

Ministério da Saúde Instituto Nacional de Câncer Coordenação de Pós-graduação

INSTITUTO NACIONAL DE CÂNCER Pós-Graduação em Oncologia

Andressa Ferraz Pinto Marques

Estudo da Contribuição da Calpaína 10 na Agressividade do Câncer de Mama

Orientadora: Prof. Dra. Stephany Cristiane Corrêa Co-orientadora: Prof. Dra. Eliana Saul Furquim Werneck Abdelhay

> **RIO DE JANEIRO** 2018

Ministério da Saúde Instituto Nacional de Câncer Coordenação de Pós-graduação

INSTITUTO NACIONAL DE CÂNCER Pós-Graduação em Oncologia

Andressa Ferraz Pinto Marques

Estudo da Contribuição da Calpaína 10 na Agressividade do Câncer de Mama

Dissertação apresentada ao Instituto Nacional de Câncer como parte dos requisitos para obtenção do título de Mestre em Oncologia

Orientadora: Prof. Dra. Stephany Cristiane Corrêa Co-orientadora: Prof. Dra. Eliana Saul Furquim Werneck Abdelhay

RIO DE JANEIRO 2018

M357e Marques, Andressa Ferraz Pinto.

Estudo da contribuição da Calpaína 10 na agressividade do câncer de mama / Andressa Ferraz Pinto Marques. – Rio de Janeiro, 2018. 91 f.: il. color.

Dissertação (Mestrado em Oncologia) – Instituto Nacional de Câncer José Alencar Gomes da Silva, 2018.

Orientador: Stephany Cristiane Corrêa. Co-orientador: Eliana Saul Furquim Werneck Abdelhay.

1. Neoplasias da Mama. 2. Calpaína 10. 3. Agressividade Tumoral. I. Corrêa, Stephany Cristiane (Orient.). II. Abdelhay, Eliana Saul Furquim Werneck (Co-orient.). III. Instituto Nacional de Câncer José Alencar Gomes da Silva. IV. Título.

CDD 616.99449

Ministério da Saúde Instituto Nacional de Câncer Coordenação de Pós-graduação

INSTITUTO NACIONAL DE CÂNCER Pós-Graduação em Oncologia

Andressa Ferraz Pinto Marques

Estudo da Contribuição da Calpaína 10 na Agressividade do Câncer de Mama

ORIENTADORA: Prof. Dra. Stephany Cristiane Corrêa CO-ORIENTADORA: Prof. Dra. Eliana Saul Furiquim Werneck Abdelhay

Aprovada em: 01/03/2018

EXAMINADORES:

Prof. Dr.	João Paulo de Biaso Viola
Prof. Dr.	Julio Cesar Madureira de Freitas Junior
Prof. Dr.	André Luiz Mencalha
Prof. Dr.	Gabriel Nestal de Moraes - Suplente interno
Prof. Dr.	Robson de Queiroz Monteiro - Suplente externo

RIO DE JANEIRO 2018

Aos profissionais, pacientes familiares e amigos, que lutam diariamente para vencer esta doença.

AGRADECIMENTOS

Não há um dia sequer que eu não tenha agredecido a Deus por todos os caminhos que Ele vem traçando em minha vida. "Portanto, dEle, por Ele e para Ele são todas as coisas. A Ele seja a glória perpetuamente! Amém." (Rm 11:36)

Sou imensamente grata a minha família, principalmente minha mãe Débora que nunca mediu esforços para me dar tudo e mais um pouco que eu poderia ter, acho que nada do que eu falar irá expressar a gratidão que eu tenho. Obrigada também a minha irmã Samila, responsável por eu não saber ser sozinha, porque sempre fomos juntas, e isso é tão tão importante pra mim que acho que não saberia viver sem você. Quero agradecer ao meu irmão Ricardo, apesar de não morarmos juntos sempre se fez presente. À minha avó Eulália, que acredita fielmente que vou encontrar a cura do câncer, ao meu avô Vavá que apesar dos sustos, se sai muito bem na luta contra esta doença. Ao meu pai, meus avós paternos, Mario e Ruth e aos meus tios, por me amarem e me apoiarem.

Um agradecimento mais que especial para minha orientadora, Dra. Stephany que cumpriu muito bem o seu posto de mãe científica! Sou tão grata por ter me acolhido no LCT de braços abertos, mesmo quando eu apresentei minhas frustrações com a pesquisa e toda minha dificuldade de formação científica. Acho que nesses anos que passamos juntas amadurecemos bastante e eu hoje eu só cheguei até aqui, porque eu tive você ao meu lado, me ensinando, me apoiando e até mesmo nos momentos de "chibata". Quero agradecer também à Dra. Eliana que me apresentou as Calpaínas e me confiou este trabalho, e que me ajudou muito, no suporte financeiro do projeto, nas dicas, nos debates e principalmente no período da seleção para o Doutorado. E claro, à Dra. Renata que praticamente me adotou também, me ajudando nos experimentos, dando seus conselhos e ensinamentos.

Não menos importante, quero agradecer ao meu noivo, Eduardo, por ter acreditado em mim mais que eu mesma, por aturar todas as minhas crises "existenciais". Obrigada por tudo, tudo mesmo! Caminhar ao seu lado foi a melhor escolha que eu fiz na minha vida!!

Um parágrafo especial pras minhas âncoras, Tamires e Marcella. Não importa quantos quilômetros de distância nos separe, isso é irrelevante quando sei que vocês estão ao meu lado. Obrigada por entenderem as inúmeras vezes que furei um compromisso com vocês porque fiquei até tarde no laboratório, porque tinha que trabalhar no dia seguinte ou porque fiquei em casa pra escrever. Vocês sempre me apoiaram em tudo.

E não poderia deixar de agradecer ao grupo mais lindo do INCA, essa galera animada do LCT, obrigada por fazer meus dias mais leves, obrigada por me aturarem de bom ou mau humor, com ou sem TPM. Obrigada Taisnara, meu anjo da guarda mineiro que dividiu choros e risadas ao longo destes 2 anos. Obrigada Mari, minha irmã científica, pelo apoio, carinho nos dias bons e ruins. Obrigada Pedro e Mayara por dividirem comigo todas as fases do mestrado, desde o processo de seleção até aqui na defesa. Obrigada Everton por sempre trazer chocolate e coisas gostosas pro lanche, apesar de testar nossa paciência todos os dias. Obrigada Bruno e Gerson por me receberem bem no laboratório e Lilian, que sempre aparece com seu sorriso alegre e nos traz tranquilidade.

Queria agradecer a todos da pós graduação, secretaria, corpo docente e corpo discente, aos amigos, colegas e funcionários que me ajudaram de alguma forma, desde os cafés da copa (obrigada Seu Domingos!), os empréstimo de caderno de alguma disciplina até nos momentos de desespero para fazer um experimento. Quero agradecer em especial à Dra. Karina Lani por toda ajuda com os experimentos de citometria de fluxo.

Não poderia deixar de agradecer ao meu amado filho de quatro patas, meu ursinho preto e branco, por todo o carinho de sempre, por ser meu companheiro de escrita madrugadas à dentro e por mostrar o que é um amor incondicional! Te amo muito Thor!

"Tem gente que entra na nossa vida de forma providencial e se encaixa naquela história que gosto de imaginar: surpresas que Deus embrulha pra presente e nos envia no anonimato. Surpresas que só sabemos de onde vem porque chegam com o cheiro dEle no papel" (Ana Jácomo).

"A felicidade às vezes é uma benção – mas geralmente é uma conquista. O instante mágico do dia nos ajudar a mudar, nos faz ir em busca de nossos sonhos."

> Nas margens do Rio Piedra eu sentei e chorei Paulo Coelho, 1994

LISTA DE TABELAS

Tabela 1.1 Alterações na expressão de calpaínas e o desenvolvimento tumoral19
Tabela 4.1 Sequência dos iniciadores utilizados no estudo
Tabela 4.2 Sequência dos iniciadores utilizados no estudo32
Tabela 5.1 As 10 vias de sinalização enriquecidas a partir dos genes
diferencialmente expressos da linhagem HCC-1954 silenciada para Calpaína
1042
Tabela 5.2 Vias de sinalização enriquecidas a partir dos genes diferencialmente
expressos da linhagem MDA-MB-231 silenciada para Calpaína 10 42
Tabela 5.3 Lista dos 10 fatores de transcrição potencialmente reguladores dos
genes diferencialmente expressos no modelo HER2 ⁺ silenciado para Calpaína
10
Tabela 5.4 Lista dos 10 fatores de transcrição potencialmente reguladores dos
genes diferencialmente expressos no modelo Triplo-Negativo silenciado para
Calpaína 10
Tabela 5.5 Vias de sinalização enriquecidas a partir dos 34 miRNAs
diferencialmente expressos da linhagem HCC-1954 silenciada para Calpaína
10
Tabela 5.6 Vias de sinalização enriquecidas a partir dos 3 miRNAs diferencialmente
expressos da linhagem MDA-MB-231 silenciada para Calpaína 10 52
Tabela 5.7 Vias de sinalização enriquecidas a partir dos 76 miRNAs
diferencialmente expressos da linhagem HCC-1954 silenciada para Calpaína
1053
Tabela 5.8 Vias de sinalização enriquecidas a partir dos 24 miRNAs
diferencialmente expressos da linhagem MDA-MB-231 silenciada para Calpaína
10

Tabela 5.9 Lista dos 10 fatores de transcrição potencialmente reguladores dos 76
miRNAs diferencialmente expressos no modelo HER2 ⁺ silenciado para Calpaína
1054
Tabela 5.10 Lista dos 10 fatores de transcrição potencialmente reguladores dos 24
miRNAs diferencialmente expressos no modelo Triplo-Negativo silenciado para
Calpaína 10

