mutações patogênicas nos genes *BRCA1* e *BRCA2*, são sensíveis aos inibidores de *PARP*, por esse motivo é uma terapia alternativa para esses pacientes (Loveday *et al.*, 2011).

Além disso, a identificação de portadores de mutações patogênicas proporciona aos demais membros da família a oportunidade de realizar os testes genéticos e, no caso de resultado positivo, estabelecer o risco de câncer, e garantir a adoção de medidas de intervenção mais apropriadas, tais como os exames de rastreamento periódicos ou cirurgias profiláticas, visando reduzir o risco de câncer, as morbidades e mortalidade (Carrol *et al.*, 2008; Domchek *et al.*, 2010). Ainda, segundo as estimativas do INCA (2007), o custo dos tratamentos do câncer avançado pode ser até oito vezes maior quando comparados ao tratamento de tumores em estágios iniciais. Blumen *et al.* (2015) relata que o custo no tratamento de pacientes com

câncer de mama é de 71,909 dólares, quando identificados no estágio I, é de 181,655 dólares quando diagnosticado em estágio IV.

2 JUSTIFICATIVA

As novas tecnologias de sequenciamento de DNA permitem avaliar simultaneamente múltiplos genes a um custo cada vez menor. Essas metodologias ampliaram as possibilidades de diagnóstico para o câncer hereditário, onde os pacientes preenchem critérios para mais de uma síndrome, e mesmo em caso de suspeita para uma síndrome específica para a qual há uma séries de genes associados. Com isso houve uma redução do número de casos inconclusivos, celeridade no diagnóstico, possibilitou o acompanhamento dos demais membros da família em risco, e a escolha do tratamento apropriado para cada caso. Essas possibilidades refletem diretamente no sucesso do tratamento do câncer, prevenção para os membros da família, e redução de custos para o sistema de saúde.

Ainda, caracterizar as causas genéticas que classificam os pacientes com câncer de mama como portadores de uma síndrome hereditária, fornecerá informações importantes sobre características genéticas da nossa população, e dará subsídios para o direcionamento do diagnóstico genético e para o aconselhamento genético para outros pacientes brasileiros.

3 OBJETIVOS

3.1 Objetivo geral

Este trabalho visa estabelecer uma estratégia de obtenção de regiões alvo baseada em PCR *multiplex* e PCR de longo alcance para genes associados ao câncer de mama hereditário, visando o sequenciamento de DNA de nova geração, e utilizá-la na identificação de variantes germinativas em pacientes com critérios clínicos.

3.2 Objetivos específicos

• Estabelecer uma metodologia para obtenção de regiões alvo para 9 genes relacionados ao câncer de mama hereditário e utilizá-la para o sequenciamento de nova geração.

• Validar o *pipeline* de análise e a metodologia de obtenção das regiões alvo e sequenciamento de nova geração comparando com os resultados previamente obtidos pelo sequenciamento de Sanger para os genes *BRCA1* e *BRCA2*.

 Identificar mutações germinativas em outros genes de suscetibilidade ao câncer de mama pelo sequenciamento de nova geração em pacientes negativos para mutações nos genes BRCA1 e BRCA2.

• Validar, pelo sequenciamento de Sanger, as possíveis alterações deletérias encontradas por NGS para os outros genes de suscetibilidade.

• Avaliar *in silico* o impacto na estrutura e função gênica para as variantes de significado incerto, utilizando programas de predição de patogenicidade.

4 METODOLOGIA

4.1 Caracterização amostral

Estavam disponíveis para o presente trabalho trezentos e quarenta probandos e familiares atendidos e matriculados no aconselhamento genético do Instituto Nacional do Câncer (INCA), no período de janeiro de 2002 a janeiro de 2016, que preencheram os critérios clínicos da NCCN (Anexo 9.34), e que assinaram o termo de consentimento livre e esclarecido (TLCE). Os pacientes tiveram o DNA genômico isolado a partir do sangue periférico, utilizando o método descrito por Miller *et al.* (1988). Os éxons dos genes *BRCA1* e *BRCA2* foram sequenciados pela metodologia de Sanger. Nesse período quarenta e seis probandos apresentaram alguma mutação patogênica nos genes *BRCA1* ou *BRCA2*, totalizando 25 diferentes mutações.

Entre os 340 pacientes disponíveis, 96 foram selecionados sequencialmente, e divididos em dois grupos (Tabela 4.1). O primeiro grupo de pacientes foi selecionado para validação da metodologia, e foi representado por 25 pacientes que

apresentaram variantes patogênicas únicas nos genes *BRCA1* ou *BRCA2*, entre outros polimorfismos (Anexo 9.32 e anexo 9.33), e DNA genômico íntegro. O segundo grupo é representado por 71 pacientes com resultado negativo para mutações nos genes *BRCA1* ou *BRCA2*, e que apresentaram DNA genômico íntegro. Este grupo visou avaliar o perfil genético para os outros genes selecionados, correlacionando com os dados clínicos. Este projeto teve aprovação do Comitê de ética em pesquisa do INCA, registrado com o número 114/07, fazendo parte da Rede Nacional de Câncer Familial.

CARACTERÍSTICAS	GRUPO 1 (n=25)	GRUPO 2 (n=71)
Sexo (%)		
Mulheres	24 (96%)	67 (94,4%)
Homens	1 (4%)	4 (5,6%)
Idade de diagnóstico do primeiro		
tumor		
Média	46	45
Mediana	47	43
Máximo e mínimo	27-63	20-63
História pessoal		
Câncer de mama	21 (84%)	66 (92,9%)
Câncer de ovário	1 (4%)	4 (5,7%)
Câncer de mama e ovário	3 (12%)	1 (1,4%)
Tipo tumoral		
Unilateral	22 (88%)	60 (84,5%)
Bilateral	3 (12%)	11 (15,5%)

 Tabela 4.1 - Características clínicas e patológicas dos pacientes avaliados nesse estudo

4.2 Obtenção das sequências alvo

Além dos genes *BRCA1* e *BRCA2*, foram selecionados outros sete genes de maior relevância para o câncer hereditário de mama tendo como base a prevalência de alterações deletérias reportadas em publicações científicas associadas a um aumento de risco para esse câncer (Miki *et al.*, 1994; Wooster *et al.*, 1994; Easton, 1999; Keller *et al.*, 1999; Meijers-Heijboer *et al.*, 2002; Vaarley, 2003; Rodríguez-López *et al.*, 2004; Ahmed e Rahman, 2006; Renwick, 2006; Schrader *et al.*, 2008; Jensen *et al.*, 2010; Engel *et al.*, 2012; Loveday *et al.*, 2011; Thompson *et al.*, 2013). Foram eles: *ATM*, *CDH1*, *CHEK2*, *PALB2*, *PTEN*, *RAD51D* e *TP53*. Os *primers* para a região alvo foram construídos abrangendo as regiões codificantes dos 9 genes

selecionados, e pelo menos 10 pb flanqueando essas regiões, tendo como base o genoma de referência GRCh37/hg19, disponível no banco de dados do *NCBI*.

A plataforma *Primer3* (Koressaar e Remm 2007; Untergasser *et al.*, 2012) foi utilizada para desenhar iniciadores para as regiões codificantes dos genes *ATM*, *CDH1*, *PALB2*, *PTEN* e *RAD51D*. *Primers* para o gene *BRCA2* e *TP53* foram obtidos à partir do banco de dados da *IARC* para *TP53 Database* e *Breast Cancer Information Core*, respectivamente. *Primers* para os gene *BRCA1* e *CHEK2* foram obtidos a partir de dados publicados na literatura (Hernan *et al.*, 2012), e as regiões alvo amplificadas por LR-PCR segundo as instruções do autor, com modificações.

As reações de PCR para o gene *CHEK2* foram realizadas utilizando uma PCR de longo alcance, restrita aos éxons 10 ao 15, a fim de evitar a amplificação de pseudogenes (Shoda *et al.,* 2002; Hernan *et al.,* 2012). A amplificação das regiões codificantes dos demais genes foram padronizadas individualmente, e então combinadas em até 5 pares de *primers* de um mesmo gene em PCR *multiplex*, levando em consideração a temperatura de pareamento de cada par de iniciadores, e o tamanho do fragmento amplificado, de forma que pudessem ser diferenciados em gel de agarose, preferencialmente. Os padrões de banda observados em gel de agarose são mostrados no Anexo 9.35. Três reações foram padronizadas para PCR *singleplex* (Tabela 5.1).

Os produtos da PCR foram purificados utilizando o kit *AccuPrep® PCR Purification* (Bioneere Corporation, Daejeon, Korea), e submetidos à etapa de preparação da biblioteca. Detalhes da metodologia de amplificação (incluindo os *primers* utilizados) são mostrados nos anexos 9.3 ao 9.30.

4.3 Preparo das bibliotecas, clusterização e sequenciamento

Para cada amostra do grupo 1 os produtos da PCR do gene *BRCA1* foram quantificados individualmente em espectrofotômetro *NanoDropTM 1000*, e misturados visando uma representação equimolar, formando o *mix* do gene *BRCA1*. O mesmo foi feito para os produtos da PCR do gene *BRCA2*. Em seguida, o *mix* do gene *BRCA1* e o *mix* do gene *BRCA2* foram quantificados em espectrofotômetro e misturados, visando uma representatividade uniforme, formando um novo *mix* contendo produtos da PCR de ambos genes para cada uma das amostras. Para o segundo grupo a mesma metodologia foi adotada (Figura 4.1).

Figura 4.1 - Ilustração da metodologia utilizada na mistura dos produtos da PCR e preparação das bibliotecas para cada amostra.

O *mix* de cada uma das amostras foi quantificado utilizando o equipamento *Qubit*® *3.0 Fluorometer* (Life Technologies) e o kit *Qubit*® *dsDNA HS Assay*, de acordo com as especificações do fabricante, e então diluída para uma concentração de 0,2ng/µl. Cinco microlitros foram utilizados para a preparação da biblioteca para cada amostra, utilizando para este fim o Nextera® *XT DNA sample preparation kit* (Illumina, San Diego, USA). Ao final do processo cada biblioteca apresentava uma combinação específica de *indexes*, que diferencia cada uma das amostras. As bibliotecas foram quantificadas por qPCR, utilizando o Kapa quantification kit (Illumina, San Diego, USA), diluídas para 2pM, misturadas em concentrações equimolares, e aplicadas sobre a lâmina de sequenciamento (*flow cell*) para a etapa de clusterização, realizada no equipamento cBot 2 System (Illumina, San Diego, USA), com leituras *paired-end* 2x100.

4.4 Processamento e análise de dados

Os dados gerados no sequenciamento foram convertidos para o formato FastQ por meio do programa CASAVA (Illumina). A qualidade das leituras (*reads*) foram obtidas por meio do software *Prinseq*, amostras com Q *score* menores que 30 foram excluídas da análise. O mapeamento das *reads* foi realizado utilizando o software BWA contra as regiões codificantes de cada gene, tendo como referência o genoma GRCh37/hg19 UCSC. As *reads* duplicadas foram removidas com o auxílio do software Prinseq, e utilizando o *software Genome Analysis Toolkit* (GATK) foi realizado o remapeamento e recalibração das bases, e a identificação de variantes. As SNVs e INDELS nas quais o alelo alternativo apresentam frequência inferior a 20% foram removidas (De Leeneer *et al.*, 2011b). Além disso, foram removidas todas as variantes com cobertura inferior a 27 vezes, segundo modelo estatístico proposto por De Leeneer *et al.*, (2011b). Ao final desse processo, as tabelas de variantes geradas foram analisadas visualmente utilizando o software *Integrated Genomics Viewer* 2.3 (IGV; Broad Institute, Cambridge, MA, USA).

4.5 Nomenclatura e classificação das variantes

A nomenclatura utilizada para a identificação das variantes não descritas no banco de dados dbSNP do NCBI seguiu as recomendações da *Humam Genome Variation Society - HGVS* (http://www.hgvs.org/), e tiveram como base as sequências referência NM_000051.3, NM_007294.3, NM_00059.3, NM_001007194.4, NM_004360.4, NM_024675.3, NM_000314.6, NM_001142571.1 e NM_000546.5, para os genes *ATM*, *BRCA1*, *BRCA2*, *CHEK2*, *CDH1*, *PALB2*, *PTEN*, *RAD51D* e *TP53*, respectivamente.

Foram classificadas como variantes de significado incerto aquelas que não apresentavam dados funcionais sobre patogenicidade, ou quando o risco não estava estabelecido no banco de dados ClinVar. A estimativa de patogenicidade das VUS do tipo missense foram sugeridas com o auxílio de 4 algoritmos: Align-GVGD, M-CAP, *PolyPhen* e *SIFT*. O algoritmo Align-GVGD atribui um classificação alfanumérica, a classificação C65 foi considerada patogênica, C55 e C45 foi considerada provavelmente patogênica, C25 e C15 provavelmente benignas, e C0 como benigna. Os algoritmos M-CAP, *PolyPhen* e SIFT atribuem um *score* de 1 a 0 para cada variante, e utilizam o ponto de corte >0.025, >0.8 e <0.05,

respectivamente, para classificar a variante como patogênica ou provavelmente patogênica baseados nas propriedades físicas dos aminoácidos e na homologia das sequencias (Adzhubei et al., 2010; Vaser et al., 2015; Jagadeesh et al., 2016). As VUS exônicas e as localizadas na região intrônica foram submetidas a dois algoritmos, HSF e MaxEntScan, que avaliam a alteração no padrão de *splicing* tendo como base scores a priori para a variante selvagem, e a posteriori para a alteração. Foi estabelecido coeficiente de variação (Δ CV) maior que 10% e 20%, respectivamente, como indicativo de alterações no padrão de *splicing* segundo as recomendações de Wappenschmidt *et al.*, (2012).

4.6 Comparação com o sequenciamento de Sanger

As variantes encontradas no sequenciamento de nova geração para o grupo 1 foram comparadas com os resultados do sequenciamento de Sanger. A comparação se restringiu às regiões codificantes dos éxons, e mais 10 pb flanqueando estas regiões. A sensibilidade foi calculada pela seguinte formula S = VP / (VP+FN), e o valor preditivo positivo VPP = VP / (VP+FP). Foram consideradas verdadeiro positivos (VP) as variantes identificadas pelo sequenciamento de Sanger e NGS, as variantes falso negativas (FN) foram aquelas encontradas pelo sequenciamento de Sanger e não encontradas pelo NGS, as variantes falso positivas (FP) são aquelas identificadas pelo sequenciamento de Sanger.

4.7 Validação do pipeline

Para avaliar o índice de concordância e sensibilidade da metodologia de obtenção das sequências alvo e do *pipeline* desenvolvido, utilizamos 25 amostras previamente sequenciadas pela metodologia de Sanger para os genes *BRCA1* e *BRCA2*. Entre as variantes presentes estavam 214 variantes nos éxons codificantes e sítios de *splicing* que flanqueiam esses éxons (±10 pb) nos genes *BRCA1* e *BRCA2* (Anexo 11 - 34). Vinte e cinco delas eram mutações patogênicas, sendo 12 em *BRCA1*, e 13 em *BRCA2*, entre as demais variantes, 50 estavam presentes no gene *BRCA1* (todas classificadas como benignas), e 139 em *BRCA2* (todas classificadas como benignas). Entre os tipos de variantes encontradas, 28 eram inserções ou deleções, 69 variações do tipo Missense, 60 sinônimas, 12 *Frameshift*, 2 sem sentido e 3 em sítios de *splicing*. Sessenta e quatro variantes estavam localizadas em regiões intrônicas, e 3 na região 5' UTR. O índice de concordância foi calculado da seguinte

forma: Número de variantes concordantes entre o sequenciamento de Sanger e o NGS, divido pela soma das concordâncias e discordâncias, multiplicado por 100.

5 RESULTADOS

A figura 5.1 mostra um resumo do desenho experimental utilizado para a obtenção das regiões alvo e NGS, cujo os resultados são apresentados a seguir. No grupo de amostras sem variantes patogênicas nos genes *BRCA1* e *BRCA2*, na etapa de preparação das 47 amostras para o sequenciamento, três amostras foram excluídas devido a erros metodológicos no preparo das bibliotecas.

Figura 5.1 - Desenho experimental

5.1 Avaliação da estratégia de NGS na identificação de variantes deletérias conhecidas em *BRCA1* e *BRCA2*

O gene *BRCA1* apresenta 24 éxons distribuídos ao longo de 193.689 pb, 23 deles são codificantes e somam 7.224 pb. O gene *BRCA2* contêm 27 éxons distribuídos ao longo de 91.193 pb, a extensão da região codificante totaliza 18.610 pb (Tabela 5.1). Utilizando a LR-PCR as regiões alvo de *BRCA1* foram amplificadas em seis reações. Para *BRCA2* foram realizadas seis PCR *multiplex* em seis reações (Anexo 9.4). Ao todo, foram utilizados 26 pares de *primers* para os dois genes (Anexo 9.3). As condições das PCR e ciclos de amplificação estão listados no Anexo 9.5 ao 9.9.

	Tamanho do gene	Tamanho da região amplificada	N° de éxons codificantes	Número de	N° de reações		
Gene				amplicons	LR-PCR	<i>Multiplex</i> PCR	
BRCA1	193.689 pb	7.224 pb	22	6	6	0	
BRCA2	91.193 pb	11.386 pb	26	20	0	6	
TOTAL	284.882 pb	18.100 pb	48	26	6	6	

Tabela 5.1 – Características gerais dos genes *BRCA1* e *BRCA2*, e número de reações de PCR necessárias para amplificação das regiões codificantes.

Foram realizados dois experimentos diferentes, o primeiro com 20 pacientes com mutações patogênicas conhecidas, e o segundo (destinado a aprimorar falhas detectadas no primeiro) com apenas 5 pacientes adicionais portadores de mutações patogênicas. Os dados gerais do NGS para o gene *BRCA1* e *BRCA2* encontram-se listados na tabela 5.2. A média e mediana da cobertura foram superiores na segunda corrida quando comparado a primeira.

Tabela 5.2 - Métricas do NGS para o grupo de pacientes com variantes patogênicas em BRG	CA1e
BRCA2.	

	1 ^a CORRIDA	2 ^a CORRIDA
Número de amostras	20	5
Número total de reads	73.745.289	56.733.358
Número de reads on-target	71.110.733	54.308.275
Cobertura por paciente (mínimo/máximo)	1.200.937 / 8.701.382	4.313.175 / 6.791.467
Cobertura por paciente (média/mediana)	106.377 / 40.650	194.752 / 93.959
Q>30	91,4%	95,9%

Entre os 20 pacientes sequenciados no primeiro experimento, todos tiveram cobertura nula ou próxima de zero para o *amplicon* que compreende os éxons 19 e 20 do gene *BRCA2*. Além dessa região, a cobertura foi considera insatisfatória para os éxons 3 e 12 de *BRCA2* (Figura 5.2A), elas foram nulas ou praticamente nulas para sete pacientes, e proporcionalmente inferiores às obtidas para os demais *amplicons*. Os *amplicons* do gene *BRCA2* que compreendem os éxons 8 e 9, 15 e 16, e os éxons 13, 16 e 27, também foram insuficientemente cobertos em oito pacientes. Para o gene *BRCA1* todas as regiões apresentaram cobertura acima do valor mínimo estabelecido.

Entre os 5 pacientes sequenciados no segundo experimento (Figura 5.2B) não houve região com cobertura inferior a 27 vezes para o gene *BRCA2*, e a dispersão da cobertura foi menor, indicando maior homogeneidade dos dados. Para o gene *BRCA1* a dispersão foi maior quando comparado ao primeiro experimento, e as regiões com amostras de pacientes com cobertura inferior a 27 vezes compreendiam os *amplicon*s com os éxons 2 a 3 e éxons 8 a 10.

Considerando o valor mínimo de profundidade de cobertura de 27x, o menor número total de *reads* por paciente obtidas para sequenciar toda a CDS foi de 1.120.937 e 5.063.555, para o primeiro e segundo sequenciamento, respectivamente. Dessa forma, seria possível sequenciar 358 e 80 pacientes no primeiro e segundo experimento, respectivamente, em uma corrida do tipo *rapid run* no HiSeq2500 (Sequenciamento que utiliza uma *flowcell* de duas *lanes*, onde são geradas aproximadamente ~200.000.000 *reads/lane*).

Figura 5.2 – Distribuição média da cobertura dos *amplicons* dos genes *BRCA2* e *BRCA1*. A) Primeiro experimento contendo 20 amostras. B) Segundo experimento contendo cinco amostras. A linha tracejada horizontal indica a cobertura igual a 27 vezes. A linha pontilhada vertical separa os genes *BRCA2* e *BRCA1*. As barras horizontais indicam a mediana. Os números entre parênteses no eixo X indica o *mix* no qual a região foi amplificada.

Amplicon

O sequenciamento de *BRCA1* e *BRCA2* para as 25 amostras, foi divido em dois experimentos independentes como descrito acima (Tabela 5.2). Após a utilização do *pipeline* contendo os parâmetros de qualidade, foram identificadas 341 variantes para as 20 amostras do primeiro experimento (303 SNVs e 38 INDELs), entre variantes patogênicas, variantes benignas e de significado incerto. Cento e trinta e oito estavam presentes em regiões intrônicas, sete variantes na porção 5' UTR, 194 em regiões codificantes (dez do tipo *frameshift*, 93 *missense*, 90 sinônimas, 1 sem sentido) e duas em sítio de *splicing*.

Para as cinco amostras sequenciadas no segundo experimento foram encontradas 71 variantes (62 SNVs e 9 INDELs), entre mutações patogênicas, variantes benignas e de significado incerto. Trinta e oito variantes exônicas, e 33 intrônicas. Entre as variantes exônicas, 20 delas foram do tipo sinônimas, 17 *missense*, e uma do tipo *frameshift*. Considerando os dois experimento, 236 variantes foram encontradas em heterozigose e 176 em homozigose (Anexo 35).

A combinação de *primers* utilizados para o NGS ampliou a extensão das regiões gênicas analisadas resultando em um número maior de variantes identificadas em relação ao sequenciamento de Sanger. A fim de comparar as metodologias, restringimos a identificação de variantes pelo NGS às mesmas regiões avaliadas pelo sequenciamento de Sanger, resultando em 243 variantes identificadas por NGS. Entre as 251 variantes previamente detectadas pelo sequenciamento de Sanger, 238 foram confirmadas pelo NGS (Tabela 5.3, anexo 9.32 e anexo 9.33), resultando em uma sensibilidade de 94,8%. A concordância com o sequenciamento de Sanger foi de 92,9%, e o valor preditivo positivo foi de 97,9%.

		SANGER			
		Variante presente Variante a			
NGS	Variante detectada	238	5		
	Variante não detectada	13	-		

 Tabela 5.3 - Número de variantes detectadas pelo sequenciamento de Sanger e NGS.

Treze variantes identificadas em 8 pacientes nos genes *BRCA1* e *BRCA2* pelo sequenciamento de Sanger não foram detectadas pelo NGS e encontram-se listadas na tabela 5.4. Com exceção dos pacientes 115, 139 e 152, as demais pacientes tiveram a mutação patogênica detectada pelo NGS. O paciente 139 apresenta uma

duplicação de uma citosina (c.5266dupC) no éxon 20 do gene *BRCA1*, enquanto o paciente 152 apresentam uma substituição de base (c.4327C>T) no éxon 13 do gene *BRCA1*, a não detecção da mutação patogênica para os pacientes 139 e 152 se deveu a ausência de cobertura para os respectivos éxons onde se localizam (Tabela 5.4). A amostra 115 apresenta uma inserção de uma sequência *ALU* no éxon 3 do gene *BRCA2*, variante para qual o pipeline de análise não estava apto a identificar.

Gene	c.HGVS	p.HGVS	Classificação	Localização	Amostra	Resultado do NGS
BRCA1	c.3548A>G	p.Lys1183Arg	Benigna	Éxon 10	114, 135	Cobertura <27x ou ausência de cobertura
	c.3113A>G	p.Glu1038Gly	Benigna	Éxon 10	114, 135	Cobertura <27x ou ausência de cobertura
	c.5266dupC	p.Gln1756Profs	Patogênica	Éxon 20	139	Ausência de cobertura
	c.4327C>T	p.Arg1443Ter	Patogênica	Éxon 13	152	Ausência de cobertura
	c.442-34C>T	na	Benigna	Éxon 8	167	Frequência do alelo alternativo <20%
BRCA2	c.156_157insAlu	na	Patogênica	Éxon 3	115	Não detectada pelo <i>pipeline</i>
	c.2229T>C	p.His743=	Benigna	Éxon 11	136	Frequência do alelo alternativo <20%.
	c.2971A>G	p.Asn991Asp	Benigna	Éxon 11	136	Frequência do alelo alternativo <20%.
	c.1365A>G	p.Ser455=	Benigna	Éxon 10	136	Cobertura <27x ou ausência de cobertura
	c.865A>C	p.Asn289His	Benigna	Éxon 10	136	Cobertura <27x ou ausência de cobertura
	c.8755-66T>C	na	Benigna	Íntron 21	206	Excluída pelo <i>pipeline</i>

 Tabela 5.4 - Variantes identificadas pelo sequenciamento de Sanger não detectadas pelo NGS.

c.HGVS – Nomenclatura da variante segundo a HGVS; p.HGVS – Nomenclatura da proteína segundo a HGVS; na – não se aplica
5.2 Avaliação da metodologia de obtenção das regiões alvo para o NGS para os demais genes

Os *primers* necessários para a obtenção das regiões alvo dos 7 genes (*ATM*, *CDH1*, *CHEK2*, *PALB2*, *TP53* e *RAD51D*) foram desenhados, padronizados individualmente, e encontram-se listados no anexo 9.10. Foram utilizadas 22 PCR para a obtenção de todas as regiões alvo, sendo elas: 18 *multiplex*, 3 singleplex e 1 long-range. Para o gene *CHEK2* foi fundamental a utilização da LR-PCR uma vez que ele apresenta 5 pseudogenes espalhados pelo genoma (Sodha *et al.*, 2002). As condições de amplificação encontram-se listadas nos anexos 9.11 ao 9.30.

	Tomonho	Tamanho da	Nº do ávono	Número de	N° de reações			
Gene	do gene	região amplificada	codificantes	amplicons	LR-PCR	<i>Multiplex</i> PCR		
ATM	153.268 pb	51.674 pb	62	27	0	10		
CDH1	105.250 pb	16.080 pb	16	8	0	3		
CHEK2*	61.092 pb	9.556 pb	7	1	1	0		
PALB2	166.188 pb	3.984 pb	16	10	0	3		
PTEN	45.196 pb	4.863 pb	13	9	0	3		
RAD51D	27.078 pb	5.164 pb	10	4	0	1		
TP53	32.772 pb	3.774 pb	10	3	0	1		
TOTAL	496.119 pb	95.090 pb	134	62	1	21		

Tabela 5.5 – Características gerais dos *ATM*, *CDH1*, *CHEK2*, *PALB2*, *PTEN*, *RAD51D* e *TP53*, e número de reações de PCR necessárias para amplificação das regiões codificantes.

*Foi amplificado apenas do éxon 10 ao 15.

Para avaliação do desempenho da metodologia de obtenção das regiões alvo dos 7 genes foram utilizados amostras de 68 pacientes. Os dados gerais do NGS para esse conjunto de pacientes encontram-se na tabela 5.6, onde a média e mediana do número de *reads* para as duas corridas realizadas são apresentadas, mostrando que os valores para a primeira corrida foram superiores aos da segunda corrida.

Tabela 5.6 - Métricas do NGS para as amostras amplificadas para os 7 genes .

	1 ^a CORRIDA	2 ^a CORRIDA
Número de amostras	24	44
Número total de reads	136.011.456	117.044.698
Número de reads on-target	131.453.226	115.415.051
Cobertura por paciente (mínimo/máximo)	1.476,162 / 6.037,343	262,938 / 2.673,442
Cobertura por paciente (média/mediana)	3.041,794 / 3.055,672	1.613,969 / 1.666,441
Q>30	87,5%	89,9%

Na corrida com 24 amostras, a cobertura do *amplicon* referente ao éxon 1 e 2 do gene *CDH1* foi nula para todos os pacientes avaliados (Figura 5.2A). De forma similar, o *amplicon* que compreende o éxons 46, 47, 48 e 49 do gene *ATM* apresentou cobertura zero para 50% das amostras. Cinco amostras apresentaram cobertura abaixo de 27 vezes para o *amplicon* 50-53 do gene *ATM*, os demais pacientes, apesar de apresentarem cobertura superior ao valor pré-estabelecido, foi observado uma grande variação.

No segundo experimento de sequenciamento com 44 amostras, foram desenhados novos pares de *primers* para o gene *ATM* relativo ao *amplicon* 46 ao 49, para o *amplicon* 50 ao 53, e para ov*amplicon* 1-2 do gene *CDH1*. O resultado mostrou que os *amplicons* do gene *ATM* apresentaram melhor cobertura, o que não ocorreu para o gene *CDH1*.

Considerando o valor mínimo de profundidade de cobertura de 27x, o menor número total de *reads* necessárias para sequenciar todas as CDSs para um paciente foi de 1.476.162 e 874.382, respectivamente para a primeira e segunda corridas, excetuando-se o *amplicon* referente ao éxon 1 e 2 do gene *CDH1*, para o qual todos os pacientes apresentaram cobertura zero, ou quase zero. Considerando o valor médio de cobertura, seria possível sequenciar 135 e 228 amostras na primeira e segunda corridas, respectivamente, em uma corrida do tipo *rapid run* no HiSeq2500 (Sequenciamento que utiliza uma *flowcell* de duas *lanes*, onde são geradas aproximadamente ~200.000.000 *reads/lane*).

5.2.1 Caracterização das variantes detectadas pelo NGS, predição *in silico* e associação com os dados clínicos

Entre os 68 pacientes sequenciados foram identificadas 689 variantes, 110 diferentes entre si, sendo: 32 localizadas no gene *ATM*, 19 no gene *CDH1*, 5 em *CHEK2*, 11 em *PALB2*, 18 no gene *PTEN*, 14 em *RAD51D* e 11 no gene *TP53*. Quanto ao efeito/localização dessas variantes: 38 foram não-sinônimas, 22 sinônimas, 33 intrônicas, 14 na porção 3', e três na porção 5' UTR. Quanto a classificação de patogenicidade: 79 foram classificadas como benignas ou provavelmente benignas, e 31 VUS diferentes, sendo 9 delas descritas pela primeira vez no presente trabalho (Tabela 5.6).

As 31 VUS identificadas no presente trabalho foram submetidas a plataforma VarSome (https://varsome.com/), que utiliza os critérios da *American College of Medical Genetics* (ACMG) para a classificação das variantes, e aos programas de predição *in silico* que avaliam o impacto da substituição de aminoácidos: SIFT, PolyPhen-2, Align-GVGD, M-CAP, e ao programa de predição HSF (*Human Splicing Finder*) que identifica alterações que podem afetar o padrão de *splicing* por meio de dois algoritmos principais: HSF e MaxEntScan..

Sete VUS do tipo *missense* foram classificadas como deletérias/possivelmente deletérias por pelo menos 3 dos 4 programas de predição, e 6 variantes intrônicas foram classificadas como modificadoras do padrão de *splicing* pelos dois algoritmos do HSF (Tabela 5.7). As características clínico-patológicas dos pacientes portadores das VUS preditas como deletérias estão indicadas na tabela 5.8.

Gene	#	dbSNP	DP / AF	c.HGVS	p.HGVS	Freq	Var Some	M- CAP	A- GVGD	SIFT	PP	HSF	MES
ATM	1	rs35963548	2293 / 0,5	c.1595G>A	p.Cys532Tyr	<0,001	VUS	LP	LB	Ρ	LP	Ν	Ν
ATM	1	rs567060474	287 / 0,5	c.6820G>A	p.Ala2274Thr	<0,001	VUS	LP	LP	Ρ	LP	Ν	Ν
АТМ	2	rs746351323	1738 / 0,5 2087 / 0,5	c.8800A>G	p.Thr2934Ala	<0,001	VUS	LP	LP	Ρ	LP	S	N
ATM	1	rs34231402	49 / 0,9	c.2289T>A	p.Phe763Leu	<0,001	VUS	LP	Р	В	В	Ν	Ν
ATM	1	rs201780199	2660 / ,05	c.3256C>G	p.Arg1086Gly	<0,001	VUS	LP	В	Ρ	В	Ν	Ν
ATM	1	rs148993589	797 / 0,5	c.4362A>C	p.Lys1454Asn	na	В	LP	В	Ρ	В	Ν	Ν
ATM	1	rs1479478300	757 / 0,5	c.149A>G	p.Lys50Arg	<0,001	LB	LB	В	В	В	S	Ν
CDH1	21	rs369254048	456-1573 / 0,5-0,8	c.*221del	na	>0,05	VUS	na	na	na	na	Ν	Ν
CDH1	22	rs113202135	152-956 / 0,5-0,8	c.*475delT	na	>0,01	VUS	na	na	na	na	Ν	Ν
CHEK2	1	rs201206424	2272 / 0,5	c.1036C>T	p.Arg346Cys	<0,001	VUS	na	Р	Ρ	Ρ	Ν	Ν
CHEK2	1	rs139366548	1992 / 0,5	c.1270T>C	p.Tyr424His	<0,001	VUS	LP	В	Ρ	LP	Ν	Ν
CHEK2	1	rs749156425	2214 / 0,5	c.1452G>A	p.Pro484=	<0,001	VUS	na	na	na	na	Ν	Ν
PALB2	1	rs373483056	1437 / 0,5	c.100C>T	p.Arg34Cys	<0,001	VUS	LP	Ρ	Ρ	LP	Ν	Ν
PTEN	1	Não descrita	40 / 0,9	c.79+106_79+107ins12	na	nd	VUS	na	na	na	na	S	S
PTEN	1	Não descrita	106 / 0,9	c.209+75del	na	nd	VUS	na	na	na	na	S	S
PTEN	1	Não descrita	34 / 0,9	c.253+93_253+94ins30	na	nd	VUS	na	na	na	na	S	S
PTEN	1	rs959280829	126 / 0,5	c.802-652G>A	na	nd	VUS	na	na	na	na	S	S
PTEN	1	Não descrita	35 / 0,8	c.79+103_79+104ins7	na	<0,05	VUS	na	na	na	na	S	S
PTEN	1	Não descrita	71 / 0,9	c.79+104del	na	na	VUS	na	na	na	na	Ν	Ν

Tabela 5.7 - Resultado da análise in silico das VUS identificadas nos pacientes do grupo 2.

PTEN	1	Não descrita	38 / 0,9	c.165-13_165-10del na		<0,001	VUS	na	na	na	na	Ν	Ν
PTEN	1	Não descrita	32 / 0,9	c.492+14del	na	na	VUS	na	na	na	na	Ν	Ν
PTEN	5	Não descrita	39–99 / 0,5	c.634+19del	na	na	VUS	na	na	na	na	Ν	Ν
PTEN	2	rs115962293	205 / 0,5 589 / 0,5	c.802-278G>A	na	>0,001	VUS	na	na	na	na	Ν	Ν
PTEN	1	rs147038309	945 / 0,5	c.802-207T>C	na	>0,01	VUS	na	na	na	na	Ν	Ν
PTEN	5	rs35755883	188–1978 / 0,5	c.802-359T>A	na	>0,05	В	na	na	na	na	S	S
PTEN	16	rs17431184	115-2441 / 0,5 e 1,0	c.802-400T>C	na	>0,1	В	na	na	na	na	Ν	Ν
RAD51D	1	rs1200819197	63 / 0,9	c.732G>A	p.Leu244=	<0,05	VUS	na	na	na	na	S	S
RAD51D	1	Não descrita	144 / 0,5	c.*435delAG	na	na	VUS	na	na	na	na	na	na
TP53	1	rs769934890	747 / 0,5	c.997C>T	p.Arg333Cys	<0,001	VUS	LP	LP	Р	LP	Ν	Ν
TP53	1	rs1042522	33 / 1,0	c.215C>G	p.Pro72Arg	>0,05	VUS	PL	В	В	В	Ν	Ν
TP53	54	rs150200764	0,5-1,0/ 28-384	c.96+41_97-54del	na	>0,5	В	na	na	na	na	na	na

ID – Identificação da amostra; dbSNP – Identificação da amostra no dbSNP; DP – Profundidade de leitura da base; AF – Frequência do alelo alternativo; Freq.: Frequência da variante no banco de dados *ExAc*; A-GVGD – AlignGVGD; PP – Polyphen; HSF – *Human Splicing Finder;* MES - MaxEntScan; S: Modifica o padrão de *splicing*; N: Não modifica o padrão de splicing; na – Não se aplica; nd – Não disponível; B – Benigna; LB – Provavelmente benigna; P – Patogênica; LP – Provavelmente patogênica; # - número de pacientes portadores da variante.

ID	Gene/c.HGVS	Histórico pessoal	Histórico familiar de câncer
40	<i>PTEN</i> c.253+93_253+94ins30	CM unilateral (40)	1º grau: CO (62), ependidoma (62) 2º grau: CM (38), CM (48), CM (68), leucemia (19)
42	<i>ATM</i> c.1595G>A	CM unilateral (42)	1º grau: CM (48); 2º grau: CM bilateral (54), leucemia (10)
47	<i>TP</i> 53 c.997C>T	CM unilateral (32)	1º grau: CM unilateral (32), ca gástrico (50)
48	RAD51D c.732G>A	CM unilateral (38)	1º grau: CM bilateral (40,58) 2º grau: Ca próstata (97)
148	<i>СНЕК</i> 2 c.1036C>T	CM bilateral (39, 48)	1º grau: Ca fígado (na), Ca útero (32) 2º grau: Ca intestino (60), CCR (57), Ca esôfago, CM(72) 3º grau: CM (>50), Ca estômago (na)
244	<i>PTEN</i> c.79+103_79+104ins7	CM unilateral (40)	1º grau: CM(<50)
255	<i>PTEN /</i> c.209+75del <i>PALB</i> 2 / c.100C>T	CM unilateral (55)	Na

Tabela 5.8 - Características	clinico-patológicas	dos pacientes	portadores de VUS	preditas como deletérias
i abola olo Calactorioticae	omnoo patologioao	add padionicou		

267	<i>CHEK2</i> c.1270T>C	CM unilateral (38)	2º grau: CM (68), ca bexiga (55), CM
287	<i>PTEN</i> c.802-652G>A	CM unilateral (39)	1º grau: CM (34)
347	<i>PTEN</i> c.79+106_79+107ins12	CM bilateral (39)	1º grau: Ca próstata (70) 3º grau: CM (49)
352	<i>ATM</i> c.6820G>A	CM bilateral (47)	1º grau: CM (82), linfoma (74), CM bilateral (38,39), ca pele (60), ca próstata (50) 2º grau: CM (>60), CM (>60), CM (<50)
368	<i>ATM</i> c.8800A>G	CM unilateral (46)	1º grau: CM (37), CM (45)
369	<i>ATM</i> c.8800A>G	CM bilateral (47, 57)	1º grau: CM (<60) 3º grau: Leucemia (na)

CM – Câncer de mama; CO – Câncer de ovário; Ca – Câncer ; () – Idade de diagnóstico

6 DISCUSSÃO

6.1 Amplificação e cobertura dos genes *BRCA1* e *BRCA2*, e medidas de validação da metodologia de obtenção das regiões alvo

No presente trabalho foram estabelecidas 12 PCR para a obtenção das regiões codificantes dos genes *BRCA1* e *BRCA2*, um conjunto próximo ao mínimo obtido em outros trabalhos buscando o estabelecimento de protocolos similares, que relatam a utilização de 11 a 24 reações de PCR *multiplex* ou LR-PCR (Morgan *et al.*, 2010; De Leeneer *et al.*, 2011a; Hernan *et al.*, 2012).

Considerando que a metodologia de Sanger apresenta uma limitação quanto ao tamanho dos fragmentos sequenciados, aproximadamente 800 pb, são necessárias, em média, 28 e 39 PCR para a obtenção de toda região alvo dos genes *BRCA1* e *BRCA2*, respectivamente. Dessa forma, as 12 reações estabelecidas no presente trabalho representam uma redução expressiva do número de PCRs, do tempo e do custo na realização das mesmas, incluindo as etapas subsequentes necessárias até a obtenção dos resultados. Levando em consideração que o custo é um dos principais fatores limitantes para a utilização de metodologias em larga escala, especialmente para países em desenvolvimento, métodos como o desenvolvido no presente trabalho apresentam potencial aplicação no diagnóstico genético dos casos de HBC.

A cobertura das regiões alvo obtidas no presente trabalho em ambos sequenciamentos para os genes *BRCA1* e *BRCA2* foi de 97,73%, levando em consideração a profundidade de cobertura maior que 27x. A cobertura e a profundidade de cobertura são dois parâmetros complementares e essenciais para estabelecer o êxito do sequenciamento. A cobertura é a medida de quanto das regiões alvo foram representadas pelas *reads* geradas no sequenciamento, neste caso, seria desejável que todos os alvos fossem representados resultando em uma cobertura de 100%, evitando que essas regiões fossem sequenciadas pela metodologia de Sanger. O segundo parâmetro, a profundidade de cobertura, é a medida de quantas vezes uma determinada base foi sequenciada. Neste caso não há um valor máximo estabelecido, mas ele deve ser adequado de modo a dar segurança na identificação de variantes.

Os dados da literatura para o sequenciamento dos genes *BRCA1* e *BRCA2* mostram ausência de cobertura de 4,6% a 12,5% das regiões alvo, considerando a

profundidade de cobertura entre 20x e 38x, tanto para protocolos similares ao desenvolvido no presente trabalho (De Leeneer *et al.*, 2011a; Shin *et al.*, 2016), quanto utilizando kits comerciais (Feliubadalo *et al.*, 2012; Churpek *et al.*, 2015; Thompson *et al.*, 2016). Tendo em vista esses dados, consideramos nossos resultados adequados para o diagnóstico genético.

No protocolo desenvolvido no presente trabalho foi possível identificar pela eletroforese em gel de agarose que as regiões de baixa cobertura apresentaram menor intensidade das bandas correspondentes, em amostras específicas. Essa observação permitiu realizar ajustes na concentração dos *primers* presentes em cada *mix* para o segundo experimento, ocasionando uma melhora considerável para todos os *amplicons* com profundidade de cobertura <27x no primeiro sequenciamento para o gene *BRCA2* (Figura 5.2B).

Para o éxon 3 e 12 do gene *BRCA2*, amplificados em um mesmo *mix*, foi observado um número de bandas além do esperado, indicando uma amplificação inespecífica, fato comum em reações de PCR *multiplex* devido a interação entre os *primers* (Hernan *et al.*, 2012; Ahmadloo *et al.*, 2017). Este evento pode ter levado a uma superestimativa na concentração destes *amplicons* alvo presentes nas amostras, resultando em uma cobertura reduzida para éxons contidos nesse *mix* (Figura 5.2A).

O ajuste realizado por meio do aumento da concentração do *mix* em questão na mistura final refletiu no aumento na cobertura desses éxons (Figura 5.2B), no entanto, eles ainda destoam das demais regiões alvo, sugerindo a necessidade de mudanças nos pares de *primers* utilizados na amplificação dessa região. A dispersão dos dados foi maior para o gene *BRCA1* utilizando a LR-PCR quando comparados a PCR *multiplex* utilizada para o gene *BRCA2*. Em vista disso, podemos afirmar que a PCR *multiplex* apresentou performance superior, demonstrando homogeneidade dos dados. Apesar de demandar mais tempo para a padronização, é uma técnica que pode ser empregada com os reagentes utilizados rotineiramente nos laboratórios de biologia molecular.

Para a LR-PCR é necessário a utilização de DNA polimerase específica para grandes fragmento, representando um custo adicional para a metodologia, apesar disso, uma LR-PCR foi capaz de amplificar até 5 regiões codificantes em uma etapa, reduzindo o tempo, os insumos e o custo dos passos subsequentes. Entretanto, a variação da cobertura foi acentuada em ambos experimentos para o

sequenciamento de *BRCA1*. Apesar das amostras terem sido selecionadas com base na integridade do DNA, acreditamos que outros parâmetros tenham interferido na amplificação, como a presença de contaminantes oriundos da etapa de extração do material genético. Como reflexo da dispersão dos dados foi observado um valor maior no número mínimo de *reads* necessárias para o sequenciamento de uma amostra (Tabela 5.2).

Além disso, deve-se levar em consideração que a utilização da LR-PCR, apesar de demandar menos tempo na padronização quando comparada a *multiplex* PCR, amplifica grandes porções das regiões intrônicas, contribuindo para a saturação da capacidade de sequenciamento das plataformas, e gerando informações sem aplicação prática imediata ao aconselhamento genético, já que a patogenicidade das variantes intrônicas localizadas fora dos sítios consenso de *splicing* não estão claramente descritas.

As medidas de sensibilidade (94,8%), valor preditivo positivo (97,9%) e concordância (92,9%) obtidas no presente trabalho foram consideradas altas. De Leeneer *et al.*, (2011a) e Shin *et al.*, (2016) utilizando métodos semelhantes de obtenção das sequências alvo, alcançaram sensibilidade de 98% e 99%, respectivamente, no entanto, o número de variantes falso positivas foram igualmente altas, resultando em VPPs de 55,5% e 87,5%, respectivamente. Resultado semelhante ao obtido por Feliubadalo *et al.*, (2012) utilizando kits comerciais, onde a sensibilidade foi de 100%, e o VPP de 67,4%. O elevado número de variantes falso positivas foras falso positivas podem demandar etapas adicionais de validação pelo sequenciamento de Sanger, ou levar ao erro do diagnóstico genético.