LISTA DE FIGURAS

Figura 1.1 Anatomia da glândula mamária humana2
Figura 1.2 Progressão natural do Câncer de Mama3
Figura 1.3 Classificação dos subtipos moleculares de Câncer de Mama9
Figura 1.4 Estrutura básica do receptor HER213
Figura 1.5 Vias de sinalização HER214
Figura 1.6 Estrutura e domínios das calpaínas típicas e atípicas17
Figura 5.1 Controle de qualidade das amostras de sobrenadante das culturas
celulares HCC-1954 e MDA-MB-23134
Figura 5.2 Identificação da expressão das Calpaínas 10, 1 e 2 no sobredante da
cultura celular das linhagens HCC-1954 e MDA-MB-23134
Figura 5.3 Avaliação da confluência celular das linhagens HCC-1954 e MDA-MB-
231 para realização do experimento de transfecção de siRNA por lipofectamina36
Figura 5.4 Padronização da concentração de Lipofectamina 3000 para realização do
experimento de transfecção 37
Figura 5.5 Eficiência de transfecção das linhagens HCC-1954 e MDA-MB-23138
Figura 5.6 Taxa de silenciamento da CAPN10 após a transfecção de siRNA39
Figura 5.7 Perfil de expressão gênica global das linhagens silenciadas para
Calpaína 1040
Figura 5.8 Análise comparativa in sílico pelo diagrama de Venn dos modelos de
HER2 ⁺ (HCC-1954) e Triplo-Negativo (MDA-MB-231) silenciados para Calpaína
1041
Figura 5.9 Mapa de interação livre (network) gerado a partir dos genes
diferencialmente expressos da linhagem HCC-1954 si <i>CAPN10</i>
Figura 5.10 Mapa de interação livre (network) gerado a partir dos genes
diferencialmente expressos da linhagem MDA-MB-231 siCAPN10

Figura 5.11 Análise quantitativa de genes envolvidos no processo de Transição
Epitélio-Mesênquimal após o silenciamento da Calpaína 10 em ambos modelos in
<i>vitro</i> HER2 ⁺ e Triplo-Negativo
Figura 5.12 Análise quantitativa de genes envolvidos na regulação da apoptose e
proliferação celular após o silenciamento da Calpaína 10 em ambos modelos in vitro
$HER2^+$ e Triplo-Negativo
Figura 5.13 Análise quantitativa dos genes codificadores das calpaínas típicas 1 e 2
após o silenciamento da Calpaína 10 em ambos modelos in vitro HER2 ⁺ e Triplo-
Negativo 48
Figura 5.14 Perfil de expressão de IncRNAs e miRNAs das linhagens HCC-1954 e
MDA-MB-231 silenciadas para Calpaína 10 51
Figura 5.15 Perfil de expressão de miRNAs das linhagens HCC-1954 e MDA-MB-
231 silenciadas para para Calpaína 1053
Figura 5.16 NFkB como regulador dos miRNAs diferencialmente expressos do
modelo HER2 ⁺ silenciado para Calpaína 10 55
Figura 5.17 NFkB como regulador dos miRNAs diferencialmente expressos do
modelo Triplo-Negativo silenciado para Calpaína 10 56
Figura 5.18 c-MYC como regulador dos miRNAs diferencialmente expressos do
modelo HER2 ⁺ silenciado para Calpaína 1056
Figura 5.19 c-MYC como regulador dos miRNAs diferencialmente expressos do
modelo Triplo-Negativo silenciado para Calpaína 1057
Figura 6.1 Modelo proposto ao compilar os resultados obtidos neste trabalho70

LISTA DE ABREVIATURAS

Abmax: absorção máxima

Als: Inibidores de aromatase, do inglês, Aromatase inhibitors

AS: Antisenso

ASCO/CAP: American Society of Clinical Oncology/College of American

Pathologists

Asn: asparagina

ATCC: American Tissue Culture Collection

BSA: soro de albumina bovina, do inglês, *bovine serum albumin*

Ca²⁺: íons cálcio

cDNA: DNA complementar

CM: câncer de mama

cm²: centímetro quadrado

CO₂: dióxido de carbono

CpG: citosina-fosfato-guanina, do inglês, cytosine-phosphate-guanine

cRNA: RNA complementar

Ct: ciclo de threshold

C-terminal: Carboxi terminal

CTRL: controle

Cys: cisteína, do inglês, cysteine

DE: diferencialmente expressos

dil: diluição

DMT2: Diabetes Mellitus Tipo 2

DNA: ácido desoxirribonucleico

dNTP: desoxirribunucleotídeos trifosfato, do inglês, deoxyribonucleotide

triphosphates

DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen

dsRNA: RNA dupla fita, do inglês, double-stranded RNA

dUTPs: deoxirribunucleotídeos trifosfato, do inglês, deoxyuridine triphosphates

EDTA: ácido etilenodiamino tetra-acético

Emmax: emissão máxima

FC: do inglês, *fold-change*

FISH: hibridização fluorescente *in situ*, do inglês *fluorescent in situ hybridization* **Gly:** glicina, do inglês, *glycine* h: hora

HER2+: câncer de mama que apresentam superexpressão do receptor HER2.

HER2-ECD: domínio extracelular de HER2

HER2-ICD: domínio intracelular de HER2

His: histidina

IARC: International Agency for Research on Cancer

IHQ: imunohistoquímica

INCA: Instituto Nacional de Câncer

ITQ: Inibidor de tirosina-quinase

KCI: cloreto de potássio

kDa: Kilodaltons

kg: quilograma

L: litro

LC-MS: cromatográfica líquida/espectrometria de massas do inglês, *liquid chromatography/mass spectrometry*

IncRNAs: RNAs longos não codificantes, do inglês long non-coding RNA

M: molar

M1: intensidade de autofluorescência

M2: intensidade de fluorescência emitida por célular marcadas

MIF: mediana de intensidade de fluorescência

min: minuto

miRNA: do inglês, micro-RNA

NaCI: Cloreto de sódio

ncRNAs: RNAs não codificantes, do inglês, non-coding RNA

(NH₄)₃PO₄: Fosfato de amônio

N-terminal: Amino terminal

O₂: oxigênio

°C: grau Celsius

pb: par de base

PBS: Tampão fosfato-salino, do inglês, phosphate buffered saline

pH: potencial hidrogeniônico

RIN: número de integridade do RNA, do inglês, RNA integrity number

RISC: do inglês, RNA-induced silencing complex

RNA: ácido ribonucleico

RNAm: RNA mensageiro

rpm: rotação por minuto

RPMI: Roswell Park Memorial Institute

RT-qPCR: reação em cadeia da polimerase quantitativa em tempo real, do inglês, *real time quantitative polymerase chain reaction*

s: segundo

S: senso

sc: scramble

SCLC: câncer de pulmão de pequenas células, do inglês, small cell lung cancer

SFB: soro fetal bovino

si: silenciado

siCAPN10: silenciado para o transcrito de calpaína10

siRNA: RNA de interferência, do inglês, small interfering RNA

SLE: lúpus eritromatoso sistêmico, do inglês, systemic lupus erythematosus

TA: temperatura ambiente

TEM: transição epitélio-mesenquimal

TN: câncer de mama do subtipo triplo negativo

TK: Tirosina-quinase (cinase), do inglês tyrosine kinase

Tris: Tris (hidroximetil) aminometano

U: unidade de enzima

V: volt

x g: vezes gravidade

39x: 39 vezes

LISTA DE GENES E PROTEÍNAS

AKT: proteína quinase serina/treonina

BCL-2: gene que codifica a proteína Bcl-2.

BRCA1: gene que codifica o supressor tumoral câncer de mama 1, do inglês, *breast* cancer 1 early onset

BRCA2: gene que codifica o supressor tumoral câncer de mama 2, do inglês, *breast* cancer 2

CAN1: proteína calpaína 1

CAN10: proteína calpaína 10

CAN15: proteína calpaína 15

CAN2: calpaína 2

CAN3: calpaína 3

CAPN10: gene codificador da calpaína 10

CAPN3: gene codificador da calpaína 3

CAST: gene codificador da calpastatina

CCND1: gene codificador da ciclina D1

CDH1: gene codificador de E-caderina, do inglês, cadherin 1

CDH2: gene codificador de N-caderina do inglês, cadherin 2

CDH3: gene codificador de caderina 3 do inglês, cadherin 3

CDKN2A: gene codificador do inibidor de quinase dependentes de ciclina 2A do inglês, Cyclin Dependent Kinase Inhibitor 2A

CHEK2: gene codificador da quinase do Ponto de Checagem 2, do inglês,

Checkpoint Kinase 2

c-MYC: proto-oncogene MYC

Dvl: do inglês, dishevelled

ECAD: E-caderina

EGFR: receptor do fator de crescimento epidérmico humano, do inglês, *epidermal growth factor receptor*

EMS1: oncogene EMS1

ER: receptor de estrógeno

ERBB2: gene codificador do receptor tirosina quinase HER2, do inglês, *Erb-B2 Receptor Tyrosine Kinase 2*

ERK: quinases regulada por sinal extracelular, do inglês, *extracellular signalregulated kinases* **FGF3:** gene codificador do fator de crescimento fibroblástico 3, do inglês, *Fibroblast Growth Factor 3*

FZD1: gene codificador do receptor Frizzled 1

GAPDH: gliceraldeido-3-fosfato desidrogenase

GnRH: hormônio liberador de gonadotrofina, do inglês, *Gonadotropin-Releasing Hormone*

HER1: receptor tipo 1 do fator de crescimento epidérmico humano, do inglês, *human epidermal growth factor receptor 1*

HER2: receptor tipo 2 do fator de crescimento epidérmico humano, do inglês, *human epidermal growth factor receptor 2*

HER3: receptor tipo 3 do fator de crescimento epidérmico humano, do inglês, *human epidermal growth factor receptor 3*

HER4: receptor tipo 4 do fator de crescimento epidérmico humano, do inglês, *human epidermal growth factor receptor 4*

HOXA5: gene regulador do desenvolvimento embrionário A5, do inglês, *Homeobox A5*

HRP: enzima Horseradish peroxidase

IgG: imunoglobulina G

ΙΚβ:inibidor do fator nuclear kappa B, do ingles inhibitor of nuclear factor kappa B kinase

MAPK: Proteína-quinases ativada por mitógeno, do inglês, *mitogen activated protein kinases*

MMP: Metaloproteinase

MMP16: metaloproteínase 16

NCAD: N-caderina

NF-κB: factor nuclear kappa B do inglês, nuclear factor kappa B

p53: proteína p53

PI3k: fosfatidilinositol 3-quinase do inglês, phosphatidylinositol-3-kinases

PKC: proteína quinase C, do inglês, protein kinase C

PR: receptor de progesterona

PTEN: gene homólogo de fosfatase e tensina, *do inglês, phosphatase and tensin homolog*

RASSF1A: gene codificar de Ras, do inglês, Ras Association Domain Family

Member 1

SLUG: gene codificador do fator de transcrição Slug

SNAIL: gene codificador do fator de transcrição Snail
 SNCG: gene que codifica a sinucleína gama, do inglês, synuclein gamma
 TCF-4: gene que codifica o fator de transcrição TCF-4 do inglês, transcription factor
 4

TP53: gene que codifica o supressor tumoral p53

YY1: gene que codifica o fator de transcrição Yin Yang 1.

WISP2: gene que codifica a proteína WNT2

Ministério da Saúde Instituto Nacional de Câncer Coordenação de Pós-graduação

INSTITUTO NACIONAL DE CÂNCER

Estudo da Contribuição da Calpaína 10 na Agressividade do Câncer de Mama

RESUMO

DISSERTAÇÃO DE MESTRADO

Andressa Ferraz Pinto Marques

O câncer de mama (CM) é o mais frequente entre as mulheres e possui alta taxa de mortalidade, sendo estratificado nos subtipos moleculares LuminalA, LuminalB, HER2⁺ e Triplo-Negativo (TN). Esta doença apresenta uma alta heterogeneidade, e a compreensão molecular da mesma se faz necessária. Para tal, um estudo proteômico conduzido por nosso grupo identificou altos níveis de expressão de calpaína 10 (CAN10) no plasma sanguíneo de pacientes HER2-, sendo tal expressão também observada nas linhagens celulares MDA-MB-231 (TN) e HCC-1954 (HER2⁺). Calpaínas são endoproteases capazes de clivar diversos substratos, sendo as calpaínas 1 e 2 (CAN1 e CAN2) as majoritariamente estudadas. Assim, pouco é sabido acerca da função da CAN10 em geral e principalmente no CM. Desta forma, o presente estudo visou identificar a contribuição da CAN10 na agressividade desta doença. Para isto, foi realizado o silenciamento transiente desta proteína nos modelos in vitro que a superexpressam (HCC1954si e MDA-MB-231si). Os perfis de expressão gênica global das linhagens silenciadas e seus respectivos controles foram identificados, através do ensaio de microarranjo, e comparados, evidenciando diversos genes diferencialmente expressos (DE) em cada modelo silenciado. Análises in silico permitiram verificar que não há grande sobreposição dos genes DE, demonstrando que a CAN10 possui alvos diferentes entre os modelos. A identificação in silico de vias de sinalização, interações e potenciais reguladores dos genes DE de cada modelo silenciado foi realizada através do software Metacore[®]. Estas análises evidenciaram que, apesar da possível ativação de diferentes vias de sinalização, os processos de transição epitélio-mesênquimal, ativação de proliferação e inibição de apoptose estão relacionados com CAN10 no CM. Desta forma, validamos, através da quantificação por PCR quantitativo em tempo real, alguns membros de vias envolvidas com estes processos, bem como os níveis transcricionais das CAPNI e CAPN2, após evidências sugerirem que as calpaínas podem interagir entre elas. A fim de correlacionar a expressão/atividade de CAN10 e o perfil de expressão global obtido com microarranjo, foi realizada uma análise in sílico dos possíveis reguladores destes transcritos DE. Nossos resultados apontaram os fatores de transcrição NFκB, c-Jun (AP1), c-Fos e c-Myc, como os mais representativos. Além destes achados, identificamos alterações significativamente representativas na expressão de genes relacionados com a regulação epigenética, como RNAs longos não codificantes (lncRNAs) e microRNAS (miRNAs). A análise in silico das vias de sinalização dos miRNAs encontrados DE nas linhagens HCC1954si e MDA-MB-231si identificou vias relacionadas com a agressividade tumoral do CM, ratificando a relação da CAN10 com fenótipos agressivos de CM. A regulação destes miRNAs DE também se dá, com grande representatividade, pelos fatores de transcrição NFkB e c-Myc, por análise in silico. Em conclusão, sugerimos que a CAN10 pode contribuir com a agressividade do CM, e, esta contribuição possívelmente está relacionada com a regulação da expressão gênica.

Ministério da Saúde Instituto Nacional de Câncer Coordenação de Pós-graduação

INSTITUTO NACIONAL DE CÂNCER

Study of calpain 10 role in breast cancer aggressiveness

ABSTRACT

DISSERTAÇÃO DE MESTRADO

Andressa Ferraz Pinto Marques

Breast cancer (BC) is the most common among women worldwide, it stratified into Luminal-A, Luminal-B, HER2 positive (HER2+) and Triple-negative (TN) molecular subtypes. This disease presents a high heterogeneity intra/extra-subtypes, requiring more studies to BC understanding. A proteomic study performed in our laboratory reported high levels of calpain 10 (CAN10) in the blood plasma of patients classified as HER2- tumors, and this finding was confirmed in biopsies of these patients. Also, it has been shown that the in vitro models of HER2+ (HCC-1954) and TN (MDA-MB-231) presented increased CAN10 expression. Calpains are cysteine proteinases capable of several substrates cleavage, including HER2 cleavage by calpains 1 and 2 (CAN1 and CAN2), however, CAN10 function and activity is still uncovered in BC. In order to verify gene expression changes that may be related with CAN10 in BC context, we performed a transient silencing with siRNA approach in *in vitro* models that overexpressed this protein (HCCsiCAPN10 and 231siCAPN10) and the analysis of transcriptome profile identified several differentially expressed (DE) genes when compared with respective controls. Comparison of the DE genes suggests that CAN10 acts on different signaling pathways and biological processes in the HER2 + and TN models. In addition, we verified that CAN10 could possibly be related to biological processes of epithelial-mesenchymal transition, migration, invasion, proliferation and apoptosis. Thus, we meansured by RT-qPCR, some pathways members involved with these processes, as well as the transcriptional levels of CAN 1 and CAN2, after reported evidence suggested that calpains may interact among them. All transcriptional changes observed after silencing of CAN10 in the HCCsiCAPN10 and 231siCAPN10 cells represent a possible secondary effect, thus, it was essential to identify the possible regulators of these transcripts in order to understand how CAN10 would be able to interfere with these changes. Among the possible transcription factors that would probably be able to interact with the HCCsiCAPN10 and 231siCAPN10 DE genes, the NF-κB, c-Jun (AP1), c-Fos and c-Myc regulators have already been described as targets of CAN1 and CAN2. Therefore, we hypothesized that CAN10 could influence the expression of DE transcripts, through the interaction with regulators involved in the activation/repression of these genes. In addition to these findings, it was also possible to identify significantly representative changes in the expression of genes related to epigenetic regulation, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), leading to the questioning whether CAN10 also influence gene expression through epigenetic regulation. Analysis the signaling pathways of miRNAs DE in HCCsiCAPN10 and 231 siCAPN10 cells identified pathways related to BC aggressiveness. Interestingly, these miRNAs could also be regulated by NF κ B e c-Myc, suggesting that besides the probable involvement of this protein with regulation of gene transcription, CAN10 possibly also involved with the epigenetic regulation in BC.

SUMÁRIO

1. INTRODUÇÃO	1
1.1 Câncer de Mama	1
1.1.1 Epidemiologia e progressão tumoral	1
1.1.2 Etiologia	3
1.1.3 Classificação	7
1.1.4 Tratamento	9
1.1.5 Heterogeneidade x Caracterização do CM	11
1.1.5.1 Receptor HER2	13
1.2 Calpaínas	15
1.2.1 Calpaínas e Câncer	18
2. JUSTIFICATIVA	20
3. OBJETIVOS	22
3.1. Objetivo principal	22
3.2. Objetivos secundários	22
4. METODOLOGIA	23
4.1 Cultura de células	23
4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar	ntes de
4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular	ntes de 23
 4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular 4.2.1 Western Blot 	ntes de 23 24
 4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular 4.2.1 Western Blot 4.3 Silenciamento gênico da Calpaína 10 	ntes de 23 24 25
 4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular 4.2.1 Western Blot 4.3 Silenciamento gênico da Calpaína 10 4.3.1 Quantificação da taxa de silenciamento da Calpaína 10 	ntes de 23 24 25 27
 4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular 4.2.1 Western Blot 4.3 Silenciamento gênico da Calpaína 10	ntes de 23 24 25 27 27
 4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular	ntes de 23 24 25 27 27 28
 4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular	ntes de 23 24 25 27 27 28 28
 4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular	ntes de 23 24 25 27 27 28 28 28
 4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular	ntes de 23 24 25 27 27 28 28 28 28
 4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular	ntes de 23 24 25 27 27 28 28 28 28 28 28 23
 4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular	ntes de 23 24 25 27 27 28 28 28 28 28 28 23 31
 4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular	ntes de 23 24 25 27 27 28 28 28 28 28 28 23 31 31 32
 4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular	ntes de 23 24 25 27 27 28 28 28 28 28 28 23 31 31 32 33
 4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadar cultura celular	ntes de 23 24 25 27 27 27 28 28 28 28 28 23 31 31 32 33 33

5.3 CAN10 está relacionada com diferentes alvos nas linhagens celulares HCC-
1954 (HER2⁺) e MDA-MB-231 (TN)
5.4 Vias de sinalização relacionada à CAN10 nas linhagens celulares HCC-1954
(HER2 ⁺) e MDA-MB-231 (TN) 41
5.5 Avaliação do envolvimento da CAN10 nos processos biológicos relacionados
a fenótipos agressivos de CM 44
5.6 Contribuição da CAN10 na regulação da expressão gênica
6. DISCUSSÃO
7. CONCLUSÕES
8. REFERÊNCIAS
9. ANEXOS
Anexo A - Tabela dos genes diferencialmente expressos após silenciamento da
calpaína 10 na linhagem HCC-1954 siCAPN10 (<i>fold change</i> 1.5)92
Anexo B - Tabela dos genes diferencialmente expressos após silenciamento da
calpaína 10 na linhagem MDA-MB-231 siCAPN10 (fold change 1.5)150
Anexo C - Legendas dos símbolos apresentados nas análises in sílico dos
<i>networks</i> dispostos pelo <i>software</i> Metacore [™] 171
Anexo D - Lista dos 42 miRNAs diferencialmente expressos adicionais com
expressões no intervalo de <i>fold-change</i> 1.49 ≤ 1.3 na linhagem HCC-1954
siCAPN10 após comparação com o perfil de expressão gênica global das
amostras controle172
Anexo E - Lista dos 18 miRNAs diferencialmente expressos adicionais com
expressões no intervalo de <i>fold-change</i> 1.49 ≤ 1.3 na linhagem MDA-MB-231
siCAPN10 após comparação com o perfil de expressão gênica global das
amostras controle173

1. INTRODUÇÃO

1.1 Câncer de Mama

1.1.1 Epidemiologia e progressão tumoral

O câncer de mama (CM) é uma doença complexa, clinica e biologicamente heterogênea, caracterizada pela desregulação de múltiplas vias de sinalização celular (MUZNY al., 2012). É o segundo câncer mais comum no mundo e o mais frequente entre as mulheres, com cerca de 1,67 milhões de novos casos de CM diagnosticados em 2012 (25% de todos os tumores) em regiões mais e menos desenvolvidas. Pode afetar homens, porém em números reduzidos (FERLAY *et al.*, 2015).