E importante ressaltar que não houveram regiões uniformemente ausentes em cobertura, ou seja, a não detecção de variantes foram amostra-específicas e não decorrentes do protocolo de obtenção das regiões alvo. No presente protocolo foi possível observar que as regiões de baixa cobertura apresentaram baixa eficiência da PCR, dessa forma, essas medidas poderiam ser otimizadas visando os ajustes na PCR, e consequentemente na cobertura, uma vez que 8/13 variantes identificadas apenas pelo sequenciamento de Sanger estavam localizadas em regiões onde não houve cobertura pelo NGS, ou a cobertura foi inferior ao mínimo estabelecido de 27x (Tabela 5.4). A alta sensibilidade obtida possibilitou que nenhuma das variantes patogênicas verdadeiro positivo fossem perdidas, exceto para os dois casos em que não houve profundidade de cobertura, e para a amostra

com a inserção ALU, para a qual o *pipeline* não foi apropriado. Neste caso, o *pipeline* desenvolvido pelo nosso grupo até o momento é restrito à identificação de SNVs e pequenas INDELs (~15pb), no entanto demostrou-se adequado na identificação de 99,58% das variantes previamente identificadas pelo sequenciamento de Sanger.

Entre algumas variantes identificadas nos presente trabalho foi observado o viés de fita, ou *unbalanced strand bias*. Esse fenômeno ocorrer quando as *reads* mapeadas nas extremidades dos *amplicons* estão presentes majoritariamente no sentido senso ou anti-senso, de maneira desproporcional. A tabela 6.1 lista quatro variantes identificadas pelo *pipeline*, e localizadas nas extremidades dos *amplicons* e que apresentaram o viés de fita. Somadas elas foram encontradas 47 vezes. Todas apresentaram cobertura acima de 27x e frequência do alelo alternativo acima de 20%, porém, as *reads* foram mapeadas em apenas um dos sentidos da fita. Em casos extremos a região pode estar coberta por *reads* em apenas um dos sentidos (Guo *et al.*, 2012a; Shin *et al.*, 2016).

Mesmo apresentando ampla cobertura e frequência do alelo alternativo acima de 30%, Shin *et al.*, (2016) consideram essas variantes falso positivas. Outros autores (Guo *et al.*, 2012a; Guo *et al* 2012b; Dacheva *et al.* 2016) consideram que por mais desbalanceado que sejam as *reads* presentes em um dos sentidos em relação ao outro, esse fenômeno não afetaria a confiabilidade do dado, especialmente para genótipos homozigotos, uma vez que o viés não levaria a identificação de um falso heterozigoto.

Gene	ID	Freq.	DP (média)	Variante	#	Identificada por Sanger
	rs138193280	0,50	591	c.6841+80_6841+83del4	13	Sim
CAS	rs9534262	0,67	2419	c.7806-14T>C	19	Sim
3R(rs4942486	0,72	1064	c.8755-66T>C	12	Sim
4	rs9595456	0,48	1659	c.9257-83G>A	3	Sim

	Tabela 6.1 -	Variantes	localizadas em	regiões	próximas	ao sítio de	e pareamento	dos primers.
--	--------------	-----------	----------------	---------	----------	-------------	--------------	--------------

ID – Sequencia identificadora da variante no banco de dados dbSNP; DP – Cobertura da variante; # Número de vezes reportada; Freq.: Frequência média do alelo alternativo.

Acreditamos que o *strand bias* seja comum a qualquer estratégia de obtenção de sequências alvo e que ele ocorra devido a etapa de "tagmentação", onde acontece a adição dos *barcodes* e da região complementar aos oligos da *flowcell* nas

extremidades dos *amplicons*. Nessas regiões o número de sítios disponíveis para o reconhecimento da enzima de tagmentação são menos numerosos, logo, as extremidades 3' e 5' terão um sítio único de adição das sequências acima descritas, e a cobertura dessas regiões será menor. Apesar da ausência de cobertura em um dos sentidos ser uma provável fonte de viés, acreditamos que não necessariamente faz do genótipo um falso positivo, além disso todas variantes foram identificadas pelo sequenciamento de Sanger, metodologia considerada padrão ouro para detecção de variantes, e amplamente utilizada em diversos laboratórios de pesquisa.

6.2 Desempenho da metodologia na obtenção das regiões alvo para os sete genes adicionais

As adequações realizadas nas PCR entre os experimentos refletiram na diferença do número mínimo de *reads* necessários para o sequenciamento de uma amostra, no primeiro sequenciamento foi de 1.476.162, e no segundo de 874.382. Levando em consideração a capacidade de sequenciamento de ~200.000.000 de *reads* por *lane*, esses dados demostram uma melhora no aproveitamento do sequenciamento, e a possibilidade de inclusão da mais amostras em um mesmo experimento.

Apesar disso, nem todas as regiões alvo foram adequadamente sequenciadas em ambos experimentos, especialmente no segundo conjunto de amostras após as modificações no protocolo. Esse é o caso dos éxons 1 e 2 do gene *CDH1*, que não foram cobertos no primeiro experimento, e mesmo com as mudança nos pares de *primers*, e da amplificação ter sido realizada em uma reação *singleplex*, 21 amostras não atingiram a cobertura mínima estabelecida (27x). Esta região foi de difícil amplificação provavelmente devido ao alto conteúdo de citosina e guanina (69%), característica que pode ter afetado inclusive o sequenciamento. Para o *amplicon* referente aos éxons 5 e 6 do gene *PALB2*, 24 amostras apresentaram cobertura nula no segundo experimento. Neste caso, a performance da PCR foi insuficiente como demostrado pela baixa intensidade das bandas (Anexo 9.31). Para os *amplicons* 46_49 e 50_53 do gene *ATM*, os ajustes na PCR mostraram-se suficientes para que a região fosse coberta de forma satisfatória, atingindo a cobertura mínima de 27x para todas as amostras (Figura 5.2B).

6.2.1 Identificação de variantes

No presente trabalho não foram encontradas variantes patogênicas nos sete genes sequenciados além de *BRCA1* e *BRCA2*. Os dados gerados nos últimos anos em pacientes em risco para HBC de diferentes origens geográficas, mostram uma

prevalência de alterações patogênicas entre 2,4% a 8,33% (Desmond *et al.*, 2015; Thompson *et al.*, 2016; Tung *et al.*, 2016; Buys *et al.*, 2017; Crawford *et al.*, 2017; Couch *et al.*, 2017; Kurian *et al.*, 2017; Rosenthal *et al.*, 2017; Bonache *et al.*, 2018; Singh *et al.*, 2018). Acreditamos que a variação na frequência de variantes patogênicas relatadas nesses estudos se devam a três fatores principais: o número de genes avaliados, os critérios de inclusão dos pacientes, e a diversidade genética entre as populações estudadas.

A NCCN representa 28 centros de referência no combate, prevenção e tratamento de câncer dos EUA, e suas diretrizes são utilizadas como referência em diversos estudos. Nas recomendações mais recentes (NCCN, 2018.1) há indicação de aumento de risco para câncer de mama para os genes *ATM*, *BRCA1*, *BRCA2*, *CDH1*, *CHEK2*, *NBN*, *NF1*, *PALB2*, *PTEN*, *STK11* e *TP53*. Tendo como base essas recomendações, a maioria destes genes estão contidos nos painéis utilizados nos principais estudos, apesar disso, as evidências mais recentes não identificaram associação para a maior parte desses genes (Couch *et al.*, 2017; Kurian *et al.*, 2017; Hauke *et al.*, 2018; Lu *et al.*, 2018).

Nos resultados obtidos por Couch *et al.*, (2017), em um estudo caso-controle contendo 65.057 pacientes e 16 genes, foi demonstrado que apenas variantes presentes nos genes *ATM*, *BARD1*, *CHEK2*, *PALB2* e *RAD51D*, apresentaram associação moderada a alta quanto ao risco para o desenvolvimento de câncer, em contrapartida, os genes *BRIP1*, *NBN*, *MLH1*, *MSH2*, *PMS2*, e *NF1* não demostraram qualquer associação com o surgimento do fenótipo (Os genes *CDH1*, *PTEN* e *TP53* foram excluídos das análises pelo baixo número amostral). Kurian *et al.* (2017) utilizaram uma análise multivariada e um estudo caso-controle pareado em 95,561 pacientes, nos resultados encontrados houve concordância entre os métodos analíticos utilizados, e foram significativamente associados ao câncer de mama os genes *ATM*, *BARD1*, *CHEK2*, *PALB2*, *PTEN* e *TP53*, e o gene *CDH1* foi associado especificamente ao câncer lobular de mama. Neste estudo não foi identificada associação para os genes *BRIP1*, *NBN*, *MSH6*, *PMS2* e *STK11*.

Lu *et al.*, (2018) avaliando o exoma de 11.416 pacientes em um estudo caso controle, identificaram associação moderada a alta para os genes *ATM*, *CHEK*2, *PALB*2, *MSH*6 *e TP5*3, mas não para os genes *BRIP1*, *NBN*, *RAD51C*, *RAD51D*, *MSH*2 *e PMS*2. No resultados encontrados por Hauke *et al.*, (2018) em um estudo caso-controle para 5589 pacientes e 8 genes (*ATM*, *CDH1*, *CHEK*2, *NBN*, *PALB*2,

RAD51C, RAD51D e TP53), foi identificada associação para os genes ATM, CDH1, CHEK2, PALB2 e TP53, mas não para o gene NBN. Para os genes RAD51C e RAD51D não houve número amostral suficiente.

Os estudos acima citados apresentam elevado nível de evidência, e com base nesses dados é possível observar que há um consenso entre quatro genes associados ao câncer de mama (*ATM*, *CHEK2*, *PALB2 TP53*), e pelo menos quatro genes sem associação (*BRIP1*, *NBN*, *MSH2*, *PMS2*). Se desconsiderarmos os quatro principais genes para os quais os estudos caso-controle não identificaram associação (*BRIP1*, *NBN*, *MSH2*, *PMS2*), e também os genes para os quais a NCCN não indica risco aumentado para o câncer de mama, a prevalência de variantes patogênicas identificadas na maioria dos estudos, antes entre 2,4% a 4,6%, reduz para 1,56% a 2,36% (Desmond *et al.*, 2015; Thompson *et al.*, 2016; Tung *et al.*, 2016; Buys *et al.*, 2017; Couch *et al.*, 2017; Rosenthal *et al.*, 2017).

Enquanto observamos uma redução de mais de 50% na prevalência de variantes patogênicas para a maioria dos estudos, nos resultados obtidos por Crawford *et al.*, 2017 e Bonache *et al.*, (2018) a redução da prevalência foi menor, passando de 8% e 8,33%, para 7,33% e 6,25%, respectivamente. Nesses trabalhos a seleção dos pacientes baseou-se em critérios clínicos mais restritivos, favorecendo a inclusão de pacientes com câncer de ovário (32%), câncer bilateral de mama (34%), e histórico pessoal de câncer de mama e familial de câncer de ovário (34%) em um dos estudos, e no outro foram favorecidos pacientes com câncer de mama em idade precoce (<36 anos, que representaram 40% dos casos), câncer de mama em idade precoce e casos de câncer de mama ou ovário na família (representando 31%), e câncer de ovário (representando 20%). Em vista disso, diferente dos trabalhos que utilizaram as recomendações da NCCN ou recomendações similares, a utilização de critérios clínicos mais restritivos parece ter maior valor preditivo na identificação de variantes patogênicas em outros genes associados ao câncer de mama hereditário.

A ausência de mutações patogênicas nos sete genes estudados pode também estar associada às características genéticas da população brasileira. Esse evento foi extensivamente mostrado para os genes *BRCA1*, *BRCA2* e *TP53* em diferentes populações, incluindo o Brasil (Hall *et al.*, 2009; Rebbeck *et al.*, 2015; Palmero *et al.*, 2018). Buys *et al.*, (2017) relatam uma variabilidade de 7,2% a 11,5% na prevalência de variantes deletérias de acordo com a etnia, considerando os 25 genes que estudou em 35,000 mulheres. Acreditamos que exista a possibilidade da população

brasileira apresentar perfil genético distinto, com prevalência de variantes deletérias em outros genes relacionados ao HBC menor que o observado em outras populações e/ou diferente entre as regiões brasileiras, devido ao baixo número de amostras avaliadas no presente estudo, não identificamos nenhuma variante patogênica.

Entre outras limitações do estudo está o fato de que apenas 21,4% dos pacientes selecionados para o sequenciamento dos sete genes adicionais foram avaliados para CNV dos genes *BRCA1* e *BRCA2*. É possível que algum paciente apresente esse tipo de variante e, nesse caso, a probabilidade que também apresente outra variante deletéria em gene associados ao HBC é menor, e têm se mostrado um evento raro (Hall *et al.*, 2009; Tung *et al.*, 2016; Crawford *et al.*, 2017; Rosenthal *et al.*, 2017; Schubert *et al.*, 2018). Como o *pipeline* de análise não estava apto a identificar variantes de número de cópias, e as regiões não cobertas pelo NGS não foram sequenciadas pelo método de Sanger, existe a chance de que variantes patogênicas tenham sido perdidas.

6.3 Variantes de significado incerto e análise in silico

No presente trabalho as VUS representaram 28,1% das variantes identificadas, um percentual inferior a faixa média de identificação de outros estudos, aproximadamente 35% (Minion *et al.*, 2015; Tung *et al.*, 2016; Rosenthal *et al.*, 2017; Gardner *et al.*, 2018). O número de VUS identificadas pode estar relacionado ao maior número de genes avaliados por esses outros estudos, em média 15 genes. A ausência de informação sobre estas variantes pode causar ansiedade para o paciente, e dificuldade em propor as alternativas de conduta por parte do geneticista clínico e pelos oncologistas e cirurgiões, já que não há diretrizes estabelecidas (LaDuca *et al.*, 2014, Tung *et al.*, 2015).

Entre as 9 VUS identificadas primeiramente nesse trabalho, uma delas está localizada na porção 3' UTR do gene *RAD51D*, as demais estão localizadas em regiões intrônicas do gene *PTEN* (Tabela 5.7). O fato dessas variantes não terem sido descritas anteriormente pode ser devido ao fato delas estarem localizadas em íntrons ou porções regulatórias do gene, regiões normalmente não sequenciadas pela maioria dos trabalhos.

Todas as VUS do tipo *missense* relatadas no presente trabalho, foram preditas como patogênicas por pelo menos três dos quatro algoritmos de predição, e identificadas

em genes para os quais a associação com o surgimento do fenótipo é bem estabelecida (Couch *et al.*, 2017; Kurian *et al.*, 2017; Hauke *et al.*, 2018; Lu *et al.*, 2019). As VUS presentes no gene *ATM*, por exemplo, poderiam ter relação direta com o surgimento do fenótipo nos pacientes em que foram identificadas, pois, além da associação estabelecida do gene com o fenótipo, o histórico pessoal e familial de câncer também é compatível com HBC. O mesmo racional pode ser utilizado para a variante *missense* presentes em *PALB*, fortemente associada ao câncer de mama em homens, e identificada em um paciente do sexo masculino no presente trabalho. Apesar do histórico pessoal e familiar ser fortemente sugestivo para todos os casos (Tabela 5.7), e a análise *in silico* sugerir efeito deletério das variantes (Tabela 5.8), o processo de classificação de uma variante demanda uma série de estudos funcionais e/ou de cossegregação, e as ferramentas de predição são apenas um indicativo para a classificação das variantes (Jagadeesh *et al.* 2016).

Entre as variantes intrônicas identificadas no gene *PTEN*, três delas foram classificadas como inibidoras de ESS (*Exonic splicing silence*), ou seja, as variantes geram motivos que interagem com moléculas repressoras do *splicing* que atuam nas regiões adjacentes, essa interação ativa uma região antes silenciada, possibilitando que eventos alternativos de *splicing* ocorram naquela região. Duas variantes criam sítios ESE (*Exonic splicing enhancer*), ativando o mecanismo de *splicing* onde não havia, e uma delas ativa sítios crípticos de *splicing*, e também possibilita a ativação do mecanismo de *splicing*.

Os programas de predição utilizados tem demostrado alta sensibilidade para a identificação de eventos alternativos de *splicing* ao apresentarem suporte para metodologias *in vitro* (Desmet *et al.*, 2009; Gaildrat *et al.*, 2010; Wappenschmidt *et al.*, 2012). No entanto, além da necessidade de comprovação das modificações no padrão de *splicing in vitro* e *in vivo*, as variantes identificadas no gene *PTEN* demandam mais evidências para que sua associação ao HBC seja estabelecida.

6.4 Custos do teste genético

Uma estimativa de custo foi realizada comparando o valor dos insumos necessários para o sequenciamento de Sanger e o NGS, levando em consideração os genes *BRCA1* e *BRCA2*. Para o sequenciamento de Sanger consideramos a realização das PCR para a amplificação de cada região codificante, o custo da purificação e

uso do sequenciador ABI3130. Para o NGS foi considerado as reações PCR *multiplex* e de longo alcance, como descrito na sessão "Material e métodos", a purificação, e todos os insumos necessários para o preparo das bibliotecas, e uso do sequenciador Illumina *HiSeq2500* (Tabelas 5.7 e 5.8).

A diferença entre os valores mostrou uma redução de 5x do custo por paciente para o sequenciamento de nova geração em relação ao método de Sanger, no entanto, é importante ressaltar que a estimativa de custo realizada levou em consideração apenas os principais insumos necessários para o sequenciamento. Patel *et al.*, 2016 e Lange *et al.*, (2014) verificaram uma redução de 33% e 50%, respectivamente. Stoddard *et al.*, (2014) também demonstraram uma redução de custo de 7%, que decrescia ainda mais de acordo com o aumento de número dos alvos a serem sequenciados, chegando a 30%. Parte da diferença entre os custo observadas nos dados publicados na literatura e os observados no presente trabalho podem estar relacionados ao custo de manutenção e mão de obras, ainda assim, a utilização do NGS mostra novamente apresentar custo-benefício favorável e potencial aplicação no diagnóstico genético

Insumo	Valor	Valor unitário	Quantidade necessária por amostra	Custo por amostra (R\$)
Platinum Taq DNA pol. (500 reações)	440,00	0,88	67	58,96
GE Purification Kit (250 reações)	1.475,20	5,90	67	395,35
BigDye Terminator Kit (400 reações)	5.373,00	13,43	134	1.799,96
POP-7 Polymer for 3130 (960 reações)	2.646,00	2,76	134	369,33
TOTAL				2.623,61

Tabela 6.2 - Lista dos principais insumos e custos para o sequenciamento de Sanger dos genes *BRCA1* e *BRCA2*.

 Tabela 6.3 - Lista dos principais insumos e custos necessários para o NGS dos genes BRCA1 e

 BRCA2 considerando 96 amostras por corrida.

Insumo	Valor	Valor unitário	Quantidade necessária por amostra	Custo por amostra (R\$)
Platinum Taq DNA pol. (500 reações)	440,00	0,88	8	7,04
Platinum PFX DNA pol. (192 reações)	2.468,00	12,85	4	51,42
GE Purification Kit (250 reações)	1.475,20	5,90	12	70,81
Qubit dsDNA HS Assay (100 reações)	350,00	3,50	1	3,50
Nextera XT DNA Library Prep (96 amostras)	20.274,31	211,19	1	211,19
NEBNext Quant (160 amostras)	3.500,00	21,88	1	21,88
Hiseq Rapid Duo cBot (192 amostras)	2.212,48	11,52	1	11,52
HiSeq Rapid SBS v2 (200 ciclos)	10.609,82	55,26	1	55,26
HiSeq Rapid PE Cluster Kit v2 (192 amostras)	7.643,00	39,80	1	39,80
TOTAL				472,42

6.5 Considerações finais e perspectivas

O teste genético é uma ferramenta importante para a redução da mortalidade e comorbidades associadas ao câncer de mama hereditário, sua utilização visa obter informações que permitam uma intervenção clínica apropriada, incluindo a estimativa de risco para o surgimento de câncer, e medidas de prevenção primária, como a quimioprofilaxia e cirurgia profilática. Por esse motivo é importante a correta associação de um genótipo com o risco de desenvolvimento da doença. Nesse sentido a utilização de painéis multigenes deve ser vista com cautela, e a escolha dos genes a serem sequenciados deve levar em consideração dados recentes, pois a identificação de alterações deletérias em genes não associados ao HBC pode levar a uma série de procedimentos desnecessários para o paciente e familiares. Além disso, a inclusão de mais genes no diagnóstico genético implica no aumento de custos, e na redução da capacidade de sequenciamento das plataformas.

A utilização do NGS trouxe inovação para diagnóstico e para o aconselhamento genético ao reduzir o custo e o tempo necessário para obtenção do resultado do teste. Ao ampliar o número de genes avaliados, possibilitou estabelecer a associação de novos genes ao risco de desenvolvimento de câncer, e a possibilidade de novos tratamentos. Mesmo com a inclusão de novos genes associados a HBC no diagnóstico genético, a prevalência de variantes deletérias entre os pacientes com indícios clínicos para a síndrome genética praticamente se manteve em 30%, em média. Tendo em vista o elevado percentual de pacientes com diagnóstico genético, a possibilidade das variantes intrônicas apresentarem um papel relevante para o HBC torna-se cada vez mais plausível.

Gaildrat *et al.*, (2010), Wappenschmidt *et al.*, (2012), Davy *et al.*, (2017) entre outros autores vem demonstraram que alterações em regiões intrônicas podem alterar o padrão de *splicing* para diversos genes relacionados ao HBC por análises *in silico, in vitro* e *in vivo*, indicando potencial associação com o fenótipo câncer de mama. Logo, as variantes intrônicas identificadas no gene *PTEN*, que apresentaram *scores* elevados para ambos algoritmos de predição, portanto classificadas como modificadoras do *splicing*, podem alterar a função e/ou estrutura da proteína, e consequentemente ter relação com o surgimento do fenótipo, caso venha a ser confirmada como um gene de suscetibilidade ao HBC. Essa possibilidade é plausível também para o gene *BRCA1*, para qual foram sequenciadas grandes regiões intrônicas não avaliadas nessa tese.

7 CONCLUSÕES

• O protocolo de obtenção das regiões alvo utilizando a PCR *multiplex* e LR-PCR visando o NGS alcançou cobertura média de 97%, por esse motivo os resultados foi considerado adequados para essa finalidade.

• As medidas de sensibilidade (94,8%), concordância (92,9%), e o valor preditivo positivo (97,9%) demonstram que *o pipeline* de análises foi eficiente na identificação de variantes associadas ao HBC.

• Não identificamos a presença de variantes deletérias em nossa coorte para os genes *ATM*, *CHEK*2, *CDH1*, *PALB*2, *PTEN*, *RAD*51D e *TP*53.

• Entre as doze variantes de significado incerto (VUS) do tipo *missense* identificadas em nossa coorte, sete foram classificadas como provavelmente deletérias e podem ser importantes para nossa população, porém, são necessárias metodologias de validação para estabelecer a relação da presença da variante com o surgimento do câncer.

 Apesar de não identificarmos nenhuma alteração classificada como deletéria entre os demais genes associados ao HBC, vale ressaltar que o número amostral foi limitado

8 REFERÊNCIAS

ABUD, J.; KOEHLER-SANTOS, P.; ASHTON-PROLLA, P.; *et al. CHEK*2 1100DELC germline mutation: a frequency study in hereditary breast and colon cancer Brazilian families. **Arq. Gastroenterology**, São Paulo, 49(4): 273-278, 2012.

AHMED, M.; RAHMAN, N. *ATM* and breast cancer susceptibility. **Oncogene**, 25: 5906-5911, 2006.