As estatísticas globais demonstraram que 60% das mortes relacionadas ao CM ocorrem em países economicamente em desenvolvimento, como o Brasil (FERLAY *et al.*, 2015); isto porque, esta alta taxa de mortalidade não está associada apenas ao perfil biológico dos tumores, mas principalmente à falta de serviços de detecção precoce economicamente viáveis e apropriados. O Instituto Nacional de Câncer (INCA) é responsável por fornecer os dados epidemiológicos relativos às estatísticas de câncer no país, é estimado para cada ano do biênio 2018/2019, 59.700 casos novos de CM (INCA, 2018).

O tecido mamário desenvolve-se por volta da 6ª semana embrionária, a partir de pequenas estruturas chamadas crista mamária que dão origem aos chamados brotos mamários primários – ectoderme, que posteriormente formarão os brotos mamários secundários que darão origem aos ductos lactíferos e seus prolongamentos até formarem de 15 a 20 ductos. As células epiteliais formam estruturas ocas circulares chamadas alvéolos, que são unidades secretoras fundamentais de leite. Ainda durante o desenvolvimento fetal, outras estruturas são formadas como o tecido conjuntivo derivado da ectoderme e o tecido adiposo, derivado da mesoderme. Antes do nascimento a epiderme da glândula mamária forma uma depressão chamada fosseta mamária que, após a fase gestacional evolui para a formar os mamilos. Na puberdade feminina, a partir da produção de estrógenos ocorre o estímulo do desenvolvimento da glândula mamária e seus ductos, e os lóbulos são formados por diversos ductos intralobulares que se unem em um ducto interlobular terminal (Figura 1.1) (MOORE, *et al.*, 2008).

Figura 1.1: Anatomia da glândula mamária humana. Cada glândula mamária contém 15 a 20 lóbulos, e cada um possui série de condutas ramificadas que desembocam dentro do mamilo. As condutas são revestidas por uma camada de células epiteliais, responsáveis pela produção de leite (Adaptado de ALI; COOMBES, 2002).

A progressão de um tecido saudável para um tecido tumoral inicialmente é caracterizada por uma displasia benigna seguida de hiperproliferação, com posterior evolução para tumores *in situ* e invasivos, e, finalmente em tumor metastático (RIVENBARK; O'CONNOR; COLEMAN, 2013) (Figura 1.2).

As características que uma célula saudável adquire à medida que se transforma lentamente em uma célula tumoral foram chamadas de *Hallmarks of Cancer* em 2000 por Hanahan e Weinberg (HANAHAN; WEINBERG, 2000), após uma revisão de diversos estudos que indicavam fatores que levam ao desenvolvimento e progressão tumoral. Em 2011, o mesmo grupo acrescentou novos *hallmarks* relacionados com a tumorigênese, sendo apresentadas 10 características que distinguem as células tumorais das células saudáveis, sendo elas: 1) manutenção de sinais proliferativos; 2) evasão de sinais supressores do crescimento celular; 3) resistência à morte celular; 4) capacidade da célula em se replicar indefinidamente; 5) angiogênese; 6) invasividade e metástase; 7) indução do crescimento e divisão celular; 8) evasão da destruição pelo sistema imune; 9) instabilidade genômica e 10) inflamação (HANAHAN; WEINBERG, 2011).

Figura 1.2: Progressão natural do Câncer de Mama. O câncer de mama desenvolve-se a partir de células epiteliais de mama normal que evoluem através de hiperplasia, para hiperplasia atípica, tumor *in situ* e câncer de mama invasivo, resultando em metástase do câncer de mama, no qual as células tumorais circulantes podem colonizar sítios secundários (osso, pulmão, cérebro e fígado) (Adaptado de SUBRAMANIAN *et al.*, 2015).

1.1.2 Etiologia

Como a incidência do CM e mortalidade ainda são elevadas é importante definir quais são os fatores de risco para o desenvolvimento do tumor, com a finalidade de minimizar os fatores modificáveis e determinar procedimentos de triagem apropriados para que o diagnóstico seja o mais precoce possível, uma vez que o mesmo está associado à uma melhor sobrevida global (YANG *et al.*, 2011). Os fatores de risco associados ao CM podem ser ambientais, epigenéticos e genéticos.

Fatores de risco ambientais

O principal fator de risco para CM é a idade. Por exemplo, uma mulher de 30 anos de idade tem chance de 1 em 250 de ser diagnosticada com CM nos próximos 10 anos, enquanto uma mulher de 70 anos tem chance de 1 em 27 (HOWLADER *et al.*, 2016), fato diretamente relacionado com à exposição aos hormônios estrógeno e progesterona (INCA, 2016).

O desenvolvimento do CM também está relacionado à fatores de risco modificáveis, associados ao estilo de vida, como terapia de reposição hormonal para prevenir a osteoporose ou diminuir os sintomas da menopausa (SINGLETARY et al., 2003), o sedentarismo, o consumo de álcool, a exposição à radiação ionizante, o tabagismo e a obesidade (INCA, 2016).

Já se sabe que mudanças comportamentais como o controle da obesidade, através da alimentação saudável, a prática regular de exercícios físicos, a redução no consumo de bebidas alcoólicas e tabaco, em conjunto, são capazes de reduzir significativamente os riscos de desenvolvimento tumoral. Em contrapartida, a amamentação por 1-2 anos é considerada um fator protetor para o desenvolvimento do CM (INCA, 2012)

Fatores de risco epigenéticos

A regulação epigenética é caracterizada por alterações fenotípicas que não alteram a sequência de nucleotídeos do DNA, porém são herdáveis no genoma. Estas alterações incluem metilação do DNA, modificações de histonas/remodelamento de cromatina e ação de RNAs não codificantes (ncRNAs) (PERRI *et al.*, 2017).

A metilação é a adição de um grupamento metila em resíduos de citosina, que preceda uma guanina, chamado de dinucleotídeo CpG. Altas concentrações do mesmo compõem as chamadas Ilhas CpG, encontradas ao longo do genoma. Alterações do padrão de metilação das Ilhas CpG presentes em regiões promotoras de genes supressores de tumor e oncogenes podem levar à tumorigênese. Já se sabe que o perfil de metilação se encontra alterado em diversos tipos tumorais. Por exemplo, já foi verificado que a hipermetilação anormal em região promotora de genes supressores tumorais ou de genes de reparo de DNA, impede a transcrição dos mesmos, tornando as células mais sucetíveis ao desenvolvimento tumoral. Em contrapartida, quando há uma hipometilação anormal em promotores de oncogenes, estes podem se tornar ativos, o que também pode levar à uma progressão tumoral (PRONINA et al., 2017). Alguns genes diferencialmente metilados já foram identificados no CM, como é o caso do silenciamento do gene de reparo BRCA1 através da hipermetilação da sua região promotora (ROMAGNOLO et al., 2016), além de genes pró-apoptóticos (HOXA), genes de inibição do ciclo celular (CDKN2A, RASSF1A), dentre outros (BASSE; AROCK, 2015). Em contrapartida, já foram descritas ativações de genes que promovem invasão e metástase (SNCG, CDH1 e CDH3), através da hipometilação de suas regiões promotoras (JOVANOVIC et al., 2010).

As histonas são proteínas responsáveis por estruturar o DNA; o conjunto de modificações pós traducionais nestas proteínas são responsáveis por interferir diretamente na compactação ou descompatação da cromatina, dificultando ou facilitando o acesso do maquinário de transcrição ao DNA, respectivamente. Algumas destas modificações são: acetilação, metilação, fosforilação, ubiquitinação, dentre outras (YUN *et al.*, 2011). Em CM, já foi identificado que o aumento da expressão de enzimas que atuam sobre as histonas, compactando a cromatina na região promotora do gene de RE (receptor de estrógeno), auxilia no silenciamento deste gene, e caracteriza o tumor como RE negativo (BASSE; AROCK, 2015).

Os RNAs não-codificantes (ncRNA), são um grupo de moléculas de RNA não codificadores de proteínas, porém são capazes de regular a expressão gênica pré e pós-transcricional. Os ncRNAs são classificados guanto ao tamanho, sendo os micro-RNA (miRNAs) e os RNAs longos não-codificantes (IncRNAs) mais estudados (PALAZZO; LEE, 2015). Os miRNAs, são pequenos RNAs (18-20 nucleótidos) capazes de reprimir a expressão gênica através da degradação de seu RNAm alvo ou através do impedimento de sua tradução. O desbalanço da atuação de miRNAs pode levar ao aumento da expressão de oncogenes e/ou diminuição da expressão de supressores tumorais (BASSE; AROCK, 2015). No CM, diversos miRNAs estão associados à invasão, metástase e pior prognóstico, como por exemplo a família dos miRNAs let-7 que regulam a expressão de múltiplos genes relacionados à metástase e ao fenótipo de células-tronco (CHANG et al., 2016). Já os IncRNAs compreendem aproximadamente 80% de todos os RNAs não codificantes, podendo regular a expressão gênica através de diversos mecanismos como: (a) modificadores de estruturas da cromatina por interação com proteínas associadas com DNA; (b) reguladoras transcricionais, afetando interações da RNA polimerase e fatores de transcrição; (c) scaffolds, recrutando múltiplas proteínas formando complexos ribonucleoprotéicos; (d) regulando modificações pós transcricionais através da competição com os miRNAs, ou atuando como esponjas de miRNAs. Esta variedade de mecanismos de controle de expressão gênica torna o estudo de IncRNAs complexo. Apesar de serem estudados mais recentemente (comparativamente aos miRNAs), no CM já foi reportado que IncRNAs podem desempenhar papéis importantes na regulação do ciclo celular, apoptose e metástase (LIU et al., 2015).

Fatores de risco genéticos:

As alterações genéticas relacionadas ao câncer em geral podem ser divididas em dois subgrupos: familiar (hereditária) e esporádica (SHIOVITZ; KORDE, 2015).

• Alterações genéticas hereditárias:

O CM de caráter genético hereditário corresponde a apenas 5% a 10% de casos da doença e caracteriza-se por mutações em genes de alta penetrância, nas células germinativas (INCA, 2016)As mutações germinativas específicas são passadas de uma geração para outra e não são necessariamente causadoras do tumor (RANDALL; POTHURI, 2016). As mulheres com histórico familiar de CM, especialmente em parente de primeiro grau, possuem um risco aumentado em desenvolver esta doença (INCA, 2016)

Os genes *BRCA1* e *BRCA2* são supressores tumorais, e seus produtos atuam no reparo, na replicação e na transcrição do DNA. Em 1990, King e colaboradores identificaram que alguns CMs hereditários estão relacionados à mutações no *BRCA1*, estas mutações aumentam o risco de desenvolvimento de CM e câncer de ovário (HURST, 2014). As mutações do gene *BRCA2* foram identificadas posteriormente e também são conhecidas por aumentar significativamente a chance de desenvolver ambos tumores (SHIOVITZ; KORDE, 2015). Além de *BRCA1* e *BRCA2*, mutações em outros genes também estão relacionadas ao CM hereditário como mutações no gene das cinases do ponto de verificação do ciclo celular (*CHEK 2*), além de mutações em *TP53* e *PTEN* (SHIOVITZ; KORDE, 2015).

• Alterações genéticas esporádicas:

Inúmeras mutações em genes de baixa penetrância podem ser responsáveis por um aumento do risco de desenvolvimento de tumores na população, sem necessariamente caracterizarem uma herança familiar (KOTNIS *et al.*, 2005).

Os tumores de mama esporádicos representam a grande maioria dos CM. Apesar das mutações em *BRCA-1* conferirem alta probabilidade de desenvolvimento de CM quando ocorrem em linhagens germinativas (CM hereditário), o mesmo pode, muitas vezes, estar mutado em CM esporádico, geralmente em tumores invasivos (ROMAGNOLO *et al.*, 2016). Além disso, mutações no gene supressor de tumor *TP53* são frequentemente encontradas, causando perda no controle da parada do

ciclo celular (ALORAIFI *et al.*, 2015; SCALIA-WILBUR *et al.*, 2016; WINSHIP; SOUTHEY, 2016).

Amplificações de oncogenes são regularmente identificadas no CM esporádico, e algumas destas são cruciais para o seu desenvolvimento, como por exemplo, *MYC*, *FGF3*, *EMS1*, *CCND1* e *ERBB2*, este último está diretamente relacionado com a agressividade do CM (MULLER, 2010).

1.1.3 Classificação

O CM apresenta uma variedade de características morfológicas e histológicas, fazendo com que os tumores de mesmo perfil histológico apresentem grande heterogeneidade. Assim, associações com características moleculares foram adicionadas e agrupadas para fim de diagnóstico, prognóstico e determinação de tratamento e terapia adequada. Desta forma, atualmente o CM é classificado histologicamente e molecularmente (MAKKI, 2015).

Classificação histológica

Esta classificação leva em consideração o local de origem do tumor, sua invasividade e o grau histológico (BERSE; LYNCH, 2015). O carcinoma ductal invasivo ou, de acordo com a nova nomenclatura da Organização Mundial de Saúde, carcinoma invasivo de tipo não especial é o subtipo mais comum, abrangendo cerca de 90% dos CM. O segundo mais comum é o carcinoma lobular invasivo, abrangendo cerca de 10% dos tumores de mama (MAKKI, 2015). O grau histológico do tumor possui valor prognóstico e varia entre 1 e 3, sendo tumores classificados com grau 3 os menos diferenciados e, geralmente, de pior prognóstico (LAKHANI *et al.*, 2012).

Classificação molecular:

A classificação molecular do CM é realizada com base na avaliação de biomarcadores moleculares por imunohistoquímica (IHQ), sendo validados para prática clínica rotineira até o momento atual, de acordo com o *International Breast Cancer Working Group* (IARC) (SAUTER, 2017), os receptores hormonais de estrogênio (RE) e de progesterona (RP), o receptor do fator de crescimento

epidermal humano 2 (HER2/neu), a proteína Ki-67 (índice proliferativo) e algumas citoqueratinas (MUZNY *et al.*, 2012).

As diretrizes ASCO/CAP de 2013 indicam que se realize a confirmação da amplificação do gene *ERBB2* através do teste por hibridização fluorescente *in situ* (FISH) nos casos cuja detecção da expressão de HER2 por IHQ seja duvidosa (NOUNOU *et al.*, 2015).

Os biomarcadores estão relacionados com a biologia do tumor e a avaliação destes fornece guias e recomendações que facilitam a reprodutibilidade diagnóstica, a avaliação prognóstica dos pacientes e a indicação de tratamento (LAKHANI *et al.*, 2012; DE ABREU *et al.*,2013). A análise da expressão de biomarcadores moleculares contribuiu para a classificação diagnóstica do CM, sendo reconhecidos atualmente 4 subtipos moleculares (Figura 1.3) (PERROU, 2000) sendo eles:

(i) Luminal A: subtipo de CM mais comum caracterizado pela presença de receptores hormonais (>1%) e apresentam um índice de proliferação Ki-67 baixo (<14%) (COATES *et al.*, 2015).

(ii) Luminal B: Tumores caracterizados como luminal B podem apresentar menor expressão de RE e/ ou RP associada a maior expressão de genes associados ao ciclo celular e com alto índice proliferação Ki-67 (≥ 14%) (JANG *et al.*, 2017). Cerca de 20% dos CM caracterizados como luminal B expressam HER2 e constituem um subtipo distinto – luminal B/HER2 positivo ou Luminal-HER (HARBECK, 2015).

(iii) HER2 positivo (HER2+): este subtipo representa 15% dos CMs invasivos (MAKKI, 2015), são negativos para RE e RP (ROSAI *et al.* 2011), porém apresentam amplificação do gene *ERBB2* e superexpressão da proteína HER2 (LV *et al.*, 2016).
Além disso, a expressão de Ki-67 é elevada (≥ 14%) (SHOKOUH *et al.*, 2015).

(iv) Triplo-Negativo (TN) ou *basal-like*: Subtipo que representa 15% a 20% de todos os CM (LEE; DJAMGOZ, 2018). É definido pela ausência de expressão dos receptores RE e RP, e baixo número de cópias de *ERBB2* e sua baixa expressão protéica (ZHANG *et al.*, 2016). A maioria dos tumores que se encaixam neste subtipo são carcinomas ductais invasivos, porém, há uma grande heterogeneidade de perfis de expressão gênica e de mutações (BROWN *et al.*, 2017).

Figura 1.3: Classificação dos subtipos moleculares de câncer de mama. Esquema da classificação molecular do câncer de mama, levando em consideração o percentual de incidência de cada subtipo molecular (mundial), a expressão de receptores moleculares, o grau histológico, o prognóstico e a resposta à terapia aplicada a cada subtipo (Adaptado de WONG; REBELO, 2012).

1.1.4 Tratamento

O tratamento do CM evoluiu ao longo das últimas décadas, e além das abordagens cirúrgica, da radioterapia e da quimioterapia clássica, atualmente existem terapias específicas alvo-dirigidas, sendo indicadas de acordo com a expressão de receptores moleculares, como a terapia endócrina e a terapia anti-HER2 (EBCTCG, 2011).

A quimioterapia pode ser pré-operatória (neo-adjuvante) ou pós-operatória (adjuvante) e se caracteriza pelo uso de fármacos anti-tumorais que possuem diferentes alvos celulares, que podem ser combinados. A quimioterapia de combinação é um tratamento mais eficaz do que uma quimioterapia com apenas um composto (CARRICK *et al.*, 2009). Alguns exemplos são a ciclofosfamida (Citoxano®), doxorrubicina (Adriamicina®) e 5-fluorouracila (Utoral®) (MILLER *et al.*, 2014; TESHOME; HUNT, 2014).

Apesar da quimioterapia clássica poder apresentar resultados, os agentes antineoplásicos inespecíficos aumentam a toxicidade aguda sistêmica e possuem

efeitos colaterais; além disso, tumores podem apresentar resistência estes agentes (BRACCI *et al.*, 2014). Ademais, tumores com o mesmo estadiamento clínico podem apresentar diferentes padrões de crescimento e evolução, levando à persistência do crescimento tumoral e o insucesso dos agentes quimioterápicos (TESHOME; HUNT, 2014). Quando a detecção do CM é precoce, o tratamento tem maior potencial curativo, porém, quando já há evidências de metástase, o tratamento tem por objetivo prolongar a sobrevida e melhorar a qualidade de vida do paciente. Neste contexto, a terapia alvo, por ser mais específica é capaz de melhorar o desfecho clínico. (CECILIO *et al.*, 2015).

A terapia endócrina é direcionada aos pacientes com CM que expressam os RE e RP, indicada portanto para os subtipos Luminais (A, B e HER) (R. *et al.*, 2011). Por exemplo, o Tamoxifeno (Nolvadex®, AstraZeneca), um modulador seletivo de RE, foi a primeira terapia direcionada a ser utilizada no tratamento de CM (R. *et al.*, 2011). Ao longo dos últimos anos, uma série de outras terapias endócrinas foram desenvolvidas, com o objetivo de reduzir a biossíntese desses hormônios (DAVIES *et al.*, 2013). Entre eles estão os inibidores de aromatase (Als), tais como Letrozol (Femara®, Novartis) e Anastrozol (Amiridex®, AstraZeneca); os antagonistas do hormônio liberador de gonadotropina (GnRH) e terapias responsáveis por reduzir a expressão dos receptores de estrogênio, como o Fulvestrant (Faslodex®, AstraZeneca) (VOROBIOF, 2016). As utilizações destes compostos, sozinhos ou combinados, melhoram substancialmente o prolongamento dos intervalos livres de doença e sobrevida de pacientes com tumores que superexpressam RE e/ou RP (AUGEREAU *et al.*, 2017).