AHMADLOO, S.; NAKAOKA, H.; HAYANO, T.; *et al.* Rapid and cost-effective highthroughput sequencing for identification of germline mutations of *BRCA1* and *BRCA2*. Journal of Human Genetics, 62, 561-567, 2017.

ALEMAR B, GREGÓRIO C, HERZOG J, *et al. BRCA1* and *BRCA2* mutational profile and prevalence in hereditary breast and ovarian cancer (HBOC) probands from Southern Brazil: Are international testing criteria appropriate for this specific population?. **PLoS One**. 12(11):e0187630, 2017.

APOSTOLOU, P.; FOSTIRA, F. Hereditary breast cancer: the era of new susceptibility genes. **Biomed Res Int**, epub 747318, 2013.

BALMAÑA, J.; DIEZ, O.; RUBIO, I. T.; CARDOSO, F.; BRCA in breast cancer: ESMO Clinical Practice Guidelines. **Ann Oncol,** 22(6): 31-34, 2011.

BERGMAN, A.; FLODIN, A.; ENGWALL, Y. *et al.* A high frequency of germline *BRCA1/2* mutations in western Sweden detected with complementary screening techniques. **Familial Cancer**, v. 4(2): 89, 2005

BLUMEN, H.; FITCH, K.; POLKUS, V. Comparison of Tre*ATM*ent Costs for Breast Cancer, by Tumor Stage and Type of Service. **Am Health Drug Benefits**. 9(1): 23-32, 2016.

BONACHE, S.; ESTEBAN, I.; MOLES-FERNÁNDEZ, A. *et al* Multigene panel testing beyond *BRCA1*/2 in breast/ovarian cancer Spanish families and clinical actionability of findings. **J Cancer Res Clin Oncol** 144:2495–2513, 2018.

BUYS, S. S.; SANDBACH, J. F.; GAMMON, A.; PATEL, G. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. **Cancer**, 123: 1721-1730, 2017

Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumors. **Nature**, 490: 61–70, 2012.

CARROLL, J. C.; CREMIN, C.; ALLANSON, J.; BLAINE, S. M.; DORMAN, H.; GIBBONS, C. A.; GRIMSHAW, J.; HONEYWELL, C.; MESCHINO, W. S.; PERMAUL, J.; WILSON, B. J. Hereditary breast and ovarian cancers. **Can Fam Physician**, 54(12):1691–1692, 2008.

CASTÉRA, L. S.; KRIEGER, A.; ROUSSELIN, A.; LEGROS, J. J.; BAUMANN, O.; *et al.*, Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. **Eur. J.Hum. Genet**, 22: 1305–1313, 2014.

CHEN, J.; PEE, D.; AYYAGARI, R.; GRAUBARD, B.; SCHAIRER, C.; BYRNE, C.; *et al.* Projecting Absolute Invasive Breast Cancer Risk in White Women With a Model That Includes Mammographic Density. **J Natl Cancer Inst**, 98(17): 1215-1226, 2006.

CHONG, H. K.; WANG, T.; LU, H. M.; SEIDLER, S.; LU, H.; KEILES, S.; *et al.* The validation and clinical implementation of BRCAplus: a comprehensive high-risk breast cancer diagnostic assay. **PloS one**, *9*(5), e97408. 2014

CHURPEK JE, WALSH T, ZHENG Y, *et al.* Inherited predisposition to breast cancer among African American women. **Breast Cancer Res Treat**. 149(1):31-9, 2014

COUCH, F. J.; NATHANSON, K. L.; OFFIT. K. Two decades after BRCA: setting paradigms in personalized cancer care and prevention. **Science**, 343: 1466–1470, 2014.

COUCH, F. J; SHIMELIS, H; HU, C.; HART, S. N. *et al.* Associations between cancer predisposition testing panel genes and breast cancer. **JAMA Oncology**. Epub ahead of print, 2017

CRAWFORD, B.; ADAMS, S. B.; SITTLER, T. *et al.* Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients. *Breast Cancer Res Treat.* 163(2):383-390, 2017.

DACHEVA, D.; DODOVA, R.; POPOV, I. *et al.* Validation of an NGS Approach for Diagnostic *BRCA1/BRCA2* Mutation Testing. **Molecular Diagnsis Therapy**, v. 19: 119, 2015

DAVY, G.; ROUSSELIN, A.; GOARDON, N.; CASTÉRA, L.; HARTER, V. *et al.* Detecting splicing patterns in genes involved in hereditary breast and ovarian cancer. *European journal of human genetics*, 25(10), 1147-115, 2017.

DE LEENEER, K.; HELLEMANS, J.; DE SCHRIJVER, J.; BAETENS, M.; *et al.* Massive parallel *amplicon* sequencing of the breast cancer genes *BRCA1* and *BRCA2*: opportunities, challenges, and limitations. **Human Mutation**, 32: 335–344, 2011a.

DE LEENEER, K.; DE SCHRIJVER, J.; CLEMENT, L.; BAETENS, M.; LEFEVER, S. Practical tools to implement massive parallel pyrosequencing of PCR products in next generation molecular diagnostics. **PloS one**, *6*(9), e25531. 2011b

DESMET, F.; HAMROUN, D.; COLLOD-BEROUD, G.; CLAUSTRES, M.; BEROUD, C. Bioinformatics identification of splice site signals and prediction of mutation effects. **Research Advances in Nucleic Acids Research**, R. M. Mohan, Ed. (Global Research Network, Kerala, India), 2010

DOMCHEK, S. M.; FRIEBEL, T. M.; SINGER, C. F.; EVANS, D. G.; LYNCH, H. T.; ISAACS, C. *et al.*, Association of risk-reducing surgery in *BRCA1* or *BRCA2* mutation carriers with cancer risk and mortality. **JAMA**, 304: 967–975, 2010.

DESMOND, A.; KURIAN, A. W.; GABREE, M. *et al.* Clinical Actionability of Multigene Panel Testing for Hereditary Breast and Ovarian Cancer Risk Assessment. *JAMA Oncol.* 1(7):943–951, 2015

EASTON, D. F. How many more breast cancer predisposition genes are there? **Breast Cancer Research**, 1(1):14-17, 1999.

EASTON, D. F.; PHAROAH, P. D.; ANTONIOU, A. C.; TISCHKOWITZ. M.; TAVTIGIAN, S. V.; NATHANSON, K. L.; DEVILEE, P.; MEINDL, A.; COUCH, F. J. *Et* *al*. Gene-panel sequencing and the prediction of breast-cancer risk. **N Engl J Med** 372(23): 2243–2257, 2015.

ENGEL, C.; LOEFFLER, M.; STEINKE, V.; RAHNER, N.; HOLINSKI-FEDER, E.; *et al.* Risks of Less Common Cancers in Proven Mutation Carriers With Lynch Syndrome. **Journal of clinical oncology**, 35: 4409-4415, 2012.

FELIUBADALO L, LOPEZ-DORIGA A, CASTELLSAGUÉ E, *et al.* Next-generation sequencing meets genetic diagnostics: development of a comprehensive workflow for the analysis of *BRCA1* and *BRCA2* genes. **Eur J Hum Genet.** 2012.

FELIX, G. E.; ABE-SANDES, C.; MACHADO-LOPES, T. M.; *et al.* Germline mutations in *BRCA1*, *BRCA2*, *CHEK2* and *TP53* in patients at high-risk for HBOC: characterizing a Northeast Brazilian Population. **Human Genome Variation**, 1:1401, 2014.

FITZGERALD, M. G.; MARSH, D. J.; WAHRER, D.; BELL, D.; CARON, S.; SHANNON, K. E. *et al.* Germline mutations in *PTEN* are an infrequent cause of genetic predisposition to breast cancer. **Oncogene**, 17: 727–731, 1998.

FOSTIRA, F.; TSITLAIDOU, M.; PAPADIMITRIOU, C.; *et al.* Prevalence of *BRCA1* mutations among 403 women with triple-negative breast cancer: implications for genetic screening selection criteria: a Hellenic Cooperative Oncology Group Study. **Breast Cancer Res Treat**, 134, 353-62, 2012.

FOULKES, W.D. *BRCA1* and *BRCA2*: Chemosensitivity, Tre*ATM*ent Outcomes and Prognosis. **Familial Cancer**, 5:135, 2006.

GAILDRAT, .;, KRIEGER, S.; THERY, J.C.; KILLIAN, A.; ROUSSELIN, A.; *ET AL*. The *BRCA1* c.5434C-.G (p.Pro1812Ala) variant induces a deleterious exon 23 skipping by affecting exonic splicing regulatory elements. **J Med Genet**, 47: 398– 403, 2010

GARBER, J. E.; OFFIT, K. Hereditary cancer predisposition syndromes. **J Clin Oncol** 23(2): 276–292, 2005

GARDNER, S. A.; WEYMOUTH, K. S.; KELLY, W. S. *et al.* Evaluation of a 27-gene inherited cancer panel across 630 consecutive patients referred for testing in a clinical diagnostic laboratory. **Hered Cancer Clin Pract.** 16:1. 2018

GLOBOCAN, Cancer fact sheets: Breast Cancer, 2012. Disponível em: <<u>http://globocan.iarc.fr/old/FactSheets/cancers/breast-new.asp</u>>. Acesso em: 06/06/2017.

GONZALEZ, K. D.; NOLTNER, K. A.; BUZIN, C. H.; GU, D.; WEN-FONG, C. Y.; NGUYEN, V. Q. *et al.* Beyond Li Fraumeni Syndrome: clinical characteristics of families with p53 germline mutations. J. **Clin. Oncol**. 27: 1250–1256, 2009.

GÓRSKI, B.; JAKUBOWSKA, A.; HUZARSKI, T.; BYRSKI, T.; GRONWALD, J., *et al.* A high proportion of founder *BRCA1* mutations in Polish breast cancer families. **Int. J. Cancer,** 110: 683–686, 2004.

GRACIA-AZNAREZ, F. J.; FERNANDEZ, V.; PITA, G.; PETERLONGO, P.; DOMINGUEZ, O.; DE LA HOYA, M. *et al.* Whole Exome Sequencing Suggests Much of Non-*BRCA1/BRCA2* Familial Breast Cancer Is Due to Moderate and Low Penetrance Susceptibility Alleles. **PLoS ONE**, 8(2): e55681, 2013.

GUAN, Y. *et al.* Detection of inherited mutations for hereditary cancer using target enrichment and next generation sequencing. **Familial Cancer**, v. 14(1): 9–18, 2015.

GUINDALINI, R. S. C.; VIANA, D.; KITAJIMA, J. P.; VALIM, A.; SCHLESINGER, D. *et al.* Detection of inherited mutation in Brazilian breast cancer patients using multigene panel testing. **Journal of Clinical Oncology**, e13610, 2018.

GUO, Y.; LI, J. L.; LI, C.; LONG, J.; The effect of strand bias in illumina short-read sequencing data. **BMC Genomics**, 13: 666, 2012a.

GUO, Y.; LONG, J.; HE, J.; LI, C.; CAI, Q.; SHU, XI. *et al.* Exome sequencing generates high quality data in non-target regions. **BMC Genomics**, 13: 94, 2012b.

HALL MJ, REID JE, BURBIDGE LA, *et al. BRCA1* and *BRCA2* mutations in women of different ethnicities undergoing testing for hereditary breast-ovarian cancer. **Cancer**. 115(10):2222-33, 2009

HAUKE J, HORVATH J, GROß E, *et al.* Gene panel testing of 5589 *BRCA1*/2negative index patients with breast cancer in a routine diagnostic setting: results of the German Consortium for Hereditary Breast and Ovarian Cancer. **Cancer Med**.7(4):1349-1358, 2018 HEARLE, N.; SCHUMACHER, V.; MENKO, F. H.; OLSCHWANG, S.; BOARDMAN, L. A.; GILLE, J. J. *et al.*, Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. **Clin. Cancer Res**, 12: 3209–3215, 2006.

HERNAN, I.; BORRÀS, E.; DIAS, M. S.; GAMUNDI, M. J.; MAÑÉ, B.; LLORT, G.; *et al.* Detection of Genomic Variations in and Genes by Long-Range PCR and Next-Generation Sequencing. **The Journal of Molecular Diagnostics**, 14(3): 286-293, 2012.

HIROTSU, Y.; NAKAGOMI, H.; SAKAMOTO, I.; AMEMIYA, K.; MOCHIZUKI, H.; OMATA, M. Detection of *BRCA1* and *BRCA2* germline mutations in Japanese population using next-generation sequencing. **Molecular Genetics & Genomic Medicine**, 3(2): 121-129, 2015.

INCA Estimativa 2018: Incidência de câncer no Brasil / Instituto Nacional de Câncer José Alencar Gomes da Silva – Rio de Janeiro: INCA, 2018.

INCA, Agência INCA de notícias, 2007. Disponível em: < http://www.inca.gov.br/releases/press_release_view_arq.asp?ID=1600>. Acesso em: 06/06/2017.

JAGADEESH, K.A.; WENGER, A.M.; BERGER, M.J.; GUTURU, H.; STENSON, P.D. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. **Nat Genet** 48:1581–1586, 2016

JENSEN, U. B.; SUNDE, L.; TIMSHEL, S. *et al.* Mismatch repair defective breast cancer in the hereditary nonpolyposis colorectal cancer syndrome. **Breast Cancer Res Treat**, 120(3): 777-782, 2010.

JIA, P.; LI, F.; XIA, J.; CHEN, H.; JI, H.; PAO, W.; *et al.* Consensus Rules in Variant Detection from Next-Generation Sequencing Data. **PLoS ONE**, 7(6): e38470, 2012.

KEHDY, F. S.; GOUVEIA, M. H.; MACHADO, M.; MAGALHAES, W. C.; HORIMOTO, A. R.; *et al.* Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations. **Proc Natl Acad Sci USA**, 11228: 8696–8701, 2015.

KELLER, G.; VOGELSANG, H.; BECKER, I.; HUTTER, J.; OTT, K.; CANDIDUS, S.; HÖFLER, H. Diffuse Type Gastric and Lobular Breast Carcinoma in a Familial Gastric Cancer Patient with an E-Cadherin Germline Mutation. **The American Journal of Pathology**, 155(2): 337–342, 1999

KIM, H.; CHOI, D. H. 2013. Distribution of *BRCA1* and *BRCA2* Mutations in Asian Patients with Breast Cancer. **J. Breast Cancer**, 16: 357–365, 2013.

KORESSAAR, T.; REMM, Enhancements and modifications of primer design program Primer3, **Bioinformatics**, 23(10): 1289-91, 2007.

KURIAN, A.; HUGHES, E.; HANDORF, E. *et al.* Breast and ovarian cancer penetrance estimates derived from germline multiple-gene sequencing results in women. **JCO Precis Oncol**. 1(1):1-12, 2017.

LADUCA, H.; STUENKEL, A. J.; DOLINSKY, J. S. *et al.*, Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. **Genet Med**, 16: 830–837, 2014.

LANGE, V.; BÖHME, I.; HOFMANN, J.; LANG, K.; SAUTER, J.; SCHÖNE, B.; PAUL, P.; ALBRECHT, V.; Cost-efficient high-throughput HLA typing by MiSeq *amplicon* sequencing. **BMC genomics**, 15:63, 2014

LAKHANI, S. R. The pathology of familial breast cancer: Morphological aspects. **Breast cancer research** *: BCR*, *1*(1), 31-5,1999

LOVEDAY, C. L.; TURNBULL, C.; RAMSAY, E.; HUGHES, D. *et al.*, Germline mutation in *RAD51D* susceptibility to ovarian cancer. **Nature Genetics**. 43: 879–882, 2011.

LU, H.; LI, S.; BLACK, M.H. *et al.* Association of Breast and Ovarian Cancers With Predisposition Genes Identified by Large-Scale Sequencing. *JAMA Oncol*; 5(1):51–57, 2019

LYNCH, H.T.; LYNCH, J.F.; LYNCH, P.M. *et al.* Hereditary colorectal cancer syndromes: molecular genetics, genetic counseling, diagnosis and management. **Familial Cancer**, 7: 27, 2008.

MALKIN, D.; LI, F. P.; STRONG, L. C. FRAUMENI, J. F. *et al.* Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. **Science**, 250(4985): 1233-1238, 1990.

MEIJERS-HEIJBOER, H.; OUWELAND, A. V. D.; KLIJN, J.; *et al.* Low-penetrance susceptibility to breast cancer due to *CHEK2**1100delC in noncarriers of *BRCA1* or *BRCA2* mutations. **Nature Genetics**, 31: 55-59, 2002.

MIKI, T.; SWENSON, J.; SHATTUCK-EIDENS, D.; FUTREAL, P. A.; HARSHMAN, K.; *et al.* A Strong candidate for the breast and ovarian cancer susceptibility gene *BRCA1*. **Science**, v. 266, p. 66-71, 1994.

MILLER, S. A.; DYKES, D. D.; POLESKY, H. F. A simple salting procedure for extracting DNA from human nucleated cells. **Nucleic Acids Res**, 16(3): 1215, 1988.

MINION, L. E.; DOLINSKY, J. S.; CHASE, D. M. *et al.* Hereditary predisposition to ovarian cancer, looking beyond *BRCA1/BRCA2*. **Gynecol. Oncol.** 137, 86–92, 2015.

MINUCCI, A.; SCAMBIA, G.; SANTONOCITO, C.; *et al.* Clinical Impact on Ovarian Cancer Patients of Massive Parallel Sequencing for *BRCA* Mutation Detection: The Experience at Gemelli Hospital and a Literature Review. **Expert Review of Molecular Diagnostics**, 15(10): 1383–1403, 2015.

MORGAN, J. E.; CARR, I. M.; SHERIDAN, E.; CHU, C. E.; HAYWARD, B.; CAMM, N.; LINDSAY, H. A.; MATTOCKS, C. J.; MARKHAM, A. F.; BONTHRON, D. T. AND TAYLOR, G. R. Genetic diagnosis of familial breast cancer using clonal sequencing. **Human Mutation**, 31: 484–491, 2010.

NAGY, R.; SWEET, K.; ENG, C.Highly penetrant hereditary cancer syndromes. **Oncogene**, 23(38): 6445–6470, 2004

NGEOW, J.; ENG, C. Precision medicine in heritable cancer: when somatic tumour testing and germline mutations meet. **Npj Genomic Medicine**, 1: 15006, 2016.

NIELSEN FC, VAN OVEREEM HANSEN T, SORENSEN CS. Hereditary breast and ovarian cancer: new genes in confined pathways. **Nat Rev Cancer**. 16:599–612, 2016.

OSÓRIO, A.; BARROSO, A.; MARTINEZ, B.; CEBRIAN, A.; SAN ROMAN, J. M.; LOBO, F.; ROBLEDO, M.; BENITEZ, J. Molecular analysis of the *BRCA1* and *BRCA2* genes in 32 breast and/or ovarian cancer Spanish families. **Br J Cancer**, 82(7): 1266–1270, 2000

PALMERO EI, CARRARO DM, ALEMAR B, *et al.* The germline mutational landscape of *BRCA1* and *BRCA2* in Brazil. **Sci Rep**. 8(1):9188, 2018.

PATEL, N.; FERNS, B.R.; NASTOULI, E. *et al.* Cost analysis of standard Sanger sequencing versus next generation sequencing in the ICONIC study. **Lancet**. 388 (Supplement 2):S86, 2016

PILGRIM, S. M.; PAIN, S. J.; TISCHKOWITZ, M. D. Opportunities and challenges of next-generation DNA sequencing for breast units. **Br J Surg**, 101: 889–898, 2014.

PINTO, P.; PAULO, P.; SANTOS, C.; ROCHA, P.; PINTO, C.; VEIGA, I.; PINHEIRO, M.; PEIXOTO A.; TEIXEIRA, M.R. Implementation of next-generation sequencing for molecular diagnosis of hereditary breast and ovarian cancer highlights its genetic heterogeneity. **Breast Cancer Res. Treat**, 159: 245–256, 2016.

RAJKUMAR, T.; MEENAKUMARI, B.; MANI, S.; SRIDEVI, V.; SUNDERSINGH, S.; Targeted Resequencing of 30 Genes Improves the Detection of Deleterious Mutations in South Indian Women with Breast and/or Ovarian Cancers. **Asian pacific journal of cancer prevention**, 16(13): 5211-5217, 2015.

REBBECK, T. R.; MITRA, N.; WAN, F. *et al.* Association of Type and Location of *BRCA1* and *BRCA2* Mutations With Risk of Breast and Ovarian Cancer. *JAMA*. 313(13):1347–1361, 2015.

REHM, H. L. Disease-targeted sequencing: a cornerstone in the clinic. **Nat Rev Genet**, 14: 295e300, 2013.

RENWICK, A.; THOMPSON, D.; SEAL, S.; KELLY, P.; CHAGTAI, T.; *et al. ATM* mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. **Nature genetics**, v. 38, n. 8, p. 873-5, 2006.

RODRÍGUEZ-LÓPEZ, R.; OSORIO, A.; RIBAS, G.; POLLÁN, M.; SÁNCHEZ-PULIDO, L.; DE LA HOYA, M.; *et al.* The variant E233G of the *RAD51D* gene could be a low-penetrance allele in high-risk breast cancer families without *BRCA1/2* mutations. **Int. J. Cancer**, 110: 845–849, 2004.

ROSENTHAL, E. T.; BERNHISEL, R.; BROWN, K.; KIDD, J.; MANLEY, S. Clinical testing with a panel of 25 genes associated with increased cancer risk results in a

significant increase in clinically significant findings across a broad range of cancer histories. Cancer Genetics, 218–219, 58–68, 2017

SCHRADER, K. A.; MASCIARI, S.; BOYD, N.; WIYRICK, S.; KAURAH, P.; SENZ, J. *et al.* Hereditary diffuse gastric cancer: association with lobular breast cancer. **Fam. Cancer**, 7:73–82, 2008.

SCHUBERT, S.; LUTTIKHUIZEN, J. L.; AUBER, B.; *et al.* The identification of pathogenic variants in *BRCA1*/2 negative, high risk, hereditary breast and/or ovarian cancer patients: High frequency of FANCM pathogenic variants. **Int J Cancer**, Epub, 2018.

SHIN, S.; HWANG, I. S.; LEE, S. T. *et al.* Evaluation of an *amplicon*-based nextgeneration sequencing panel for detection of *BRCA1* and *BRCA2* genetic variants **Breast Cancer Res Treat**, 158: 433-440, 2010

SINGH, J.; THOTA, N.; SINGH, S.; *et al.* Screening of over1000 Indian patients with breast and/or ovarian cancer with a multi-gene panel: prevalence of *BRCA1*/2and non-BRCA mutations. **Breast Cancer Res Treat**. 170:189–96, 2018.

SILVA, F. C.; LISBOA, B. C. G.; FIGUEIREDO, M. C. P.; TORREZAN, G. T. *et al.* Hereditary breast and ovarian cancer: assessment of point mutations and copy number variations in Brazilian patients. **BMC Medical Genetics**, 15: 55, 2014.

SLAVIN, T.P.; MAXWELL, K.N.; LILYQUIST, J. *et al.* The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk. **NPJ Breast Cancer**. 3:22. 2017

SODHA, N.; HOULSTON, R. S.; WILLIAMS, R.; YUILLE, M. A.; MANGION, J.; EELES, R. A. A robust method for detecting *CHK2/RAD53* mutations in genomic DNA. **Human Mutation,** 19: 173–177, 2002.

STODDARD, J.L.; NIEMELA, J.E.; FLEISHER, T.A.; ROSENZWEIG, S.D. Targeted NGS: a cost-effective approach to molecular diagnosis of PIDs. **Front. Immunol**.5:531, 2014

SUSSWEIN, L. R.; MARSHALL, M.L.; NUSBAUM, R. *et al.* Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. **Genetics in Medicine**, 18: 823-832, 2015.

THORLACIUS, S.; OLAFSDOTTIR, G.; TRYGGVADOTTIR, L.; *et al.* A single *BRCA2* mutation in male and female breast cancer families from Iceland with varied cancer phenotypes. **Nature genetics**, 13: 117-119, 1996.

THOMPSON, E. R.; ROWLEY, S. M.; SAWYER, S.; KCONFAB, ECCLES, D. M.; *et al.* Analysis of *RAD51D* in Ovarian Cancer Patients and Families with a History Of Ovarian or Breast Cancer. **PLoS ONE**, 8(1): e54772, 2013.

THOMPSON ER, ROWLEY SM, LI N, *et al.* Panel testing for familial breast cancer: calibrating the tension between research and clinical care. **J Clin Oncol**. 34(13):1455-1459, 2016.

TINAT, J.; BOUGEARD, G.; BAERT-DESURMONT, S. *et al.* version of the Chompret criteria for Li Fraumeni syndrome. **J Clin Oncol**; 27: e108–e109, 2009

TUNG, N.; BATTELLI, C.; ALLEN, B. *et al.*, Frequency of mutations in individuals with breast cancer referred for *BRCA1* and *BRCA2* testing using next-generation sequencing with a 25-gene panel. **Cancer**, 121(1): 25-33, 2015.

TUNG, N.; DOMCHEK, S. M.; STADLER, Z. *et al.* Counselling framework for moderate-penetrance cancer-susceptibility mutations. **Nat Rev Clin Oncol**. 13:581–588, 2016.

UNTERGASSER, A.; CUTCUTACHE, I.; KORESSAAR, T.; YE, J.; FAIRCLOTH, B. C.; REMM, M.; ROZEN, S. G. Primer3 - new capabilities and interfaces. **Nucleic Acids Research**, 40(15):e115, 2012.

VAARLEY, J. M. Germline *TP53* Mutations and Li-Fraumeni Syndrome. **Human mutation**, 21: 313-320, 2003.

VASEN, H. F.; MORREAU, H.; NORTIER, J. W. Is breast cancer part of the tumor spectrum of hereditary nonpolyposis colorectal cancer? **American Journal of Human Genetics**, 68: 1533–1535, 2001

WALSH, T.; M. K. LEE, M. K.;CASADEI, S.; THORNTON, A. M.; STRAY, S. M.; PENNIL, C. *et al.* Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. **Proc. Natl. Acad. Sci.** 107: 12629–12633, 2010.

WAPPENSCHMIDT, B.; BECKER, A.A.; HAUKE, J.; WEBER, U.; ENGERT, S.; KÖHLER, J. *et al.* Analysis of 30 Putative *BRCA1* Splicing Mutations in Hereditary Breast and Ovarian Cancer Families Identifies Exonic Splice Site Mutations That Escape *In Silico*Prediction. **PLoS ONE**, 7(12): e50800, 2012.

WONG, E. S. Y.; SHEKAR, S.; MET-DOMESTICI, M.; CHAN, C. *et al.* Inherited breast cancer predisposition in Asians: multigene panel testing outcomes from Singapore. Nature Genomic Medicine. 1, 15003, 2016.

WOOSTER, R.; NEUHAUSEN, S. L.; MANGION, J.; QUIRK, Y.; FORD, D.; *et al.* Localization of a breast cancer susceptibility gene, *BRCA2* to chromosome 13q12-13. **Science**, 30: 2088-2090, 1994.

ID	Gênero	Tumor	Tipo tumoral	dx	Gene	Variantes detectadas
31	F	СМ	Esquerdo	63	BRCA2	c.8754+4A>G
35	F	СМ	Esquerdo	46	BRCA1	c.3403C>T
41	F	СМ	Esquerdo	47	BRCA1	c.5074+2T>C
58	F	СМ	Bilateral	48	BRCA1	c.3331_3334delCAAG
95	Μ	СМ	Esquerdo	56	BRCA2	c.9098_9099insA
98	F	СМ	Esquerdo	47	BRCA1	c.4065_4068delTCAA
112	F	СМ	Direito	47	BRCA1	c.4484G>T
114	F	СМ	Direito	37	BRCA1	c.211A>G
115	F	СМ	Esquerdo	49	BRCA2	c.156_157insALU
135	F	СМ	Esquerdo	33	BRCA1	c.470_471delCT
136	F	СМ	Esquerdo	47	BRCA2	c.2T>G
139A	F	Ausente	na	na	BRCA1	c.5266dupC
141	F	СМ	Direito	40	BRCA2	c.2806_2809delAAAC
152	F	CM/CO	Bilateral	49	BRCA1	c.4327C>T
160	F	CM/CO	Esquerdo	48	BRCA2	c.6174delT
167	F	СМ	Direito	48	BRCA1	c.1823delA
178	F	СМ	Esquerdo	42	BRCA2	c.7986delG
181	F	СМ	Esquerdo	33	BRCA2	c.2163delA
190	F	СМ	Direito	53	BRCA1	c.4675+1G>A
195	F	СМ	Bilateral	50	BRCA2	c.736delT
196	F	nd	nd	nd	BRCA2	c.9401delG
206	F	CO	Direito	55	BCRA1	c.1687C>T
215	F	CM/CO	Esquerdo	47	BRCA2	c.4964dupA
227	F	СМ	Esquerdo	43	BRCA2	c.5164_5165delAG
228	F	СМ	Esquerdo	27	BRCA2	c.6405_6409elCTTAA

Anexo 9.1 – Características clínicas e variantes patogênicas identificadas pelo sequenciamento de Sanger para os pacientes selecionados para o grupo 1.

CM – Câncer de mama; CO – Câncer de ovário; nd – Não disponível; dx – Idade ao diagnóstico;

N° de registro	Gênero	Tumor	Lateralidade	dx
25	F	CO	Bilateral	20
28	F	CM e CO	Bilateral/Esquerdo	61
32A	F	СМ	Esquerdo	49
40	F	CM	Esquerdo	38
41	F	СМ	Esquerdo	47
42	F	СМ	Esquerdo	42
47	F	СМ	Direito	32
48	F	CM	Esquerdo	38
51	F	CO	Bilateral	35
53	F	СМ	Esquerdo	49
57	F	CM	Direito	33
67	М	CM	Esquerdo	75
87	F	CM	Direito	34
97	F	CM	Esquerdo	45
100	F	CO	Direito	23
106	М	CM	Esquerdo	50
110	F	СМ	Direito	36
118	F	СМ	Direito	47
133	F	СМ	Esquerdo	49
134	F	СМ	Direito	49
137	F	СМ	Direito	39
138	F	СМ	Direito	37
142	F	СМ	Direito	72
143	F	CO	Bilateral	28
146	F	СМ	Bilateral	49
147	F	СМ	Esquerdo	40
148	F	СМ	Bilateral	39
149	F	СМ	Direito	42
151	F	СМ	Direito	43
153	F	СМ	Direito	63
156	F	СМ	Direito	45
159	F	СМ	Direito	41
161	F	СМ	Esquerdo	46
165	F	СМ	Direito	44
169	F	CM e Endométrio	Esquerdo	47
170	F	СМ	Direito	27
176	F	СМ	Direito	29
177	F	СМ	Esquerdo	74
184	F	СМ	Esquerdo	40
186	F	СМ	Direito	56
198	F	СМ	Bilateral	44
203	F	СМ	Esquerdo	39
209	 F	CM	Esquerdo	49

Anexo 9.2 – Características clínicas dos pacientes negativos para mutações nos genes *BRCA1* e *BRCA2* selecionados para o grupo 2.

210	F	СМ	Esquerdo	50
213	F	СМ	Bilateral	42
216	F	СМ	Bilateral	37
217	F	СМ	Direito	63
222	F	СМ	Direito	38
244	F	СМ	Esquerdo	40
247	F	СМ	Direito	49
255	М	СМ	Direito	55
256	F	СМ	Esquerdo	43
267	F	СМ	Direito	38
287	F	СМ	Direito	39
290	F	СМ	Esquerdo	72
314	F	CM e melanoma	Unilateral	66
322	F	СМ	Unilateral	55
334	F	СМ	Unilateral	72
347	F	СМ	Bilateral	43
350	F	СМ	Unilateral	55
351	F	СМ	direito	39
352	F	CM	nd	nd
353	F	Nd	nd	nd
358	F	CM	Direito	29
360	F	CM	Nd	37
361	М	CM	Esquerdo	44
363	F	CM	nd	46
365	М	CM	Nd	52
367	F	CM	nd	46
368	F	CM	Bilateral	47/57
369	F	CM	Bilateral	47/57

CM – Câncer de mama; CO – Câncer de ovário; nd – Não disponível; dx – Idade ao diagnóstico;
Gene	Éxons Amplicon Primers amplificados (bp)		Temperatura de anelamento	<i>Taq</i> polimerase		
	2.2	0426	F 5' TGCCGGCAGGGATGTGCTTG 3'	61.90	Expand long not	
	2-3	9430	R 5' TGCTTGCAGTTTGCTTTCACTGATGGA 3'	- 01 C	Expand long por	
	57	2091	F 5' GTTTAGGTTTTTGCTTATGCAGCATCCA 3'	62 °C	Tag platinum	
	5-7	3001	R 5' TCAGGTACCCTGACCTTCTCTGAAC 3'	- 02 C	ray platinum	
-	0.40	1100	F 5' GGAAAAGCACAGAACTGGCCAACA 3'	64.90		
CA	8-10	4196	R 5' GTGGGTTGTAAAGGTCCCAAATGGT 3'	- 61-0	raq platinum	
BR	11 10	10 700	F 5' GCCAGTTGGTTGATTTCCACCTCCA 3'	62.2 %	Expand long po	
	11-13	12,739	R 5' TGCCTTGGGTCCCTCTGACTGG 3'	- 63,2 C	Expand long po	
	14.10	12 052	F 5' ACCCCCGACATGCAGAAGCTG 3'	61.2 %	Expand long po	
	14-19	13,005	R 5' GTGGTGCATTGATGGAAGGAAGCA 3'	- 01,2 C	Expana iong pol	
	20.24	11 600	F 5' TGACGTGTCTGCTCCACTTCCA 3'	61.90	Expand long po	
	20-24	11,022	R 5' AGTGAGAGGAGCTCCCAGGGC 3'		<i>⊑xparia</i> iong pol.	
	2	226	F 5' TGTTCCCATCCTCACAGTAAG 3'	E2 °C	Platinum Tag no	
	2	330	R 5' GTACTGGGTTTTTAGCAAGCA 3'	- 53 C	Plaunum Tay po	
	2	200	F 5' GGTTAAAACTAAGGTGGGA 3'	52 °C	Diatinum Tag ng	
		390	R 5' ATTTGCCCAGCATGACACA 3'	- 53 C		
	47	1778	F 5' TTTCCCAGTATAGAGGAGA 3'	- 52 °C	Diatinum Tag ng	
	4-7	1770	R 5' ATTGTCAGTTACTAACACAC 3'	55 0	r latinum ray po	
	8.0	2011	F 5' GTGTCATGTAATCAAATAGT 3'	52 °C	Diatinum Tag na	
	0-9	2044	R 5' GTCAAGAAAGGAAAGGTAA 3'	- 53 C	Flatinum Tay po	
N	10	1221	F 5' CTATGAGAAAGGTTGTGAG 3'	E2 °C	Diatinum Tag ng	
CA	10	1324	5' CATGTATACAGATGATGCCTAAG 3'	- 53 C	Plaunum Tay po	
3R(110	1704	F 5' AACTTAGTGAAAAATATTTAGTGA 3'	- 52 °C	Diatinum Tag ng	
	11a	1704	R 5' CTTGCTGCTGTCTACCTG 3'	53 C	Flatinum Tay po	
	115	1551	F 5' CCATAATTTAACACCTAGCCA 3'	- 53 °C	Platinum Tag ng	
	110	1551	R 5' TTCGGAGAGATGATTTTTGTC 3'	33 0	Flatinum Tay po	
	110	1075	F 5' GCCTTAGCTTTTTACACAA 3'	- 53 °C	Platinum Tag ng	
		1975	R 5' CCCCCAAACTGACTACACAA 3'	55 0		
	12	301	F 5' ACTCTTTCAAACATTAGGTCA 3'	- 53 °C	Platinum Tag ng	
	12	501	R 5' TTGGAGAGGCAGGTGGAT 3'	55 0		
	13	415	F 5' TTTATGCTGATTTCTGTTGTAT 3'	– 53 °C	Platinum Tag ng	
	10		R 5' ATAAAACGGGAAGTGTTAACT 3'		, iaunani ray po	

Anexo 9.3 - Lista de primers utilizados na amplificação do gene *BRCA1* e *BRCA2*, temperatura de anelamento e Taq DNA polimerase utilizada em cada reação

11		647	F 5' CACCACCAAAGGGGGAAA 3'	52 °C	Platinum Tag pol	
_	14	047	R 5' GAATACAAAACAGTTACCAGA 3'	53 C	Platinum Taq pol.	
_	15 16	1622	F 5' ATTTCAATTTTATTTTTGCT 3'	52 °C	Distinum Tag pal	
	15-16	1023	R 5' TAGTTCGAGAGACAGTTAAG 3'	53 C	Plauliulli Tay pol.	
_	17 19	1101	F 5' CAGAGAATAGTTGTAGTTGTT 3'	52 °C	Diatinum Tag pol	
_	17-10	1191	R 5' GAAATTGAGCATCCTTAGTAA 3'	55 C	Ριαιπμπ ταγ ρυι.	
_	10.20	077	F 5' ATATTTTTAAGGCAGTTCTAGA 3'	52 °C	Diatinum Tag pol	
_	19-20	911	R 5' CTTGTTGCTATTCTTTGTCTA 3'	55 0	Plaunum Tay pol.	
	21	240	F 5' CTTTTAGCAGTTATATAGTTTC 3'	52 °C	Platinum Taq pol.	
	21	340	R 5' GCCAGAGAGTCTAAAACAG 3'	- 55 C		
_	<u></u>	9.95	F 5' TTTGTTGTATTTGTCCTGTTTA 3'	E2 °C	Diatinum Tag nal	
_	22-23	025	R 5' CCGTGGCTGGTAAATCTG 3'	55 C	Plaunum Tay pol.	
_	24	224	F 5' CTGGTAGCTCCAACTAATC 3'	52 °C	Diating una Tage mal	
_	24	324	R 5' ACCGGTACAAACCTTTCATTG 3'	53 C	Ριαιπμπ ταγ ρυι.	
_	25	447	F 5' CTATTTTGATTTGCTTTTATTATT 3'	E2 %C	Diatinum Tag nal	
	25	447	R 5' GCTATTTCCTTGATACTGGAC 3'	- 53 C	Plaunum Taq pol.	
		247	F 5' TTGGAAACATAAATATGTGGG 3'	E2 %C	Diatinum Tag nal	
	20	347	R 5' ACTTACAGGAGCCACATAAC 3'	- 53 C	Platinum Taq pol.	
-	27	707	F 5' CTACATAATTATGATAGGCT 3'	E2 %C		
	21	131	R 5' GTACTAATGTGTGGTTTGAAA 3'	- 53°C	Platinum Taq pol.	

Mix 1 Mix 2 Mix 3 Éxon Éxon Éxon Amplicon [] Amplicon [] Amplicon [] 8-9 2044 pb 4,0 µM 11c 1975 pb 5,5 µM 11a 1704 pb 4,0 µM 11b 1551 pb 4,0 µM 10 1324 pb 5,5 µM 22-23 825 pb 4,0 µM 13 415 pb 2,0 µM 19-20 977 pb 3,0 µM 2 336 pb 0,5 µM 26 324 pb 1,0 µM 25 447 pb 0,6 µM Mix 4 Mix 5 Mix 6 Éxon Amplicon Éxon Amplicon [] Éxon Amplicon [] [] 6,5 µM 4-7 1778 pb 9,5 µM 15-16 1623 pb 3 390 pb 10 µM 17-18 1191 pb 3,0 µM 27 737 pb 0,8 µM 12 301 pb 10 µM 14 647 pb 6,0 µM 21 340 pb 5,0 µM 324 pb 2,5 µM 24

Anexo 9.4 - Composição e especificações das reações de PCR multiplex para o gene BRCA2.

[] - Concentração final; pb – Pares de base; µM – micromolar.

Anexo 9.5 - Ciclo utilizado na amplificação dos *mix* de *BRCA2*.

Etapas		Temperatura	Tempo
Desnaturaç	ção inicial	94 °C	5m
	Desnaturação	94 °C	1m
35x ciclos	Anelamento	53 °C	45s
	Extensão	72 °C	2m
Extensão fi	nal	72 °C	5m
		8 °C	+∞

Anexo 9.6 - Componentes para a PCR dos mix de BRCA2.

Componentes	50 µl	Concentração Final
H2O mili-Q	para 50,0 µL	-
Tampão (10x)	2,0 µL	1x
Primer mix	2,0 µL	~0,1 µm de cada
MgCl ₂ (50 mM)	2,5 µL	2,5 mM
dNTP (25 mM)	0,4 µL	~0,25 Mm de cada
Taq plat. (5 U/μL)	0,3 µL	1,5 U/rxn
DNA	-	~100 ng

Alleno 3.1									
	Etapas	Temperatura	Time						
Desnatura	ação inicial	94 °C	2 m						
10.	Desnaturação	94 °C	10 s						
TUX	Anelamento	X °C	30 s						
00005	Extensão	68 °C	13 m						
2014	Desnaturação	94 °C	15 s						
ZUX	Anelamento	X °C	30 s						
0000	Extensão	68 °C	13 m*						
Extensão	final	68 °C	7 m						
		8 °C	+∞						
* +20 segundos de extensão para cada ciclo									

Anexo 9.7 - Ciclo utilizado na amplificação do gene BRCA1.

Anexo 9.8 - Componentes para as reações de PCR 1, 4, 5 e 6 do gene BRCA1.

Componentes	50 µL	Concentração final
H ₂ O (Mili-Q)	para 50,0 µL	-
PCR Buffer 3, +Mg	5 µL	2.75 mM MgCl ₂
10 μM primer (F+R)	1,5 µL	0,3 µm de cada
dNTP (25 mM)	1,0 µL	0,5 Mm de cada
Expand long pol. (5 U/µL)	0,75 μL	~3,75 U/rxn
DNA	-	250 ng

Anexo 9.9 - Componentes para as reações da PCR 2 e 3 do gene BRCA1.

Componentes	50 µL	Concentração final.
H ₂ O (Mili-Q)	para 50,0 µL	-
PCR Buffer 2, +Mg	5 µL	2.75 mM MgCl ₂
10 μM primer (F+R)	1,5 µL	0,3 µm de cada
25 mM dNTP	1,0 µL	0,5 Mm de cada
Taq plat. (5 U/μL)	0,75 μL	~3,75 U/rxn
DNA	-	250 ng

Gene	Éxon	Primer F	Primer R	Amplicon (pb)
	2-4	5' GACCAGAATGTGCCTCTAATTGT 3'	5' AACTCACGCGACAGTAATCTGTT 3'	2040
	5	5' CGTTGGCAAACTTACTGTGTAAAG 3'	5' CTGTTAAACTGTCAGGTCACTTGG 3'	600
	6-7	5' CTGGTGCTCTCACAGCAGTTTAT 3'	5' AACCAGAGAAATCCAGAGGAAAG 3'	1411
	8-9	5' GGGAGCTAGCAGTGTAAACAGAG 3'	5' GTTGAGATGAAAGGATTCCACTG 3'	2293
	10-13	5' CTGCCAATTTAGGAAGTAGGACA 3'	5' ATTTAGAGCCCTTTACTGCCACT 3'	3662
	14-16	5' CAGGATATGCCACCTTTAACTCA 3'	5' ACCTGGCCTTAATTTCCACAT 3'	3180
	17-18	5' GTGCCCAGCCTGATTAGGTAAAT 3'	5' CTTCAAAGACACCATGTGATTC 3'	1621
	19-22	5' TGCACCCGGCCTATGTTTAT 3'	5' GGCACACCGTATATACTCAACAA 3'	1996
	23-24	5' GGAATATGCTTTGGAAAGTAGGG 3'	5' AAGTGCCACTCAGAAAATCTAGC 3'	1848
	25-26	5' GTGTCAGATACTGTGCCAGTTGA 3'	5' TGGGTTGGCTATGCTAGATAATG 3'	2090
	27-29	5' CCTTTTGAGCTGTCTTGACGTT 3'	5' GCGGACAGAGTGAGTCTTTGTCT 3'	2376
	30-31	5' GAGATGCTGAACAAAAGGACTTC 3'	5' GTGCCTGGCCTACGTATATATTTT 3'	1090
ATM	32-33	5' GTAGGGTTTGCAGTGGAAGAAAT 3'	5' CTGTCCTATATGTGATCCGCAGT 3'	2670
	34	5' TTTTCTTTGTCACCCAGGCTA 3'	5' CTGTGTAGAACCATCTGGCATTT 3'	845
	35	5' TTGAATGAAGGGAATTGCAG 3'	5' CCTCCCCCAAAAATCAACTACTAT 3'	602
	36-37	5' GTAGGAAAGGTACAATGATTTCCAC 3'	5' GGCAACTTTTATCTCCATTCCA 3'	2213
	38	5' CCAGGCTAGTCAGTGAGTTCTGT 3'	5' CCTGAATATGGATTACTGCAAGG 3'	720
	39-40	5' GGTATATATTGGGGAAATGTGG 3'	5' AGGCTTAAGCTTCAGACCATAA 3'	2639
	41-43	5' CAAACTCGTGTTGTTTGAACTG 3'	5' TGTTGTTTAGAATGAGGAGAGAGG 3'	1935
	44-45	5' GAGCATATTTAGAACCAGGCAGA 3'	5' GCCCGGCCTATAGTTTTATTT 3'	1782
	46-47	5' CTGACCGCATAGCATTTTGTAGT 3'	5' TCGACCACATGATGGACTGAT 3'	1325
	48-49	5' AGCCTTTACAAAGTGTCTGACATA 3'	5' GACCAAGTCACTCTTTCTATGCAA 3'	1944
	50-53	5' CCTGGGATAAAAACCCAACTTT 3'	5' TCTCTACAGAGAGTAACACAGCAAGA 3'	2854
	54-56	5' ATCAGAGCCTGAACCACAGATTA 3'	5' GCATTATGAATATGGGCATGAG 3'	2288
	57	5' CTCTCAAACATCTAGGCAGCAG 3'	5' CATTTCTTATCTGACAAGGGTTGAC 3'	585

Anexo 9.10 - Lista de *primers* utilizados na amplificação das regiões codificantes dos genes ATM, CHEK2, CDH1, PALB2, PTEN, RAD51D e TP53.