A primeira terapia direcionada ao receptor HER2 foi o Transtuzumab (Herceptin®, Roche), um anticorpo monoclonal humanizado que se liga à porção extracelular do receptor HER2 (BASELGA *et al.*, 1996), e é indicada para pacientes diagnosticadas com os subtipos Luminal HER e HER2+ (NOUNOU *et al.*, 2015). Desde a introdução do Transtuzumab, muitas outras terapias têm sido avaliadas (LV *et al.*, 2016), como os anticorpos monoclonais anti-HER2 Pertuzamab e Trastuzumab Emtansina (TMD-1). O último consiste em uma combinação do anticorpo monoclonal (Trastuzumab) com o quimioterápico Emtansina (VOROBIOF, 2016).

Já se sabe que a combinação de dois agentes alvos, Trastuzumab e Pertuzumab, juntamente com a quimioterapia com Docetaxel (Taxotere®), aumenta significativamente a taxa de sobrevida dos pacientes com CM do subtipo HER2+

(SWAIN *et al.*, 2013). Apesar disso, alguns pacientes não respondem bem à terapia anti-HER2, isso ocorre devido à mecanismos primários ou secundários de resistência à terapia, que podem ser consequência de uma mutação estrutural na proteína HER2 ou alterações na sinalização intracelular de HER2 ou de vias paralelas (MILIK *et al.*, 2017).

Dessa forma, além dos compostos biológicos que visam a região extracelular de HER2, inibidores de tirosina quinase (ITQ) estão sendo avaliados (ex. Lapatinib, GlaxoSmithKline®) (MARTIN et al., 2013). O Lapatinib é um ITQ reversível que inibe EGFR e HER2 (NAKASHOJI et al., 2018), ao combinar terapias direcionadas à ambos receptores, este medicamento adquire vantagens sobre outros ITQs como Gefitinib e Erlotinib que possuem como alvo apenas o EGFR (HAN; DU, 2017). Já foi visto que o Lapatinib inibe a proliferação de modelos in vitro de CM, pulmão e esôfago. Estudos in vitro demonstraram que o tratamento com Lapatinib inibiu a ativação das vias de sinalização MAPK, PI3K-AKT através da inibição do domínio intracelular dos recptores EGFR e HER2 (SEGOVIA-MENDOZA et al., 2015). Pesquisas recentes têm se concentrado no duplo bloqueio de HER2 através da administração do Trastuzumab combinado com o Lapatinib, resultando em uma inibição sinérgica do crescimento de células tumorais (ZANARDI et al., 2015; BASELGA et al., 2017). Além disso, como o Lapatinib atua na porção intracelular de HER2, ele pode ser uma terapia capaz de superar a resistência ao tratamento com Trastuzumab devido à alterações estruturais da porção extracelular do HER2, gerando um receptor truncado (SAPINO et al., 2013).

1.1.5 Heterogeneidade x Caracterização do CM

A heterogeneidade de um tumor está relacionada a diferenças inter e intratumorais (SONG *et al.*, 2016). Esta heterogeneidade é reflexo da variabilidade acerca do desenvolvimento, crescimento e progressão tumoral (KOREN; BENTIRES-ALJ, 2015). Na primeira década do século XXI, após a conclusão do projeto genoma humano e com o avanço de tecnologias de larga escala, estudos foram realizados a fim de compreender o perfil de expressão gênica de tumores (APELLANIZ-RUIZ *et al.*, 2016). Os estudos que deram origem à classificação molecular do CM em subtipos moleculares revelaram que a estratificação é algo complexo, visto que existem características moleculares e histológias distintas entre tumores de um mesmo subtipo (PRAT; PEROU, 2010).

Em 2012, o *Cancer Genome Atlas Network* publicou resultados relacionados a análises de padrões de expressão gênica, mutações genéticas, número de cópias de DNA, metilação do DNA e padrões de expressão de miRNA entre uma grande coorte de aproximadamente 800 pacientes com CMs. Este trabalho, em conjunto com estudos anteriores como o de Prat e Perrou em 2000, evidenciam que o CM é uma doença heterogênea com vários subtipos moleculares distintos e que existe uma grande diversidade entre os principais subtipos moleculares reconhecidos (MUZNY *et al.*, 2012).

Ensaios baseados em expressão gênica tais como Prosigna[™] (PAM50), MammaPrint® (Agendia), e o Oncotype DX® (Genomic Health Inc.), foram desenvolvidos a partir de estudos de larga escala. Eles são utilizados com fim prognóstico (predição de recorrência) e auxílio de tomada de decisão terapêutica. Entretanto, são exames aplicados a subtipos e estágios iniciais de CM. Apesar de exames como o BluePrint® (Agendia) poderem ser utilizados em conjunto para estratificação mais específica, estes testes são muito dispendiosos e existe pouca transposição quando comparados com subtipos moleculares avaliados por IHQ (MORIGI, 2017).

Por esta razão, já foram descritos na literatura, diversos estudos de larga escala, como por exemplo transcriptômicos e proteômicos, com objetivo de avaliar essa grande diversidade inter e intra-subtipos, sugerindo que é cada vez mais necessário considerar cada tumor individualmente (KOREN *et al.*, 2015; SKOOG *et al.*, 2017; TURASHVILI & BROGI, 2017). As recentes conclusões do *Cancer Genome Atlas Network* sugerem que a assinatura molecular de cada tumor mamário é única, se comparada com outros subtipos ou até mesmo com tumores da mesma classificação molecular (MUZNY *et al.*, 2012). Sendo assim, à medida que aprofundamos os estudos moleculares, maior número de genes, proteínas e vias de interações são avaliadas, e isto implica na necessidade de focar nas divergências encontradas para melhor entendimento da tumorigênese e possível aplicação em terapias individualizadas.

Apesar desta visão, hoje o diagnóstico do CM ainda é realizado com base na histologia e no perfil de expressão dos biomarcadores RE, RP e HER2 (PEROU *et al.*, 2000; SORLIE *et al.*, 2001). A identificação destes biomarcadores foi fundamental para a busca de terapias alvo-específicas direcionadas à eles; neste contexto, os subtipos moleculares de CM que se beneficiaram foram os Luminais e HER2⁺ (SCHNITT, 2010). Uma vez que os subtipos luminais são de melhor

prognóstico, o desenvolvimento de terapias-alvo aos tumores HER2+ mudou a história natural deste subtipo no CM (MOUNSEY *et al.*, 2018).

1.1.5.1 Receptor HER2

O exemplo de importância de biomarcador como alvo de terapia dirigida foi o do receptor HER2. Tumores HER2 positivos possuem um pior prognóstico e um comportamento mais agressivo (MUZNY *et al.*, 2012). A estrutura deste marcador molecular consiste em um domínio extracelular (HER2-ECD) que possui quatro regiões, responsáveis pelo reconhecimento do ligante, um domínio transmembranar e um domíno intracelular (HER2-ICD) que pode ser dividido em duas regiões, uma de tirosina quinase (TK) e outra de fosforilação (Figura 1.4) (LV *et al.*, 2016).

Figura 1.4: Estrutura básica do receptor HER2. O receptor HER2 é composto por domínios extra e intracelular, com porção transmembranar. LD1 e LD2 são domínios de ligação ao ligantes; CR1 e CR2 são regiões ricas em cisteína. TM indica a extensão do domínio transmembrana. O domínio intracelular, TK é a região de tirosina quinase (cinase) catalítica, e CT é a cauda carboxilo-terminal. As cadeias de Ps indicam os locais de fosforilação dentro das regiões TK e CT (Adaptado de LV *et al.*, 2016).

O receptor HER2 funciona principalmente como um heterodímero dependente da ligação com outros membros da família HER (HER1, HER3 e HER4). O heterodímero HER1/HER2 ativa principalmente as vias de sinalização Ras/MEK/ERK (MAPK) e PI3K/Akt, através da fosforilação da porção intracelular do HER2, promovendo proliferação e diferenciação celular (Figura 1.5). Porém, este receptor pode ser encontrado em um estado ativado constitutivamente, através de sua homodimerização, resultando na autofosforilação de resíduos de tirosina quinase que ativa principalmente as vias de MAPK, PI3K e PKC, resultando em proliferação celular (WAHLER; SUH, 2015).

Figura 1.5: Vias de sinalização HER2. Após ligação do ligante ao receptor, os homodímeros ou heterodímeros estimulam uma série de cascatas de sinalização. O fosfatidil inositol 3-quinase (PI3K) e a proteína-quinase ativada por (MAPK) são as duas principais vias que atuam na proliferação tumoral e apoptose (Adaptado de LV *et al.*, 2016).

Frequentemente, pacientes com tumores que superexpressam o receptor HER2 são associados à uma sobrevida significativamente curta e pior taxa de sobrevivência comparada com tumores dos subtipos Luminais (YERSAL; BARUTCA, 2014a). Apesar disso, como já mencionado, muitas terapias anti-HER2 estão sendo desenvolvidas e combinadas, a partir do conhecimento gerado por estudos moleculares, com consequente aumento significativo da taxa de sobrevida desses pacientes nos últimos anos (MIGNOT *et al.*, 2017).

Visto a importância clínica e biológica em identificar características específicas de cada subtipo, e poder melhorar a compreensão sobre a biologia do CM e os aspectos moleculares relacionados ao pior prognóstico de pacientes com subtipos HER2⁺, um estudo prévio realizado por nosso grupo comparou o perfil
proteômico em larga escala (*Label-free proteomics*) de plasma sanguíneo de coortes de pacientes HER2- e HER2+ (PANIS *et al.*, 2015).

Dentre as proteínas diferencialmente expressas, a proteína Calpaína 10 (CAN10), que normalmente não é secretada, foi identificada altamente expressa no plasma de pacientes com tumores classificados como HER2- e altos níveis desta mesma proteína também foram identificados nas amostras tumorais destas pacientes (PANIS *et al.*, 2015).