	58-59	5' CCTGTTCATCTTTATTGCCCCTA 3'	5' TCTTGGTAGGCAAACAACATTC 3'	1810
	60-61	5' GCAGCCAGAGCAGAAGTAAACTA 3'	5' GCTCTTCACATCAGTGACTTCCT 3'	1346
	62-63	5' GGCCCTACAAAGCAAATACACTA 3'	5' AAGAGTGAAAGCAGAGATGTTCC 3'	973
	1-2	5' ACCCACCTAGACCCTAGCAACTC	5' GTGTGGGAGTGCAATTTCTCG	1395
	3	5' GTGTTTGGTTTTGTGGGAGTCTTC	5' AACTGGTGGAAGTGCTACTGGTG	524
	4-7	5' CTGTCTGGCTAGGTTGGACTGTT	5' GACAACTGGCCTAGCAGGATTTT	3610
0014	8-10	5' CTAGGCCAAAGGTGGCTAGTGTT	5' GAACAGGTGAAAGGAGCACAGAT	3849
CDH1	11	5' GACCGGCCTATTGTTGGTTTTC	5' YATGTTATTTGGGTGAYGGATACC	503
	12-13	5' ACCACTGAAGAGCCAGGACAA	5' TCTCTTTCCCACATCAGCTAACC	1850
	14-15	5' GTGAGTGTCACGTGGATTGACAT	5' GCTCAGGCAAGCTGAAAACATAG	1907
	16	5' GGGTGCATTGTCGTACCTTACAT	5' CCTCTTTCTCCACGTTTTGACTG	2442
CHEK2	9-15	5' TTACATTTCTGCYGTGTGAAGAGTTG 3'	5' CTAAAGAACCRATTATCAAGCAGAAGC 3'	9556
	1	5' ACAGCGCGGCTCTCCTTTAG 3'	5' GGAGGGGGTGGTCAGATGATAC 3'	428
	2-3	5' TTCCCTCTGACTCCACCTTTCC 3'	5' ATCACTTGAGCCTGGGAGTTGG 3'	571
	4	5' GCCTGAATGAAATGTCACTGATTCT 3'	5' AAAGGAAGTGCCAGGCAAATAGT 3'	1683
	5-6	5' TTTCTGAGTCATGGATGGGAAAAG 3'	5' CTTGCCAATAGGTTGGCATAGAAA 3'	1759
PALB2	7	5' GCTTTGCATAAAACAGCACTCG 3'	5' TATCAGGCAAATGGCTGCAAAG 3'	271
	8-9	5' CCAAGCATAATTTTTGGCTGCT 3'	5' TGCTTATATTACACCCCCAGCACA 3'	1279
	10	5' CAGTTCAACAATGCGGAGAAGG 3'	5' AGGCTGAGGCAGGAGAATCACT 3'	453
	11	5'TCCCTGGTCACCTCCTAAGACA 3'	5' CACGGGGAAGGTTTGTTCATTA 3'	290
	12	5' GTTCCTAGACGGCAGGGAAAAA 3'	5' TGTTTGCACAGTGCCTTTCAGA 3'	375
	13	5' TTTTGGGAACATGGTTTTGACC 3'	5' TGGCATGAAAGATGCATGAGAA 3'	867
	8	5' AGGCCAGATTTCTTTGTTGGTC 3'	5' TGACGCTGTGTACATTGGGTAT 3'	1148
	9	5' GTTAAGATGAGTCATATTTGTGGG 3'	5' TTCATGGTGTTTTATCCCTCTTGA 3'	272
DTEN	1-3	5' AAGGCTCTTTAGAAGGTCGGTGT 3'	5' AGCATCAAAAGCAGAGCTGAGAG 3'	1635
PIEN	4-6	5' CTTGGTACCTTTTCCCCTGTCTT 3'	5' GCCCACAGAGATAGCACCTAGAA 3'	1190
	7-8	5' GTCCTAGAGGCTGACAGGTTCAT 3'	5' AGACGATTCCTGATTCCCTTAGC 3'	515
	9-10	5' AGTTCCAGACCTGCCATTAGGTT 3'	5' CTTTCCTGCAGCCAAGACATAAC 3'	1824

RAD51D	1-3	5' AAGGCTCTTTAGAAGGTCGGTGT 3'	5' AGCATCAAAAGCAGAGCTGAGAG 3'	1635
	4-6	5' CTTGGTACCTTTTCCCCTGTCTT 3'	5' GCCCACAGAGATAGCACCTAGAA 3'	1190
	7-8	5' GTCCTAGAGGCTGACAGGTTCAT 3'	5' AGACGATTCCTGATTCCCTTAGC 3'	515
	9-10	5' AGTTCCAGACCTGCCATTAGGTT 3'	5' CTTTCCTGCAGCCAAGACATAAC 3'	1824
	2-4	5' CCAGGTGACCCAGGGTTGGA 3'	5' AGAGGAATCCCAAAGTTCCA 3'	778
TP53	5-9	5' TGTTCACTTGTGCCCTGACT 3'	5' AGTGTTAGACTGGAAACTTT 3'	1803
	10-11	5' CAATTGTAACTTGAACCATC 3'	5' AGGCTGTCAGTGGGGAACAA 3'	1215

Anexo 9.11 - Composição e especificações das reações de PCR multiplex para o gene ATM.

<i>Mix</i> 1		Mix 2		Mix 3		Mix 4			Mix 5					
Éxon	Amplicon	[]	Éxon	Amplicon	[]	Éxon	Amplicon	[]	Éxon	Amplicon	[]	Éxon	Amplicon	[]
36_37	2213 pb	6,0 µM	54_56	2288 pb	2,0 µM	41_43	1935 pb	10 µM	14_16	3180 pb	5,0 µM	34_35	2703 pb	1,0 µM
60_61	1346 pb	2,0 µM	48_49	1944 pb	2,0 µM	46_47	1325 pb	3,0 µM	44_45	1782 pb	6,0 µM	10_13	3662 pb	1,0 µM
57	585 pb	5,0 µM	58_59	1810 pb	1,0 µM	62_63	973 pb	1,5 µM	27_29	2376 pb	5,0 µM			

Mix 6				Mix 7			Mix 8			Mix 9			Singleplex	
Éxon	Amplicon	[]	Éxon	Amplicon	[]									
32_33	2670 pb	2,0 µM	39_40	2639 pb	6,5 µM	8_9	2293 pb	4,0 µM	25_26	2090 pb	1,0 µM	50_53	2854 pb	10,0 µM
2_4	2040 pb	1,0 µM	19_22	1996 pb	0,8 µM	23_24	1848 pb	1,0 µM	17_18	1621 pb	3,0 µM			
6_7	1411 pb	3,0 µM	30_31	1090 pb	5,0 µM	38	720 pb	4,0 µM	5	600 pb	1,0 µM			

[] - Concentração final no *mix* de *primers*; pb – Pares de base; µM – micromolar.

Etapas		Temperatura	Tempo
Desnatur	ação inicial	94 °C	2m
05	Desnaturação	94 °C	1m
35X ciclos	Anelamento	60 °C	30s
010100	Extensão	72 °C	1kb/min
Extensão final		72 °C	5m
		8 °C	+∞

Anexo 9.12 - Ciclo utilizado na amplificação do gene ATM.

Anexo 9.13 - Componentes para as reações de PCR para gene ATM.

Componentes	50 µL	Concentração final.
H ₂ O (Mili-Q)	para 50,0 µL	-
10x PCR Buffer (-MgCl ₂)	10,0 µL	1x
Primer mix	1,5 µL	~0,3 µm de cada
25mM MgCl₂	6,0 µL	3,0 mM
25 mM dNTP	0,25 µL	0,125 mM de cada
GoTaq. (5 U/μL)	0,25 μL	1,25 U/rxn
DNA	-	100 ng

	Singleplex		<i>Mix</i> 1			Mix 2		
Éxon	Amplicon	[]	Éxon	Amplicon	[]	Éxon	Amplicon	[]
1_2	1370 pb	10,0 µM	8_10	3849 pb	5,0 µM	14_15	3610 pb	1,0 µM
			12_13	1850 pb	3,0 µM	4_7	3610 pb	1,0 µM
			3	524 pb	4,0 µM	11	503 pb	3,0 µM
			16	361 pb	4,0 µM			

Anexo 9.14 - Composição das reações de PCR *multiplex* para o gene *CDH1*.

Anexo 9.15 - Componentes para as reações de PCR para gene CDH1.

Componentes	50 μL	Concentração final.
H₂O (Mili-Q)	para 50,0 µL	-
10x PCR Buffer (-MgCl ₂)	10,0 µL	1x
Primer mix	1,5 µL	~0,3 µm de cada
25mM MgCl ₂	6,0 µL	3,0 mM
25 mM dNTP	0,25 μL	0,125 mM de cada
GoTaq. (5 U/μL)	0,25 μL	1,25 U/rxn
DNA	-	100 ng

Anexo 9.16 - Ciclo utilizado na amplificação do gene CDH1.

Etapas		Temperatura	Tempo
Desnaturação inicial		94 °C	1m30s
	Desnaturação	94 °C	30s
35x ciclos	Anelamento	61 °C	30s
	Extensão	72 °C	1kb/min
Extensão fi	inal	72 °C	5m
		8 °C	+∞

Componentes	50 μL	Concentração final.
H ₂ O (Mili-Q)	para 50,0 µL	-
10x High fidelity Buffer	10,0 µL	1x
50mM MgSO₄	2,0 µL	2,0 mM
10 μM primer (F+R)	1,0 µL	~0,3 µm de cada
25 mM dNTP	0,4 µL	0,5 mM de cada
Taq. HiFi (5 U/μL)	0,2 μL	1,0 U/rxn
DNA	-	100 ng

Anexo 9.17 - Componentes para as reações de PCR para gene CHEK2.

Anexo 9.18 - Ciclo utilizado na amplificação do gene CHEK2.

Etapas		Temperatura	Tempo
Desnaturação inicial		94 °C	30s
	Desnaturação	94 °C	10s
35x ciclos	Anelamento	56 °C	30s
	Extensão	68 °C	11m
Extensão fi	inal	68 °C	15m
		8 °C	+∞

Anexo 9.19 - Composição das reações de PCR *multiplex* para o gene *PALB2*.

Singleplex		Mix 1		Mix 2				
Éxon	Amplicon	[]	Éxon	Amplicon	[]	Éxon	Amplicon	[]
10	453 pb		5_6	453 pb	7,0 µM	4	1683 pb	7,0 µM
			13	867 pb	2,5 µM	8_9	1279 pb	7,0 µM
			2_3	571 pb	2,0 µM	12	375 pb	2,0 µM
			1	428 pb	2,5 µM	7	271 pb	2,5 µM
			11	290 pb	2,5 µM			

Componentes	50 μL	Concentração final.
H ₂ O (Mili-Q)	para 50,0 µL	-
10x pcr Buffer	10,0 µL	1x
25mM MgCl ₂	6,0 µL	3,0 mM
Primer mix	3,0 µL	~0,3 µm de cada
25 mM dNTP	0,3 µL	0,5 mM de cada
GoTaq. (5 U/μL)	0,2 μL	1,0 U/rxn
DNA	-	100 ng

Anexo 9.20 - Componentes para as reações de PCR para gene PALB2.

Anexo 9.21 - Ciclo utilizado na amplificação do gene PALB2.

Etapas		Temperatura	Tempo
Desnaturação inicial		94 °C	30s
	Desnaturação	94 °C	10s
35x ciclos	Anelamento	56 °C	30s
	Extensão	68 °C	11m
Extensão fi	inal	68 °C	15m
		8 °C	+∞

Anexo 9.22 - Composição das reações de PCR multiplex para o gene PTEN.

Mix 1		Mix 2			Mix 3			
Éxon	Amplicon	[]	Éxon	Amplicon	[]	Éxon	Amplicon	[]
1	282 pb	3,0 µM	3	184 pb	3,0 µM	7	223 pb	9,0 µM
2	364 pb	5,0 µM	4	228 pb	3,0 µM	8	1148 pb	1,5 µM
6	264 pb	3,0 µM	5	295 pb	6,0 µM	9	272 pb	1,0 µM

Componentes	50 μL	Concentração final.
H ₂ O (Mili-Q)	para 50,0 µL	-
10x pcr Buffer	10,0 µL	1x
25mM MgCl ₂	4,0 µL	2,0 mM
Primer mix	2,0 µL	~0,3 µm de cada
25 mM dNTP	0,3 µL	0,5 mM de cada
GoTaq. (5 U/μL)	0,2 μL	1,0 U/rxn
DNA	-	100 ng

Anexo 9.23 - Componentes para as reações de PCR para gene PTEN.

Anexo 9.24 - Ciclo utilizado na amplificação do gene PTEN.

Etapas		Temperatura	Tempo	
Desnaturaç	ção inicial	94 °C	1m30s	
	Desnaturação	94 °C	30s	
35x ciclos	Anelamento	64 °C	30s	
	Extensão	72 °C	1m30s	
Extensão final		72 °C	2m	
		8 °C	+∞	

Anexo 9.25 -	Composição	das	reações	de	PCR
<i>multiplex</i> para	o gene RAD	51D.			

Mix						
Éxon	Amplicon	[]				
1_3	1635 pb	3,0 µM				
4_6	1190 pb	10,0 µM				
7_8	515 pb	10,0 µM				
9_10	1824 pb	3,0 µM				

Componentes	50 µL	Concentração final.
H ₂ O (Mili-Q)	para 50,0 µL	-
10x PCR Buffer	10,0 µL	1x
DMSO	5,0 µL	10%
25mM MgCl ₂	6,2 µL	2,0 mM
Primer mix	5,0 µL	~0,3 µm de cada
25 mM dNTP	0,4 µL	0,5 mM de cada
GoTaq. (5 U/μL)	0,2 µL	1,0 U/rxn
DNA	-	100 ng

Anexo 9.26 - Componentes para as reações de PCR para gene RAD51D.

Anexo 9.27 - Ciclo utilizado na amplificação do gene *RAD51D.*

Etapas		Temperatura	Tempo
Desnaturaç	ção inicial	94 °C	2m30s
	Desnaturação	94 °C	30s
35x ciclos	Anelamento	58 °C	30s
	Extensão	72 °C	2m
Extensão fi	nal	72 °C	5m
		8 °C	+∞

Anexo 9.28 - Composição das reações de PCR
<i>multiplex</i> para o gene <i>TP</i> 53.

Mix					
Éxon	Amplicon	[]			
2_4	778 pb	5,0 µM			
5_9	1803 pb	5,0 µM			
10_11	1215 pb	2,0 µM			

Anexo 9.29 - Componentes para as reações de PCR para gene *TP53*.

Componentes	50 µL	Concentração final.
H₂O (Mili-Q)	para 50,0 µL	-
10x PCR Buffer	10,0 µL	1x
25mM MgCl₂	6,0 µL	2,0 mM
Primer mix	3,0 µL	~0,3 µm de cada
25 mM dNTP	0,2 µL	0,5 mM de cada
GoTaq. (5 U/µL)	0,2 µL	1,0 U/rxn
DNA	-	100 ng

Anexo 9.30 - Ciclo utilizado na amplificação do gene TP53.

	Etapas Temperatu			
Desna	ituração inicial	94 °C	2m	
	Desnaturação	94 °C	45s	
35x ciclos	Anelamento	57 °C	45s	
-	Extensão	72 °C	2m	
Ext	ensão final	72 °C	5m	
		8 °C	+∞	

Anexo 9.31 - Eletroforese em gel de agarose para as amostras do *mix* número 2 do gene *PALB2*. A seta indica a altura do fragmento referente ao éxon 5 e 6 do gene *PALB2*. A) Padrão de bandas observado para as amostras do primeiro experimento. B) Padrão de bandas observado para as amostras do segundo experimento.

Anexo 9.32 - V	ariantes encontradas	para o gene BRCA2	para cada paciente
----------------	----------------------	-------------------	--------------------

ID	dbSNP	Alelo Ref/ Alelo Alt	Freq. do alelo alt.	DP	HGVSc	Classificação	Localização	Consequência	HGVSp	Confirmada por Sanger
_	rs1799943	G/A	0,50	1787	c26G>A	Benigna	Intron 2	5'UTR	na	Não analisada
_	rs206073	G/A	1,00	1793	c.793+98G>A	Benigna	Íntron 9	na	na	Não analisada
-	rs1801406	A/G	0,49	2889	c.3396A>G	Benigna	Éxon 11	Sinônima	p.Lys1132=	Não analisada
	rs543304	T/C	0,53	2037	c.3807T>C	Benigna	Éxon 11	Sinônima	p.Val1269=	Não analisada
	rs206075	A/G	1,00	1684	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Não analisada
~	rs206076	G/C	1,00	2035	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Não analisada
e	rs206080	T/C	1,00	4638	c.6938-120T>C	Benigna	Íntron 11	na	na	Não analisada
	rs1799955	A/G	0,50	1192	c.7242A>G	Benigna	Éxon 14	Sinônima	p.Ser2414=	Não analisada
	rs169547	T/C	1,00	1932	c.7397C>T	Benigna	Éxon 14	Misssense	p.Ala2466Val	Não analisada
	rs9534262	T/C	0,54	3023	c.7806-14T>C	Benigna	Íntron 16	na	na	Não analisada
	rs81002893	A/G	0,46	2290	c.8754+4A>G	Patogênica	íntron 21	na	na	Sim
	rs138193280	CAATT/C	0,44	1457	c.6841+80_6841+83delTTAA	Benigna	Íntron 11	na	na	Não analisada
5	rs1799943	G/A	0,99	3676	c26G>A	Benigna	Intron 2	5'UTR	na	Não analisada
e	rs1801406	A/G	0,99	1651	c.3396A>G	Benigna	Éxon 11	Sinônima	p.Lys1132=	Não analisada

	rs206076	G/C	1,00	2387	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Não analisada
	rs1799955	A/G	1,00	1488	c.7242A>G	Benigna	Éxon 14	Sinônima	p.Ser2414=	Não analisada
	rs169547	T/C	1,00	1436	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Não analisada
	rs9534262	T/C	0,99	3253	c.7806-14T>C	Benigna	Íntron 16	na	na	Não analisada
	nd	C/T	0,65	166	c.8755-67C>T	nd	Íntron 21	na	na	Não analisada
	rs4942486	T/C	0,92	279	c.8755-66T>C	Benigna	Intron 21	na	na	Não analisada
	rs138193280	CAATT/C	1,00	898	c.6841+80_6841+83 deITTAA	Benigna	Íntron 11	na	na	Não analisada
	rs2126042	C/T	0,50	271	c.681+56C>T	VUS	Íntron 8	na	na	Não analisada
	rs206073	G/A	0,99	318	c.793+98G>A	Benigna	íntron 9	na	na	Não analisada
	rs144848	A/C	0,55	2626	c.1114A>C	Benigna	Éxon 10	Misssense	p.Asn372His	Não analisada
	rs206075	A/G	0,99	2215	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Não analisada
	rs206076	G/C	0,99	2331	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Não analisada
~	rs206080	T/C	0,98	3788	c.6938-120T>C	Benigna	Íntron 11	na	na	Não analisada
4	rs169547	T/C	0,99	1995	c.7397C>T	Benigna	Éxon 14	Misssense	p.Ala2466Val	Não analisada
	rs11571707	T/C	0,55	2929	c.7469T>C	Benigna	Éxon 15	Misssense	p.lle2490Thr	Não analisada
	rs9534262	T/C	0,55	3215	c.7806-14T>C	Benigna	Íntron 16	na	na	Não analisada
	rs4942486	T/C	0,68	1101	c.8755-66T>C	Benigna	Íntron 21	na	na	Não analisada
	nd	A/ATTGTCA GTTACTAC TAACAC	0,25	27	C.631+128_631+129TTGTCA GCTTTACTACTAACAC	nd	Íntron 7	na	na	Não analisada
	rs1799943	G/A	0,46	3222	c26G>A	Benigna	Íntron 2	5' UTR	na	Não analisada
	rs206073	G/A	0,99	198	c.793+98G>A	Benigna	íntron 9	na	na	Não analisada
	rs144848	A/C	0,37	2249	c.1114A>C	Benigna	Éxon 10	Missense	p.Asn372His	Não analisada
	rs1801406	A/G	0,47	2895	c.3396A>G	Benigna	Éxon 11	Sinônima	p.Lys1132=	Não analisada
	rs206075	A/G	0,99	2052	c.4563A>C	Benigna	Éxon 11	Sinônima	p.Leu1521=	Não analisada
58	rs4987117	C/T	0,48	2400	c.5744C>T	Benigna	Éxon 11	Missense	p.Thr1915Met	Não analisada
	rs206076	G/C	1,00	2343	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Não analisada
	rs206080	T/C	0,98	4576	c.6938-120T>C	Benigna	Íntron 11	na	na	Não analisada
	rs1799955	A/G	0,48	1240	c.7242A>G	Benigna	Éxon 14	Sinônima	p.Ser2414=	Não analisada
	rs169547	T/C	0,99	2182	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Não analisada
	rs9534262	T/C	0,46	3154	c.7806-14T>C	Benigna	Íntron 16	na	na	Não analisada

	rs4942486	T/C	0,42	1403	c.8755-66T>C	Benigna	Íntron 21	na	na	Não analisada
	rs276174878	AT/A	0,31	36	c.68-7delT	nd	Íntron 2	na	na	Não analisada
	rs138193280	CAATT/C	0,45	1324	c.6841+80_6841+83del TTAA	Benigna	Íntron 11	na	na	Não analisada
	rs2126042	C/T	1,00	2290	c.681+56C>T	VUS	Íntron 8	na	na	Sim
	rs206073	G/A	1,00	2055	c.793+98G>A	Benigna	Íntron 9	na	na	Não analisada
	rs206075	A/G	1,00	1676	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
	rs206076	G/C	1,00	1562	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
95	rs206080	T/C	1,00	4797	c.6938-120T>C	Benigna	Íntron 11	na	na	Sim
-	rs169547	T/C	1,00	2079	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Sim
	rs9534262	T/C	1,00	2922	c.7806-14T>C	Benigna	Íntron 16	nd	na	Sim
	rs4942486	T/C	1,00	1494	c.8755-66T>C	Benigna	Íntron 21	nd	na	Sim
	nd	C/A	0,38	2394	c.9097dupA	Patogênica	Éxon 23	Frameshift	p.Thr3033Asnf sTer	Sim
	rs206073	G/A	0,99	100	c.793+98G>A	Benigna	íntron 9	na	na	Não avaliado
	rs144848	A/C	0,48	2563	c.1114A>C	Benigna	Éxon 10	Missense	p.Asn372His	Sim
	rs206075	A/G	0,88	1862	c.4563A>C	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
98	rs206076	G/C	1,00	1532	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
	rs206080	T/C	0,99	4816	c.6938-120T>C	Benigna	Íntron 11	na	na	Não avaliado
	rs76584943	A/G	0,48	2865	c.7008-62A>G	VUS	Íntron 13	na	na	Não avaliado
	rs169547	T/C	0,99	1890	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Não avaliado
	rs1799943	G/A	1,00	1088	c26G>A	Benigna	Intron 2	5'UTR	na	Sim
	rs206073	G/A	0,99	394	c.793+98G>A	Benigna	Íntron 9	na	na	Sim
	rs1801406	A/G	1,00	486	c.3396A>G	Benigna	Éxon 11	Sinônima	p.Lys1132=	Sim
	rs206075	A/G	1,00	496	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
	rs4987117	C/T	0,52	617	c.5744C>T	Benigna	Éxon 11	Missense	p.Thr1915Met	Sim
112	rs206076	G/C	1,00	455	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
	rs206080	T/C	1,00	1542	c.6938-120T>C	Benigna	Íntron 11	na	na	SIm
	rs1799955	A/G	1,00	445	c.7242A>G	Benigna	Éxon 14	Sinônima	p.Ser2414=	Sim
	rs169547	T/C	1,00	547	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Sim
	rs9534262	T/C	1,00	721	c.7806-14T>C	Benigna	Íntron 16	na	na	Sim
	rs138193280	CAATT/C	1,00	634	c.6841+80_6841+83delTTAA	Benigna	Íntron 11	na	na	Sim

	rs206073	G/A	0,77	117	c.793+98G>A	Benigna	Íntron 9	na	na	Sim
	rs144848	A/C	0,64	1172	c.1114A>C	Benigna	Éxon 10	Missense	p.Asn372His	Sim
	rs543304	T/C	0,41	759	c.3807T>C	Benigna	Éxon 11	Sinônima	p.Val1269=	Sim
4	rs206075	A/G	0,77	979	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
÷	rs206076	G/C	0,77	783	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
	rs206080	T/C	0,85	2041	c.6938-120T>C	Benigna	Íntron 11	na	na	Sim
	rs169547	T/C	0,79	2012	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Sim
	rs1801426	A/G	0,78	1260	c.10234A>G	Benigna	Éxon 27	Missense	p.lle3412Val	Sim
	rs206073	G/A	0,99	1193	c.793+98G>A	Benigna	Íntron 9	na	na	Não avaliado
	rs144848	A/C	0,52	2920	c.1114A>C	Benigna	Éxon 10	Missense	p.Asn372His	Sim
	rs1801406	A/G	0,47	3043	c.3396A>G	Benigna	Éxon 11	Sinônima	p.Lys1132=	Sim
	rs206075	A/G	1,00	1760	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
	rs206076	G/C	1,00	1731	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
115	rs206080	T/C	1,00	1905	c.6938-120T>C	Benigna	Íntron 11	na	na	Não avaliado
	rs1799955	A/G	0,47	2167	c.7242A>G	Benigna	Éxon 14	Sinônima	p.Ser2414=	Não avaliado
	rs169547	T/C	1,00	2485	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Não avaliado
	rs9534262	T/C	1,00	3068	c.7806-14T>C	Benigna	Íntron 16	na	na	Sim
	rs4942486	T/C	0,99	1174	c.8755-66T>C	Benigna	Íntron 21	na	na	Sim
	rs138193280	CAATT/C	0,47	928	c.6841+80_6841+83delTTAA	Benigna	Íntron 11	na	na	Sim
	rs1799943	G/A	0,50	2277	c26G>A	Benigna	Intron 2	5'UTR	na	Sim
	rs2126042	C/T	0,50	512	c.681+56C>T	Benigna	Íntron 8	na	na	Não
	rs206073	G/A	1,00	372	c.793+98G>A	Benigna	íntron 9	na	na	Sim
	rs1801406	A/G	0,50	2780	c.3396A>G	Benigna	Éxon 11	Sinônima	p.Lys1132=	Sim
	rs206075	A/G	1,00	2255	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
135	rs206076	G/C	1,00	1159	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Não
	rs206080	T/C	1,00	3285	c.6938-120T>C	Benigna	Íntron 11	na	na	Sim
	rs169547	T/C	1,00	2272	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Sim
	rs9534262	T/C	0,55	3186	c.7806-14T>C	Benigna	Íntron 16	na	na	Sim
	rc/0/2/96	T/C	0.66	1600	c 8755-66T>C	Benjana	Íntron 21	na	na	Sim
	154942400	1/0	0,00	1009	0.0733-001>0	Derligita		na	Πά	0

	rs80358547	T/G	0,53	3038	c.2T>G	Patogênica	Éxon 2	Missense	p.Met1Arg	Sim
	rs3783265	T/C	0,52	873	c.426-89T>C	Benigna	Íntron 4	na	na	Sim
	rs206073	G/A	1,00	1407	c.793+98G>A	Benigna	íntron 9	na	na	Sim
	rs206075	A/G	1,00	1477	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
136	rs206080	T/C	1,00	2247	c.6938-120T>C	Benigna	Íntron 11	na	na	Sim
	rs169547	T/C	0,54	2634	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Sim
	rs11147489	C/T	0,55	3213	c.7435+53C>T	Benigna	Íntron 14	na	na	Sim
	rs9534262	T/C	0,60	1982	c.7806-14T>C	Benigna	Íntron 16	na	na	Sim
	rs4942486	T/C	1,00	95	c.8755-66T>C	Benigna	Íntron 21	na	na	Sim
	rs206073	G/A	1,00	2175	c.793+98G>A	Benigna	Intron 9	na	na	Não avaliado
	rs144848	A/C	1,00	2061	c.1114A>C	Benigna	Éxon 10	Misssense	p.Asn372His	Sim
	rs206075	A/G	1,00	1643	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
	rs206076	G/C	1,00	1820	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
	rs206080	T/C	1,00	4507	c.6938-120T>C	Benigna	Íntron 11	na	na	Não avaliado
139	rs169547	T/C	1,00	2162	c.7397C>T	Benigna	Éxon 14	Misssense	p.Ala2466Val	Não avaliado
	rs11571707	T/C	0,56	385	c.7469T>C	Benigna	Éxon 15	Misssense	p.lle2490Thr	Sim
	rs9534262	T/C	0,55	3147	c.7806-14T>C	Benigna	Íntron 16	na	na	Sim
	rs4942486	T/C	0,59	1694	c.8755-66T>C	Benigna	Íntron 21	na	na	Sim
	nd	AT/A	0,40	1765	c.425+365delT	nd	Intron 9	na	na	Não avaliado
	nd	CT/C	0,30	2659	c.793+53delT	nd	Intron 10	na	na	Não
	rs114446594	T/G	0,54	265	c.231T>G	Benigna	Éxon 3	Sinônima	p.Thr77=	Sim
	rs206073	G/A	0,42	652	c.793+98G>A	Benigna	íntron 9	na	na	Sim
	rs206075	A/G	0,47	2109	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
	rs206076	G/C	0,48	2513	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
41	rs206080	T/C	0,54	4662	c.6938-120T>C	Benigna	Íntron 11	na	na	Não
-	rs169547	T/C	0,44	2089	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Não avaliado
	rs9595456	G/A	0,44	2164	c.9257-83G>A	Benigna	Íntron 24	na	na	Sim
	rs1801426	A/G	0,56	2137	c.10234A>G	Benigna	Éxon 27	Missense	p.lle3412Val	Sim
	rs80359351	TAAAC/T	0,41	2943	c.2806_2809del4	Patogênica	Éxon 11	Frameshift	p.Ala938Profs	Sim

	rs1799943	G/A	0,50	3595	c26G>A	Benigna	Intron 2	5'UTR	na	Não avaliado
	rs206073	G/A	1,00	1647	c.793+98G>A	Benigna	íntron 9	na	na	Não avaliado
	rs1801406	A/G	0,52	3004	c.3396A>G	Benigna	Éxon 11	Sinônima	p.Lys1132=	Sim
	rs543304	T/C	0,49	2318	c.3807T>C	Benigna	Éxon 11	Sinônima	p.Val1269=	Não avaliado
	rs28897728	G/A	0,53	1710	c.4585G>A	Benigna	Éxon 11	Missense	p.Gly1529Arg	Sim
	rs206075	A/G	1,00	1546	c.4563A>C	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
22	rs206076	G/C	1,00	1377	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Não
÷	rs206080	T/C	1,00	4849	c.6938-120T>C	Benigna	Íntron 11	na	na	Não avaliado
	rs1799955	A/G	0,49	1003	c.7242A>G	Benigna	Éxon 14	Sinônima	p.Ser2414=	Não avaliado
	rs169547	T/C	1,00	2036	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Não avaliado
	rs9534262	T/C	0,54	2808	c.7806-14T>C	Benigna	Íntron 16	na	na	Sim
	rs9595456	G/A	0,50	2061	c.9257-83G>A	Benigna	Íntron 24	na	na	Não avaliado
	rs1801426	A/G	0,49	1320	c.10234A>G	Benigna	Éxon 27	Missense	p.lle3412Val	Não avaliado
	rs138193280	CAATT/C	0,44	2939	c.6841+80_6841+83delTTAA	Benigna	Íntron 11	na	na	Sim
	rs1799943	G/A	0,51	3765	c26G>A	Benigna	Intron 2	5'UTR	na	Não avaliado
	rs144848	A/C	0,05	2364	c.1114A>C	Benigna	Éxon 10	Missense	p.Asn372His	Sim
	rs1801406	A/G	0,50	2434	c.3396A>G	Benigna	Éxon 11	Sinônima	p.Lys1132=	Sim
0	rs206076	G/C	1,00	1851	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
16	rs169547	T/C	1,00	2184	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Não
	rs9534262	T/C	0,54	3184	c.7806-14T>C	Benigna	Íntron 16	na	na	Sim
	rs80359550	GT/G	0,50	1811	c.5946delT	Patogênica	Éxon 11	Frameshift	p.Ser1982Argf s	Sim
	rs138193280	CAATT/C	0,46	2316	c.6841+80_6841+83delTTAA	Benigna	Íntron 11	na	na	Sim
	rs2126042	C/T	0,58	321	c.681+56C>T	Benigna	Íntron 8	na	na	Não
	rs206073	G/A	1,00	276	c.793+98G>A	Benigna	íntron 9	na	na	Sim
	Nd	G/A	0,49	2626	c.3226G>A	VUS	Éxon 11	Missense	p.Val1076lle	Sim
21	rs206075	A/G	1,00	1892	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
Ŧ	rs206076	G/C	1,00	1571	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Não avaliado
	rs206080	T/C	1,00	4820	c.6938-120T>C	Benigna	Íntron 11	na	na	Não avaliado
	rs169547	T/C	1,00	2484	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Não avaliado
	rs9534262	T/C	0,56	3306	c.7806-14T>C	Benigna	Íntron 16	na	na	Sim

	rs4942486	T/C	0,62	1692	c.8755-66T>C	Benigna	Íntron 21	na	na	Sim
	rs206073	G/A	1,00	192	c.793+98G>A	Benigna	Íntron 9	na	na	Sim
	rs543304	T/C	1,00	1372	c.3807T>C	Benigna	Éxon 11	Sinônima	p.Val1269=	Sim
	rs206075	A/G	1,00	1653	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
78	rs206076	G/C	1,00	1134	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
-	rs206080	T/C	0,99	3534	c.6938-120T>C	Benigna	Íntron 12	na	na	Sim
	rs169547	T/C	0,99	3236	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Não
	nd	CG/C	0,51	2548	c.7986delG	Patogênica	Éxon 18	Frameshift	p.Thr2662ThrF s	Sim
	rs206073	G/A	1,00	403	c.793+98G>A	Benigna	Íntron 9	na	na	Não avaliado
	rs1801406	A/G	0,49	2859	c.3396A>G	Benigna	Éxon 11	Sinônima	p.Lys1132=	Sim
	rs543304	T/C	0,48	2217	c.3807T>C	Benigna	Éxon 11	Sinônima	p.Val1269=	Não avaliado
	rs206075	A/G	1,00	2123	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
	rs206076	G/C	1,00	1914	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
2	rs206080	T/C	1,00	4357	c.6938-120T>C	Benigna	Íntron 12	na	na	Não avaliado
7	rs1799955	A/G	0,49	1885	c.7242A>G	Benigna	Éxon 14	Sinônima	p.Ser2414=	Não avaliado
	rs169547	T/C	1,00	2135	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Não avaliado
	rs9534262	T/C	0,53	3419	c.7806-14T>C	Benigna	Íntron 16	na	na	Não avaliado
	rs4942486	T/C	0,61	1767	c.8755-66T>C	Benigna	Íntron 21	na	na	Sim
	nd	/CCA	0,49	1071	c.2163delA	Patogênica	Éxon 11	Frameshift	p.Pro721ProFs	Sim
	rs138193280	CAATT/C	0,49	1124	c.6841+80_6841+83delTTAA	Benigna	Íntron 11	na	na	Sim
	rs206073	G/A	1,00	72	c.793+98G>A	Benigna	Íntron 9	na	na	Não avaliado
	rs144848	A/C	0,54	1097	c.1114A>C	Benigna	Éxon 10	Missense	p.Asn372His	Sim
	rs543304	T/C	0,48	1042	c.3807T>C	Benigna	Éxon 11	Sinônima	p.Val1269=	Não avaliado
2	rs206075	A/G	1,00	967	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
÷	rs206076	G/C	1,00	346	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
	rs206080	T/C	1,00	2907	c.6938-120T>C	Benigna	Íntron 12	na	na	Não avaliado
	rs169547	T/C	0,99	2915	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Não avaliado
	rs9595456	G/A	0,51	1281	c.9257-83G>A	Benigna	Íntron 24	na	na	Não avaliado
95	rs1799943	G/A	0,50	1875	c26G>A	Benigna	Íntron 2	5'UTR	na	Não avaliado
÷	rs2126042	C/T	0,47	150	c.681+56C>T	Benigna	Íntron 8	na	na	Não

							1			
	rs206073	G/A	1,00	104	c.793+98G>A	Benigna	Intron 9	na	na	Sim
	rs1801406	A/G	0,47	1610	c.3396A>G	Benigna	Éxon 11	Sinônima	p.Lys1132=	Sim
	rs206075	A/G	1,00	1070	c.4563A>C	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
	rs4987117	C/T	0,49	1551	c.5744C>T	Benigna	Éxon 11	Missense	p.Thr1915Met	Sim
	rs206076	G/C	1,00	1157	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
	rs206080	T/C	1,00	2002	c.6938-120T>C	Benigna	Íntron 12	na	na	Sim
	rs1799955	A/G	0,48	1989	c.7242A>G	Benigna	Éxon 14	Sinônima	p.Ser2414=	Sim
	rs169547	T/C	1,00	2494	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Sim
	rs9534262	T/C	0,99	2118	c.7806-14T>C	Benigna	Íntron 16	na	na	Não avaliado
	nd	C/T	0,48	202	c.8755-67C>T	nd	Íntron 21	na	na	Sim
	rs4942486	T/C	0,94	309	c.8755-66T>C	Benigna	Íntron 21	na	na	Sim
	rs375790538	AT/A	0,51	143	c.736delT	Patogênica	Éxon 9	Missense	p.Arg245Ser	Sim
	rs138193280	CAATT/C	0,55	643	c.6841+80_6841+83delTTAA	Benigna	Íntron 11	na	na	Sim
	rs1799943	G/A	0,54	847	c26G>A	Benigna	Íntron 2	5'UTR	na	Sim
	rs144848	A/C	0,56	758	c.1114A>C	Benigna	Éxon 10	Missense	p.Asn372His	Sim
	rs1801406	A/G	0,47	297	c.3396A>G	Benigna	Éxon 11	Sinônima	p.Lys1132=	Sim
	rs206076	G/C	1,00	347	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
9	rs1799955	A/G	0,48	2070	c.7242A>G	Benigna	Éxon 14	Sinônima	p.Ser2414=	Sim
-16	rs169547	T/C	1,00	1852	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Sim
	rs9534262	T/C	0,55	1253	c.7806-14T>C	Benigna	Íntron 16	na	na	Não analisado
	rs4942486	T/C	0,61	736	c.8755-66T>C	Benigna	Íntron 21	na	na	Não analisado
	rs138193280	CAATT/C	0,46	213	c.6841+80_6841+83delTTAA	Benigna	Íntron 11	na	na	Sim
	rs80359759	AG/A	0,49	1504	c.9401delG	Patogênica	Éxon 25	Frameshift	p.Gly3134Alafs	Sim
	rs2126042	C/T	0,48	151	c.681+56C>T	Benigna	Íntron 8	na	na	Sim
	rs206073	G/A	1,00	130	c.793+98G>A	Benigna	Íntron 9	na	na	Não avaliado
	rs144848	A/C	0,53	808	c.1114A>C	Benigna	Éxon 10	Missense	p.Asn372His	Sim
206	rs206075	A/G	1,00	902	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
	rs206076	G/C	1,00	602	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Não
	rs206080	T/C	1,00	2195	c.6938-120T>C	Benigna	Íntron 12	na	na	Não avaliado
	rs169547	T/C	1,00	2092	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Não avaliado

-	rs11571707	T/C	0,59	467	c.7469T>C	Benigna	Éxon 15	Missense	p.lle2490Thr	Sim
-	rs9534262	T/C	0,56	1257	c.7806-14T>C	Benigna	Íntron 16	na	na	Sim
-	rs751977993	AT/A	0,30	105	c.793+53delT	nd	Íntron 9	na	na	Não avaliado
	rs1799943	G/A	0,46	3893	c26G>A	Benigna	Íntron 2	5' UTR	na	Não avaliado
-	rs206073	G/A	1,00	2202	c.793+98G>A	Benigna	Íntron 9	na	na	Sim
-	rs144848	A/C	0,54	2481	c.1114A>C	Benigna	Éxon 10	Misssense	p.Asn372His	Sim
-	rs1801406	A/G	0,50	3072	c.3396A>G	Benigna	Éxon 11	Sinônima	p.Lys1132=	Sim
-	rs206075	A/G	1,00	1816	c.4563A>C	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
-	rs206076	G/C	1,00	2354	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
215	rs206080	T/C	1,00	4652	c.6938-120T>C	Benigna	Íntron 11	na	na	Sim
(N -	rs169547	T/C	1,00	1927	c.7397C>T	Benigna	Éxon 14	Misssense	p.Ala2466Val	Sim
	nd	A/ATTGTCA GTTACTAA CAC	0,23	44	c.631+128_631+129insTT GTCAGTTACTAACAC	nd	Íntron 7	na	na	Não avaliado
_	nd	T/TA	0,52	1659	c.4964dupA	Patogênica	Éxon 11	Misssense	p.Tyr1655Ter	Sim
	rs138193280	CAATT/C	0,48	1191	c.6841+80_6841+83delTTAA	Benigna	Íntron 11	na	na	Sim
	nd	G/GGAGCC ACA	0,35	31	c.9648+134_9648+135insGA GCCACA	nd	Íntron 26	na	na	Não avaliado
_	rs1799943	G/A	0,50	642	c26G>A	Benigna	Íntron 2	5'UTR	na	Não avaliado
_	rs206073	G/A	1,00	170	c.793+98G>A	Benigna	Íntron 9	na	na	Sim
_	rs144848	A/C	0,54	1528	c.1114A>C	Benigna	Éxon 10	Missense	p.Asn372His	Sim
	rs1801406	A/G	0,51	1007	c.3396A>G	Benigna	Éxon 11	Sinônima	p.Lys1132=	Sim
_	rs206075	A/G	1,00	1078	c.4563A>C	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
_	rs206076	G/C	1,00	564	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
227	rs206080	T/C	1,00	2499	c.6938-120T>C	Benigna	Íntron 11	na	na	Sim
_	rs138193280	CAATT/C	0,51	327	c.6841+80_6841+83delTTAA	Benigna	Íntron 11	na	na	Sim
_	rs169547	T/C	1,00	3179	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Sim
_	rs9534262	T/C	0,55	2353	c.7806-14T>C	Benigna	Íntron 16	na	na	Não avaliado
_	rs28897747	G/T	0,52	2454	c.8149G>T	Benigna	Éxon 18	Missense	Ala2717Ser	Sim
_	rs4942486	T/C	0,63	757	c.8755-66T>C	Benigna	Íntron 21	na	na	Sim
	rs80359490	CAG/C	0,45	700	c.5164_5165delAG	Patogênica	Éxon 11	Missense	p.Ser1722Tyrfs	Sim
1 N I	rs2126042	C/T	1,00	69	c.681+56C>T	Benigna	Intron 8	na	na	Não

rs206073	G/A	1,00	52	c.793+98G>A	Benigna	Intron 9	na	na	Não analisado
rs206075	A/G	1,00	592	c.4563A>G	Benigna	Éxon 11	Sinônima	p.Leu1521=	Sim
rs206076	G/C	1,00	408	c.6513G>C	Benigna	Éxon 11	Sinônima	p.Val2171=	Sim
rs206080	T/C	1,00	2497	c.6938-120T>C	Benigna	Intron 12	na	na	Não analisado
rs169547	T/C	1,00	2435	c.7397C>T	Benigna	Éxon 14	Missense	p.Ala2466Val	Não analisado
rs81002852	G/A	0,47	2117	c.7435+6G>A	VUS	Intron 14	na	na	Não analisado
rs9534262	T/C	1,00	1551	c.7806-14T>C	Benigna	Intron 16	na	na	Não analisado
nd	AT/A	0,28	53	c.425+365delT	nd	Intron 9	na	na	Não analisado
rs80359584	ATAACT/A	0,46	559	c.6405_6409delCTTAA	Patogênica	Éxon 11	Frameshift	p.Asn2135Lysf s	Sim
nd	CT/C	0,26	424	c.793+53delT	nd	Íntron 10	na	na	Não

dbSNP - Código identificador da variante no banco de dados dbSNP; nd - Não disponível; na - Não se aplica; DP - Cobertura da variante.

Anexo 9.33 - Variantes identificadas para o gene BRCA1.