Neste mesmo trabalho, modelos in vitro (linhagens celulares HER2- e HER2+) foram analisados quanto à expressão da CAN10. Foi observado que nas linhagens que mimetizam os subtipos luminais, a expressão da CAN10 é baixa (ou quase nula). Entretanto, as linhagens HCC-1954 (HER2+) e MDA-MB-231 (TN) possuem alto nível de expressão de CAN10. Além disso, foi evidenciado que a linhagem MDA-MB-231 apresenta alguma expressão intracelular do receptor HER2 (HER-ICD), e esta se encontra com certo nível de fosforilação, sugerindo alguma ativação deste receptor e possível sinalização da via. Ademais, foi comprovado que o bloqueio inespecífico de CAN10, provoca um aumento dos níveis de fosforilação de HER2-ICD com consequente aumento de AKT fosforilado (AKT-p) (PANIS et al., 2015). Ainda, 16% das pacientes avaliadas neste trabalho que foram diagnosticadas com subtipos HER2-, expressam a porção intracelular de HER2 (HER2-ICD) e apresentaram uma sobrevida global maior àquelas que são classificadas com tumores HER2- e não possuem expressão da porção intracelular de HER2 (PANIS et al., 2015). Estes dados apontaram um potencial valor prognóstico na avaliação da expressão e ativação da Calpaína 10 em pacientes com CM.

1.2 Calpaínas

Calpaínas são endoproteases encontradas no citoplasma e são responsáveis por clivar substratos envolvidos em diversas vias e sinalizações celulares (STORR *et al.*, 2011), não provocando necessariamente uma degradação dos mesmos e sim uma modificação das proteínas alvo que podem ser ativadas, adquirir funções adicionais ou serem sinalizadas para degradação (MORETTI *et al.*, 2014).

No genoma humano existem 16 genes que codificam calpaínas homólogas (*CAPN 1-16*), subdivididas em dois grupos: típicas e atípicas, de acordo com os domínios apresentados (GOLL *et al.*, 2003).

As calpaínas típicas 1 e 2 (CAN1 e CAN2) são as mais estudadas e inicialmente foram denominadas de micro (μ)- e milli (m)- calpaínas respectivamente, com base nas concentrações de íons cálcio necessários para serem ativadas *in vitro* (GOLL *et al.*, 2003). Ambas calpaínas possuem 4 domínos (I a IV), sendo o domínio II dividido em 2 subdomínios (IIa e IIb), os quais possuem atividade catalítica. Em sua forma inativa (ausência de íons Ca²⁺) os subdomínios catalíticos interagem com a subunidade regulatória, a qual possui 2 domínios (V e VI), também conhecida como Calpaína 4 (GOLL *et al.*, 2003) (Figura 1.5).

Os subdomínios catalíticos (IIa e IIb) possuem afinidade para os íons Ca²⁺, para que ocorra a ativação clássica (CAN1 e CAN2) é necessário que haja um aumento da concentração intracelular destes íons, os quais se ligam nos subdomínios catalíticos gerando autólise das regiões N-terminais da proteína e de sua subunidade regulatória, levando a separação delas. Desta forma, as calpaínas são translocadas para a membrana, organelas e citosol se tornando ativas e capazes de hidrolisar substratos (GOLL *et al.*, 2003).

Além dos íons Ca²⁺ se ligarem aos subdomínios IIa e IIb, o domínio IV possui 4 sítios de ligação para este íon (calpaínas típicas). Todavia, já foi descrito que o domínio III também possui sítio de ligação de Ca²⁺ com capacidade de se ligar a pelo menos uma molécula de Ca²⁺ com diferentes afinidades dependendo da calpaína (PANDURANGAN *et al.*, 2014). Entretanto, não se sabe qual a concentração necessária de Ca²⁺ para ativação das calpaínas atípicas, visto que estas outras isoformas não possuem o domínios IV (GOLL *et al.*, 2003) (Figura 1.6).

Figura 1.6: Estrutura e domínios das calpaínas típicas e atípicas. I - domínio regulador Nterminal. Ila e Ilb - sub-domínios catalíticos, possuem maior afinidade pelos íons Ca²⁺, contém os sítios ativos enriquecido com Cisteína (Cys), Histidina (His), Asparagina (Asn) e Lisina (Lys), este último presente apenas na Calpaína 6. III - domínio calpaína tipo β-sanduíche (CBSW), possibilita a interação entre os domínios II e IV. Participa como sítio de ligação a fosfolipídeos e atua no reconhecimento de substratos, é semelhante, mas não idêntico ao domíno C2 encontrado em proteínas quinases com sítio de ligação com o cálcio. C2(T) domínio com similaridade ao domínio III na região C-terminal. III' e III" - Calpaínas 7 e 10 possuem domínios semelhantes ao domínio III com moderada e alta divergência respectivamente, localizados na região C-terminal. IV e VI - são domínios tipo penta EF-hand (helix-dupla-helix) com sítio de ligação de Ca²⁺. Esses domínios são responsáveis pela heterodimerização da calpaínas 1 e 2 a subunidade regulatória (Calpaína 4). V domínio da subunidade regulatória (Calpaína 4) contém um conjunto de resíduos de Glicina (Gly) na região N-terminal. NS, IS1 e IS2 - sequências específicas de Calpaína 3. MIT - domínio de interação e tráfico de microtúbulos presente apenas na Calpaína 7. Zn - domínio dedo de zinco presente apenas na Calpaína 15. SOH - estrutura de C-terminal conservada chamada domínio de homologia SOL. IQ domínio que interage com calmodulinas.

As sequências *motifs* reconhecidas e clivadas por calpaínas em seus substratos ainda não foram identificadas, e não é esclarecido se os sítios de clivagem estão contidos em *motifs* de reconhecimento. Porém, os *motifs* PEST já foram descritos como locais alvo de reconhecimento das calpaínas. Estes motivos estababelecem instabilidade para proteínas de meia vida curta; são peptídicos hidrofílicos, de comprimento variável e ricos em prolina, ácido glutâmico, ácido aspártico, serina e treonina (TOMPA *et al.,* 2004).

A calpastatina é o principal inibidor das calpaínas 1, 2, 8 e 9 (GOLL et al., 2003). Este inibidor é codificado por um único gene *(CAST)* que possui múltiplos promotores que geram isoformas distintas com variação N-terminal; estes promotores podem ser regulados diferencialmente em um tipo específico de tecido e em resposta à agonistas.

Por estar inserida na ativação/inibição de várias vias e sinalizações importantes para a célula, é inevitável que qualquer desbalanço na expressão, atividade e/ou regulação das calpaínas possa estar relacionado com processos patológicos (SORIMACHI *et al.*, 2011). As calpaínas estão se tornando cada vez mais reconhecidas por atuarem em diversas doenças, tais como: distrofia muscular, isquemia cardíaca e cerebral, agregação plaquetária, doenças neurodegenerativas, artrite reumatóide, formação de catarata, mal de Alzheimer e inclusive no câncer (CHAKRABORTI *et al.*, 2012).

1.2.1 Calpaínas e Câncer

Foram identificados mais de 100 substratos de calpaínas, a maioria deles identificados em estudos das CAN1 e CAN2. Estes alvos participam de diversos processos biológicos como diferenciação celular, sinalização, adesão, migração, invasão celular e apoptose. Desta maneira, a desregulação da expressão/ atividade destes alvos pode levar ao desenvolvimento e progressão tumoral (GOLL *et al.*, 2003).

Estudos anteriores demonstraram que a desregulação na expressão/atividade de determinadas calpaínas foram associadas com alguns tumores (tabela 1.1). Neste contexto, já foi reportado que mutações do gene da calpaína 3 (*CAPN3*) silenciam a expressão da variante 6 desta proteína em células epidermais. Esta variante atua estabilizando p53, desta maneira, mutações em *CAPN3* já foram relacionadas com o melanoma (STORR *et al.*, 2011). O aumento da expressão da calpaína 6 está relacionado com uma maior capacidade de invasão de células do câncer de colo de útero (STORR *et al.*, 2011). Ademais, já foi descrito que as calpaínas 8 e 9 podem formar complexos capazes de participar do processo de migração de células epiteliais do trato digestivo, sendo importantes na cicatrização da mucosa do trato digestivo, porém também podem estar associadas com a invasividade tumoral do gâncer gástrico (YOSHIKAWA *et al.*, 2000). Apesar disto, já

foi reportado que a calpaína 9 atua como supressor tumoral, e sua depleção *in vitro* leva a transformação neoplásica dos fibroblastos 3T3 (STORR *et al.*, 2011).

CALPAÍNA	EXPRESSÃO	CONSEQUÊNCIA	CÂNCER
CAN1		indução apoptose	câncer de mama
CAN1 CAN2	1	maior capacidade migratória	câncer de pulmão câncer de próstata
CAPN3		maior potencial metastático	melanoma
CAN6	1	maior capacidade invasiva	câncer do colo de útero
CAN8/CAN9		maior capacidade invasiva	câncer gástrico
CAN9	-	proliferação	câncer gástrico

Tabela 1.1: Alterações na expressão de calpaínas e o desenvolvimento tumoral

Além disso, o aumento da expressão de calpastatina foi observado em carcinomas endoteliais, sugerindo que a inibição das calpaínas típicas 1 e 2 seja favorável para o desenvolvimento do câncer de endométrio (SALEHIN *et al.*, 2010).

Ademais, estas calpaínas tipicas já foram relacionadas com o câncer de próstata, como sendo capazes de degradar o Receptor Andrógeno - um regulador associado à proliferação celular no câncer de próstata – e, esta quebra ocorre durante o processo de apoptose induzido pela quimioterapia destes tumores (YANG *et al.*, 2008). Outros estudos reportaram que estas mesmas calpaínas são capazes de clivar os supressores tumorais p53, c-Myc, c-JUN, c-FOS e NFκB, a maioria destes foram identificados como alvos por apresentarem *motifs* PEST em sua estrutura (YANI; HIRAM, 1991; LIU *et al.*, 1996; ATENCIO *et al.*, 2000; ANDERSON *et al.*, 2016). No CM, além de já ter sido descrito que o p53 pode ser clivado pelas calpaínas 1 e 2 em modelos *in vitro*, também já se sabe que elas possuem como alvo o inibidor de NFκB (IKKβ) , bem como o receptor HER2. (STORR *et al.*, 2015). Estes são exemplos de alguns dos muitos alvos das calpaínas e de como elas podem estar relacionadas com a progressão tumoral.