ID	dbSNP	Alelo ref./ Alelo Alt	Freq. do alelo alt.	DP	HGVSc	Classificação	Localização	Consequência	HGVSp	Confirmada por Sanger
	rs80357136	G/A	0,54	2625	c.3403C>T	Patogênica	Éxon 9	Missense	p.Gln1135Ter	Sim
35	rs799917	G/A	0,50	1606	c.2612C>T	VUS	Éxon 10	Missense	p.Pro871Arg	Não analisada
	rs8176143	A/G	0,51	1832	c.548-80T>C	Benigna	Íntron 7	na	na	Não analisada
	rs3092994	C/T	0,52	2963	c.5152+66G>A	Benigna	Íntron 18	na	na	Não analisada
	rs80358089	A/G	0,52	2273	c.5074+2T>C	Patogênica	Éxon 17	na	na	Sim
	rs8176234	T/C	0,37	2827	c.4987-68A>G	Benigna	Íntron 16	na	na	Não analisada
	rs8176233	T/C	0,43	2322	c.4987-92A>G	Benigna	Íntron 16	na	na	Não analisada
	rs1799966	T/C	0,47	2609	c.4837A>G	Benigna	Éxon 15	Misssense	p.Ser1613Gly	Não analisada
-	rs1060915	A/G	0,50	810	c.4308T>C	Benigna	Éxon 11	Sinônima	p.Ser1436=	Não analisada
4	rs16942	T/C	0,50	2440	c.3548A>G	Benigna	Éxon 10	Misssense	p.Lys1183Arg	Não analisada
	rs16941	T/C	0,48	2734	c.3113A>G	Benigna	Éxon 10	Misssense	p.Glu1038Gly	Não analisada
	rs799917	G/A	0,99	1650	c.2612C>T	Benigna	Éxon 10	Misssense	p.Pro871Leu	Não analisada
	rs16940	A/G	0,50	3162	c.2311T>C	Benigna	Éxon 9	Sinônima	p.Leu771=	Não analisada
	rs1799949	G/A	0,49	2191	c.2082C>T	Benigna	Éxon 10	Sinônima	p.Ser694=	Não analisada
	rs8176144	TA/T	0,50	1431	c.548-58delT	Benigna	Íntron 7	na	na	Não analisada

58	rs80357903	TCTTG/T	0,43	569	c.3331_3334delCAAG	Patogênica	Éxon 11	Frameshift	p.Gln1111Asnfs	Sim
95	rs1799950	T/C	0,47	1597	c.1067A>G	Benigna	Éxon 10	Missense	p.Gln356Arg	Sim
8	nd	T/A	0,51	838	c.4987-100A>T	nd	Íntron 15	na	na	Não avaliado
6	rs80357508	CTTGA/C	0,51	702	c.4065_4068delTCAA	Patogênica	Éxon 11	Frameshift	p.Asn1355Lysfs	Sim
	rs3092994	C/T	0,61	700	c.5152+66G>A	Benigna	Íntron 18	na	na	Não
	rs8176234	T/C	0,56	851	c.4987-68A>G	Benigna	Íntron 16	na	na	Sim
	rs8176233	T/C	0,53	634	c.4987-92A>G	Benigna	Íntron 16	na	na	Sim
	rs1799967	C/T	0,61	1057	c.4956G>A	Benigna	Éxon 15	Missense		Não
	rs1799966	T/C	0,61	995	c.4837A>G	Benigna	Éxon 15	Missense	p.Ser1613Gly	Sim
	rs80357389	C/A	0,37	1268	c.4484G>T	Patogênica	Éxon 13	Missense	p.Arg1495Thr	Sim
112	rs1060915	A/G	0,48	1086	c.4308T>C	Benigna	Éxon 11	Sinônima	p.Ser1436=	Sim
	rs16942	T/C	0,50	911	c.3548A>G	Benigna	Éxon 10	Missense	p.Lys1183Arg	Sim
	rs16941	T/C	0,52	624	c.3113A>G	Benigna	Éxon 10	Missense	p.Glu1038Gly	Sim
	rs799917	G/A	0,53	509	c.2612C>T	VUS	Éxon 10	Missense	p.Pro871Arg	Não
	rs16940	A/G	0,50	723	c.2311T>C	Benigna	Éxon 10	Sinônima	p.Leu771=	Não
	rs1799949	G/A	0,52	482	c.2082C>T	Benigna	Éxon 10	Sinônima	p.Ser694=	Não avaliado
	rs8176144	TA/T	0,52	554	c.548-58delT	Benigna	Íntron 7	na	na	Sim
	rs3092994	C/T	1,00	936	c.5152+66G>A	Benigna	Íntron 18	na	na	Sim
	rs8176258	G/A	0,37	765	c.5075-53C>T	Benigna	Íntron 16	na	na	Sim
_	rs8176234	T/C	0,99	941	c.4987-68A>G	Benigna	Íntron 16	na	na	Não avaliado
114	rs8176233	T/C	0,99	841	c.4987-92A>G	Benigna	Íntron 16	na	na	Não avaliado
	rs1799966	T/C	0,99	1165	c.4837A>G	Benigna	Éxon 15	Missense	p.Ser1613Gly	Sim
	rs80357382	T/C	0,39	688	c.211A>G	Patogênica	Éxon 5	Missense	p.Arg71Gly	Sim
	rs8176144	TA/T	1,00	26	c.548-58delT	Benigna	Íntron 7	na	na	Sim
	rs3092994	C/T	0,55	2825	c.5152+66G>A	Benigna	Íntron 18	na	na	Não
	rs8176234	T/C	0,51	2558	c.4987-68A>G	Benigna	Íntron 16	na	na	Não avaliado
	rs8176233	T/C	0,49	2156	c.4987-92A>G	Benigna	Íntron 16	na	na	Não avaliado
	rs1799966	T/C	0,57	2384	c.4837A>G	Benigna	Éxon 15	Missense	p.Ser1613Gly	Sim
115	rs1060915	A/G	0,52	1888	c.4308T>C	Benigna	Éxon 11	Sinônima	p.Ser1436=	Não avaliado
115	rs16942	T/C	0,49	2042	c.3548A>G	Benigna	Éxon 10	Missense	p.Lys1183Arg	Sim
	rs16941	T/C	0,54	2300	c.3113A>G	Benigna	Éxon 10	Missense	p.Glu1038Gly	Sim
	rs799917	G/A	1,00	1466	c.2612C>T	Benigna	Éxon 10	Missense	p.Pro871Leu	Não avaliado
	rs16940	A/G	0,53	2446	c.2311T>C	Benigna	Éxon 9	Sinônima	p.Leu771=	Não avaliado

	rs1799949	G/A	0,57	1912	c.2082C>T	Benigna	Éxon 10	Sinônima	p.Ser694=	Não avaliado
	rs4986850	C/T	0,57	1962	c.2077G>A	Benigna	Éxon 10	Missense	p.Asp693Asn	Não avaliado
	rs8176259	CA/C	0,43	2615	c.5152+85delT	Benigna	Íntron 17	na	na	Não
	nd	TA/T	0,59	1048	c.548-58delT	Benigna	Íntron 7	na	na	Não avaliado
	rs3092994	C/T	0,58	2851	c.5152+66G>A	Benigna	Íntron 18	na	na	Não
	rs8176234	T/C	0,54	2567	c.4987-68A>G	Benigna	Íntron 16	na	na	Não
	rs8176233	T/C	0,51	2160	c.4987-92A>G	Benigna	Íntron 16	na	na	Não
22	rs1799966	T/C	0,61	2468	c.4837A>G	Benigna	Éxon 15	Missense	p.Ser1613Gly	Sim
÷	rs1060915	A/G	0,45	128	c.4308T>C	Benigna	Éxon 11	Sinônima	p.Ser1436=	Não
	rs748812609	A/G	0,46	87	c.1460T>C	VUS	Éxon 11	Missense	p.Val487Ala	Não
	nd	TA/T	0,77	1119	c.548-58delT	Benigna	Ínton 7	na	na	Sim
	rs80357887	TAG/T	0,24	806	c.470_471delCT	Patogênica	Éxon 8	Frameshift	p.Ser157Terfs	Sim
136	rs191373374	T/C	0,50	1984	c.5175A>G	Benigna	Éxon 18	Sinônima	p.Glu1678=	Sim
139	rs799917	G/A	0,49	1494	c.2612C>T	Benigna	Éxon 10	Misssense	p.Pro871Leu	Não avaliado
	rs3092994	C/T	1,00	2842	c.5152+66G>A	Benigna	Íntron 18	na	na	Não
	rs8176234	T/C	1,00	2605	c.4987-68A>G	Benigna	Íntron 16	na	na	Não avaliado
	rs8176233	T/C	1,00	2141	c.4987-92A>G	Benigna	Íntron 16	na	na	Não avaliado
	rs1799966	T/C	1,00	2433	c.4837A>G	Benigna	Éxon 15	Missense	p.Ser1613Gly	Sim
	rs1060915	A/G	1,00	76	c.4308T>C	Benigna	Éxon 11	Sinônima	p.Ser1436=	Não
포	rs16942	T/C	0,99	67	c.3548A>G	Benigna	Éxon 10	Missense	p.Lys1183Arg	Sim
14	rs16941	T/C	1,00	63	c.3113A>G	Benigna	Éxon 10	Missense	p.Glu1038Gly	Sim
	rs799917	G/A	1,00	47	c.2612C>T	Benigna	Éxon 10	Missense	p.Pro871Leu	Não
	rs1799949	G/A	1,00	73	c.2082C>T	Benigna	Éxon 10	Sinônima	p.Ser694=	Não avaliado
	rs16940	A/G	1,00	92	c.2311T>C	Benigna	Éxon 9	Sinônima	p.Leu771=	Não
	rs4986850	C/T	0,53	87	c.2077G>A	Benigna	Éxon 10	Missense	p.Asp693Asn	Não
	nd	TA/T	1,00	1684	c.548-58delT	Benigna	Íntron 7	na	na	Sim
	rs3092994	С	0,50	2963	c.5152+66G>A	Benigna	Íntron 18	na	na	Sim
	rs8176234	T/C	0,46	2778	c.4987-68A>G	Benigna	Íntron 16	na	na	Não avaliado
	rs8176233	T/C	0,43	2307	c.4987-92A>G	Benigna	Íntron 16	na	na	Não avaliado
167	rs1799967	C/T	0,53	3304	c.4956G>A	Benigna	Éxon 15	Missense	p.Met1652lle	sim
-	rs1799966	T/C	0,51	2479	c.4837A>G	Benigna	Éxon 15	Missense	p.Ser1613Gly	Não
	rs1060915	A/G	0,48	2169	c.4308T>C	Benigna	Éxon 11	Sinônima	p.Ser1436=	Sim
	rs1799949	G/A	0,50	2127	c.2082C>T	Benigna	Éxon 10	Sinônima	p.Ser694=	Não avaliado

	rs16942	T/C	0,50	2050	c.3548A>G	Benigna	Éxon 10	Missense	p.Lys1183Arg	Sim
	rs4986852	C/T	0,56	2188	c.3113G>A	Benigna	Éxon 10	Missense	p.Ser1040Asn	Não avaliado
	rs16941	T/C	0,50	2308	c.3119G>A	Benigna	Éxon 10	Missense	p.Glu1038Gly	Sim
	rs799917	G/A	0,50	1617	c.2612C>T	Benigna	Éxon 10	Misssense	p.Pro871Leu	Não
	rs16940	A/G	0,47	2452	c.2311T>C	Benigna	Éxon 9	Sinônima	p.Leu771=	Não
	nd	CT/C	0,52	2151	c.1823delA	Patogênica	Éxon 11	Frameshift	p.Lys608Argfs	Sim
	rs8176144	TA/T	0,72	583	c.548-58delT	Benigna	Íntron 9	na	na	Sim
178	rs1799950	T/C	0,46	2537	c.1067A>G	Benigna	Éxon 10	Missense	p.Gln356Arg	Sim
	rs3092994	C/T	1,00	2907	c.5152+66G>A	Benigna	Íntron 18	na	na	Não avaliado
	rs8176234	T/C	1,00	2512	c.4987-68A>G	Benigna	Íntron 16	na	na	Não
	rs8176233	T/C	0,99	2060	c.4987-92A>G	Benigna	Íntron 16	na	na	Não
	rs1799966	T/C	1,00	2324	c.4837A>G	Benigna	Éxon 15	Missense	p.Ser1613Gly	Sim
	rs1060915	A/G	1,00	1809	c.4308T>C	Benigna	Éxon 11	Sinônima	p.Ser1436=	Não
181	rs16942	T/C	1,00	1418	c.3548A>G	Benigna	Éxon 10	Missense	p.Lys1183Arg	Sim
-	rs16941	T/C	1,00	1975	c.3113A>G	Benigna	Éxon 10	Missense	p.Glu1038Gly	Sim
	rs799917	G/A	1,00	1392	c.2612C>T	Benigna	Éxon 10	Missense	p.Pro871Leu	Não avaliado
	rs16940	A/G	1,00	2088	c.2311T>C	Benigna	Éxon 9	Sinônima	p.Leu771=	Não avaliado
	rs1799949	G/A	1,00	1852	c.2082C>T	Benigna	Éxon 10	Sinônima	p.Ser694=	Não avaliado
	rs8176144	TA/T	1,00	442	c.548-58delT	Benigna	Íntron 7	na	na	Não avaliado
	rs3092994	C/T	0,48	1904	c.5152+66G>A	Benigna	Íntron 18	na	na	Não avaliado
	rs80358035	T/C	0,50	2882	c.4987-20A>G	Beniga	Íntron 15	na	na	Não avaliado
	rs8176234	T/C	0,48	2274	c.4987-68A>G	Benigna	Íntron 16	na	na	Não avaliado
	rs8176233	T/C	0,45	1831	c.4987-92A>G	Benigna	Íntron 16	na	na	Não avaliado
	rs1799966	T/C	0,51	2257	c.4837A>G	Benigna	Éxon 15	Missense	p.Ser1613Gly	Sim
	rs80358044	C/T	0,49	1964	c.4675+1G>C	Patogênica	Éxon 14	Sítio de splicing	na	Sim
6	rs1060915	A/G	0,48	192	c.4308T>C	Benigna	Éxon 11	Sinônima	p.Ser1436=	Não avaliado
÷	rs16942	T/C	0,50	499	c.3548A>G	Benigna	Éxon 10	Missense	p.Lys1183Arg	Sim
	rs2227945	T/C	0,46	531	c.3418A>G	Benigna	Éxon 10	Missense	p.Ser1140Gly	Sim
	rs16941	T/C	0,50	550	c.3113A>G	Benigna	Éxon 10	Missense	p.Ser1140Gly	Não
	rs799917	G/A	0,99	307	c.2612C>T	Benigna	Éxon 10	Missense	p.Pro871Leu	Não avaliado
	rs16940	A/G	0,47	597	c.2311T>C	Benigna	Éxon 9	Sinônima	p.Leu771=	Não avaliado
	rs1799949	G/A	0,49	419	c.2082C>T	Benigna	Éxon 10	Sinônima	p.Ser694=	Não avaliado
	rs8176144	TA/T	0,52	300	c.548-58delT	Benigna	Íntron 7	na	na	Não avaliado
o –	rs799917	G/A	0,56	1472	c.2612C>T	Benigna	Éxon 10	Missense	p.Pro871Leu	Não avaliado

206	rs3092994	C/T	1,00	1588	c.5152+66G>A	Benigna	Íntron 18	na	na	Não avaliado
	rs8176234	T/C	1,00	1481	c.4987-68A>G	Benigna	Íntron 16	na	na	Não avaliado
	rs8176233	T/C	1,00	1197	c.4987-92A>G	Benigna	Íntron 16	na	na	Não avaliado
	rs1799966	T/C	1,00	1822	c.4837A>G	Benigna	Éxon 15	Missense	p.Ser1613Gly	Não avaliado
	rs1060915	A/G	1,00	709	c.4308T>C	Benigna	Éxon 12	Sinônima	p.Ser1436=	Não avaliado
	rs16942	T/C	1,00	1477	c.3548A>G	Benigna	Éxon 10	Missense	p.Lys1183Arg	Sim
	rs16941	T/C	1,00	2137	c.3113A>G	Benigna	Éxon 10	Missense	p.Glu1038Gly	Sim
	rs799917	G/A	1,00	1234	c.2612C>T	Benigna	Éxon 10	Missense	p.Pro871Leu	Não avaliado
	rs16940	A/G	1,00	2244	c.2311T>C	Benigna	Éxon 9	Sinônima	p.Leu771=	Não avaliado
	rs1799949	G/A	1,00	1692	c.2082C>T	Benigna	Éxon 10	Sinônima	p.Ser694=	Não avaliado
	rs80356898	G/A	0,46	3178	c.1687C>T	Patogênica	Éxon 11	Sem sentido	p.Gln563Ter	Sim
	rs8176144	TA/T	1,00	278	c.548-58delT	Benigna	Íntron 7	na	na	Não avaliado
215	rs3092994	C/T	0,63	2902	c.5152+66G>A	Benigna	Íntron 18	na	na	Não avaliado
	rs8176234	T/C	0,59	2935	c.4987-68A>G	Benigna	Íntron 16	na	na	Não avaliado
	rs8176233	T/C	0,57	2336	c.4987-92A>G	Benigna	Íntron 16	na	na	Não avaliado
	rs1799966	T/C	0,64	2288	c.4837A>G	Benigna	Éxon 15	Misssense	p.Ser1613Gly	Sim
	rs1060915	A/G	0,48	2350	c.4308T>C	Benigna	Éxon 11	Sinônima	p.Ser1436=	Não
	rs16942	T/C	0,46	2015	c.3548A>G	Benigna	Éxon 10	Misssense	p.Lys1183Arg	Sim
	rs16941	T/C	0,49	2231	c.3113A>G	Benigna	Éxon 10	Misssense	p.Glu1038Gly	Sim
	rs799917	G/A	0,49	1546	c.2612C>T	Benigna	Éxon 10	Misssense	p.Pro871Leu	Sim
	rs16940	A/G	0,50	2561	c.2311T>C	Benigna	Éxon 9	Sinônima	p.Leu771=	Sim
	rs1799949	G/A	0,49	1853	c.2082C>T	Benigna	Éxon 10	Sinônima	p.Ser694=	Sim
	nd	TA/T	1,00	1628	c.548-58delT	Benigna	Íntron 7	na	na	Não avaliado
228	rs3092994	C/T	0,58	1465	c.5152+66G>A	Benigna	Íntron 18	na	na	Não analisado
	rs8176234	T/C	0,53	1811	c.4987-68A>G	Benigna	Íntron 16	na	na	Não analisado
	rs8176233	T/C	0,50	1480	c.4987-92A>G	Benigna	Íntron 16	na	na	Não analisado
	rs1799966	T/C	0,59	1880	c.4837A>G	Benigna	Éxon 15	Missense	p.Ser1613Gly	Sim
	rs1060915	A/G	0,49	874	c.4308T>C	Benigna	Éxon 11	Sinônima	p.Ser1436=	Não analisado
	rs16942	T/C	0,51	1961	c.3548A>G	Benigna	Éxon 10	Missense	p.Lys1183Arg	Sim
	rs16941	T/C	0,50	1742	c.3113A>G	Benigna	Éxon 10	Missense	p.Glu1038Gly	Sim
	rs799917	G/A	0,47	1197	c.2612C>T	Benigna	Éxon 10	Missense	p.Pro871Leu	Não
	rs16940	A/G	0,50	2322	c.2311T>C	Benigna	Éxon 9	Sinônima	p.Leu771=	Não analisado
	rs1799949	G/A	0,48	1621	c.2082C>T	Benigna	Éxon 10	Sinônima	p.Ser694=	Não analisado
	rs8176144	TA/T	0,49	352	c.548-58delT	Benigna	Íntron 7	na	na	Não analisado

ID – Sequencia identificadora da variante no banco de dados dbSNP; nd – Não disponível; na – Não se aplica; DP – Cobertura da variante.

Anexo 9.34 – Critérios clínicos da National Comprehensive Cancer Network para o teste genético.

NCCN Network[®]

NCCN Guidelines Version 2.2015 Breast and/or Ovarian Cancer Genetic Assessment

NCCN Guidelines Index Genetics Table of Contents Discussion

CRITERIA FOR FURTHER GENETIC RISK EVALUATION^a

An individual with a cancer diagnosis meeting any of the

- following:
- A known mutation in a cancer susceptibility gene within the family
- Early-age-onset breast cancer^b
- Triple negative (ER-, PR-, HER2-) breast cancer ≤60 y
- Two breast cancer primaries^c in a single individual
- · Breast cancer at any age, and
- ▶ ≥1 close blood relative^d with breast cancer ≤50 y, or
 ▶ ≥1 close blood relative^d with invasive ovarian^e
- cancer at any age, or ► ≥2 close blood relatives^d with breast cancer and/or pancreatic cancer at any age, or
- From a population at increased risk[†]
- Personal and/or family history of three or more of the following (especially if early onset): pancreatic cancer, prostate cancer (Gleason score ≥7); sarcoma, adrenocortical carcinoma, brain tumors, endometrial cancer; thyroid cancer, kidney cancer, dermatologic manifestations^{g,h} and/or macrocephaly, hamartomatous polyps of gastrointestinal (GI) tract;^h diffuse gastric cancerⁱ (can include multiple primary cancer in same individual)
- Invasive ovarian^e cancer
- Male breast cancer

- An individual with no personal history of cancer
- but with a family history of any of the following:[†] • A known mutation in a cancer susceptibility gene
- within the family
- ≥2 breast cancer primaries in a single individual^d
- ≥2 individuals with breast cancer primaries on the same side of family^d
- ≥1 invasive ovarian^e cancer primary
- First- or second-degree relative^d with breast cancer ≤45 y
- Personal and/or family history of three or more of the following (especially if early onset): pancreatic cancer, prostate cancer (Gleason score ≥7), sarcoma, adrenocortical carcinoma, brain tumors, endometrial cancer; thyroid cancer, kidney cancer, dermatologic manifestations^{g,h} and/or macrocephaly, hamartomatous polyps of GI tract;^h diffuse gastric cancerⁱ (can include multiple primary cancers in same individual)
 Male breast cancer

- ^aThe criteria for further risk evaluation and genetic testing are not identical. For the purposes of these guidelines, invasive and ductal carcinoma in situ breast cancers should be included. The maternal and paternal sides of the family should be considered independently for familial patterns of cancer.
 ^bClinically use age ≤50 y because studies define early onset as either ≤40 or ≤50 y.
- ^cTwo breast cancer primaries includes bilateral (contralateral) disease or two or more clearly separate ipsilateral primary tumors either synchronously or asynchronously.
- ^dClose blood relatives include first-, second-, and third-degree relatives. (See BR/OV-B).
- ^eIncludes fallopian tube and primary peritoneal cancers. *BRCA*-related ovarian cancers are associated with epithelial non-mucinous histology. Other cancer genetic syndromes may be associated with mucinous ovarian cancer. Non-epithelial ovarian cancer may be associated with PJS and possibly other cancer syndromes. Ovarian/fallopian tube/primary peritoneal cancers are component tumors of Lynch syndrome; be attentive for clinical evidence of this syndrome. <u>See</u> <u>NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal</u>.
- ^fFor populations at increased risk, requirements for inclusion may be modified (eg, individuals of Ashkenazi Jewish descent with breast or ovarian or pancreatic cancer at any age).

^gFor dermatologic manifestations, see COWD-1.

- ^hFor hamartomatous colon polyps in conjunction with breast cancer and hyperpigmented macules of the lips and oral mucosa, *STK11* testing should be considered. <u>See NCCN Guidelines for Genetic/Familial High-Risk Assessment:</u> <u>Colorectal</u>—Peutz-Jeghers syndrome. Melanoma has been reported in some HBOC families.
- ⁱFor lobular breast cancer with a family history of diffuse gastric cancer, *CDH1* gene testing should be considered.
- ^jFor further details regarding the nuances of genetic counseling and testing, see BR/OV-A.

Anexo 9.35 - Padrão de bandas esperados para as PCR *multiplex* para os sete genes relacionados ao câncer hereditário de mama. A - Mix 1 gene *ATM*; B - Mix 2 gene *ATM*; C - Mix 3 gene *ATM*; D - Mix 4 gene *ATM*; E - Mix 5 gene *ATM*; F - Mix 6 gene *ATM*; G - Mix 7 gene *ATM*; H - Mix 8 gene *ATM*; I - Mix 9 gene *ATM*; J - Mix 1 *CDH1*; K - Mix 2 *CDH1*; L - Mix 1 gene *PALB2*; M - Mix 2 gene *PALB2*; N - Mix 1 gene *PTEN*; O - Mix 2 gene *PTEN*; P - Mix gene *RAD51D*; Q - Mix gene *TP53*. Marcador de peso molecular 1 Kb Plus DNA Ladder (Invitrogen[™]).