De acordo com a literatura, é possível observar que as calpaínas possuem um papel controverso na tumorigênese. Dependendo do tipo de calpaína e do tecido o qual ela está ou não expressa, estas proteínas podem desempenhar uma função protetora para o desenvolvimento tumoral ou atuar como proteína oncogênica. Isto demonstra o quão complexo é o seu estudo e o quanto alterações em sua expressão e atividade podem contribuir para o desenvolvimento e progressão tumoral.

2. JUSTIFICATIVA

Os processos moleculares que regem a patogênese do CM de um dado subtipo molecular podem variar, envolvendo diferentes mecanismos para ativação ou inativação de diferentes oncogenes ou supressores tumorais, vias e sinalizações celulares (PRAT; PEROU, 2010). Portanto, se torna necessária uma investigação mais aprofundada para elucidar os vários caminhos que podem levar ao desenvolvimento tumoral e os principais eventos moleculares que contribuem para a tumorigênese e progressão do câncer.

Com base na necessidade de buscar o entendimento de vias moleculares relacionadas à progressão tumoral, estudos anteriores já demonstraram um grande envolvimento das calpaínas em diversos tumores (STORR *et al.*, 2011; MORETTI *et al.*, 2014), inclusive no CM (STORR *et al.*, 2015). Kulkarni e colaboradores demostraram que as calpaínas 1 e 2 são capazes de clivar o receptor HER2, alterando positiva ou negativamente a sensibilidade de uma linhagem de CM (Skbr3) que mimetiza o subtipo HER2⁺, ao tratamento com trastuzumab (KULKARNI *et al.*, 2010). Em casos inflamatórios, a expressão diminuída de Calpaina 1 e o aumento da calpastatina estão associadas com um melhor prognóstico. Portanto, a determinação da expressão/atividade destas proteínas podem ter implicação clínica (PU *et al.*, 2016).

Como relatado anteriormente, um estudo prévio em nosso laboratório, identificou a CAN10 como superexpressa no plasma sanguíneo e em biópsias de pacientes com tumores classificados como HER2-, e curiosamente, também nas linhagens mais agressivas de CM, HCC-1954 (HER2+) e MDA-MB-231(TN).

A CAN10 já foi associada à algumas condições patológicas. Polimorfismos do gene *CAPN10* foram relacionados com a susceptibilidade da diabetes *mellitus* tipo 2 (DMT2) (SEREMWE *et al.*, 2015), desde então diversos estudos já correlacionaram a CAN10 com esta doença, indicando que possivelmente esta proteína possa desempenhar papel na secreção e no tráfico de insulina (MARSHALL *et al.*, 2005; TURNER, 2007). Outros polimorfismos deste gene já foram relacionados com síndrome do ovário policístico, com desordens neurológicas (IRVIN *et al.*, 2009). A identificação de haplótipos de *CAPN10* já foram relacionados com pior prognóstico de pacientes com câncer de laringe (MORENO-LUNA *et al.*, 2011.), com o aumento do risco de desenvolvimento de câncer pancreático em fumantes (FONG *et al.*,

2010) e com o desenvolvimento do câncer colorretal, principalmente nos pacientes que possuem DMT2 (FRANCES *et al.*, 2007). Entretanto, o papel, a função e a relevância desta proteína ainda permanecem desconhecidos, principalmete no que se refere à tumorigênese.

Desta forma, focamos nosso estudo no sentido de compreender a contribuição da calpaína 10 e sua relação com processos relacionados à agressividade do CM.

3. OBJETIVOS

3.1 Objetivo Principal

O presente estudo visa avaliar a contribuição da proteína Calpaína 10 em modelos *in vitro* para fenótipos agressivos do câncer de mama.

3.2 Objetivos Sencundários

1- Avaliar a expressão das calpaínas 10, 1 e 2 em sobrenadante das culturas celulares de HCC-1954 e MDA-MB-231, modelos de HER2+ e TN, respectivamente;

2- Realizar o silenciamento gênico transiente da calpaína 10 nas linhagens HCC-1954 e MDA-MB-231;

3- Obter os perfis de expressão gênica globais das linhagens silenciadas para calpaína 10 comparadas com as não silenciadas;

4- Identificar vias de sinalização, interações, processos biológicos e potenciais reguladores, assim como validar genes de interesse relacionados direta ou indiretamente à Calpaína 10 no CM.

4. METODOLOGIA

4.1 Cultura de células

Para este trabalho foram utilizadas as linhagens HCC-1954 e MDA-MB-231 que, de acordo com estudos anteriores realizados em nosso laboratório, apresentam aumento da expressão da proteína CAN10. Ambas são linhagens de CM, e mimetizam, respectivamente os subtipos moleculares HER2⁺ e Triplo-Negativo (TN). As mesmas foram cultivadas de acordo com o protocolo de cultivo dos bancos ATCC (*American Type Culture Collection*) e DSMZ (*Deutsche Sammlung von Mikroorganismen und Zellkulturen*). O cultivo das células foi realizado em estufa sob condições de saturação de 5% de CO₂ e 95% de O₂ e 37°C de temperatura. Foi utilizado o meio de cultura RPMI-1640 (Sigma-Aldrich®) com 2 mM de L-glutamina (Thermo Fisher Scientific®) suplementados com 0.02 mM/mL de glutamina (Gibco®), 100 Unidades/mL de penicilina, 100 µg/mL de estreptomicina (Gibco®), 15% de Soro Fetal Bovino (SFB- Gibco®) para a linhagem HCC-1954 e 10% de Soro Fetal Bovino (SFB- Gibco®) para a linhagem MDA-MB-231.

Ambas linhagens possuem perfil aderente, sendo mantidas em garrafas de cultura de 75 cm². Ao atingir uma densidade de 70-80% de confluência, o meio de cultura foi retirado e foram realizadas duas lavagens com Tampão Fosfato-Salino (PBS - NaCl 138 mM, Fosfato 10 mM, KCl 2.7 mM, e um pH de 7.4 a 25 °C - SIGMA-ALDRICH®); subsequentemente, as células foram submetidas à tripsinização. Para a linhagem HCC-1954 foi utilizada a tripsina Trypsin-EDTA 0.5%, *no phenol red* (Gibco®) por 3 min e para a linhagem MDA-MB-231 foi utilizada a tripsina *Trypsin* 0.25% *phenol red* (Gibco®) por 2 min e 30 s. Após a inativação da tripsina e centrifugação por 5 min à 1500 rpm em temperatura ambiente (TA) o sobrenadante foi desprezado e as células foram plaqueadas a uma concentração de 6x10³ células/cm² para a linhagem HCC-1954 e 5x10³ células/cm² para a linhagem MDA-MB-231.

4.2 Identificação da CAN10 e calpaínas típicas 1 e 2 nos sobrenadantes de cultura celular

Uma vez que a CAN10 foi identificada em plasma sanguíneo de pacientes com CM, inicialmente investigamos se este processo de secreção poderia ocorrer

nas linhagens celulares HCC-1954 e MDA-MB-231 que superexpressam a CAN10. Para isto, isolamos 1mL de sobrenadante das culturas destas linhagens celulares (60 - 70% de confluência), acrescido de 1µL de inibidores de proteases (GE Healthcare®) 1:1000, e concentramos as mesmas para avaliação por Western Blot. Os sobrenadantes foram concentrados 39x em colunas de exclusão de pequenas moléculas (3K) Amicon® Ultra-2 (Millipore), de acordo com o protocolo do fabricante. Brevemente, as colunas de afinidade foram hidratadas com H₂O LC-MS (Millipore Corporation®), seguida de descarte da mesma por inversão do tubo e equilibradas com 1 mL de (NH₄)₃PO₄ 200mM pH 8,0; as colunas foram centrifugadas a 16°C a 4000 x g por 15 min, e o tampão foi descartado. Um volume de 1mL do sobrenadante foi adicionado à coluna sendo acrescido 1 mL de (NH₄)₃PO₄ 50nM a 16°C a 4000 x g por 1 h seguida de descarte do eluído, e procedida de mais uma centrifugação a 16°C a 4000 x g por 2 min, com a coluna invertida para recuperação das amostras. Os sobrenadantes concentrados recuperados foram transferidos para tubos Axygen® e quantificados pelo método de Bradford (BRADFORD, 1976), utilizando-se soro de albumina bovina (BSA) como proteína padrão. Após a quantificação, estas amostras foram diluídas em 5 vezes em Água Milli-Q (Millipore Corporation®). Seguidamente, 10 µg de proteínas do sobrenadante foram acrescidos de tampão de amostra 4X (4% SDS, 20% Glicerol, 10% 2-Mercaptoetanol, 0.0004% Azul de Bromofenol, 0,125 M Tris) e submetidos à eletroforese em gel de poliacrilamida SDS-PAGE 8% durante 1h e 30min à uma voltagem fixa de 90V. A percentagem do gel utilizada foi escolhida com base no peso molecular da calpaína 10 que varia entre 66 a 78 kDa. Após o término da corrida, o gel foi corado com Coomassie Blue-R (0.1% Coomassie Blue R-250, 30% Etanol, 2% Ácido Acético) para verificar a integridade e quantificação das amostras.

4.2.1 Western Blot

Para a realização do Western blot, 30 µg de cada amostra foram resolvidas em gel de poliacrilamida SDS-PAGE nas mesmas condições previamente expostas no item 4.2. Posteriormente, foi realizada a transferência das proteínas para a membrana de nitrocelulose (0.45 µm - Biorad®) através do sistema semi-seco Trans-Blot® Turbo[™] Transfer System (Biorad®) por 30 min, a uma voltagem fixa de 25 V. Para confirmação da transferência e análise do *loading* das proteínas transferidas, as membranas foram coradas transitoriamente com o reagente Rouge

Ponceau (Rouge Ponceau 0.01%; Ácido Acético 5%), seguidas de bloqueio de ligações inespecíficas com solução bloqueio [5% de leite em pó em TBS-T (20 mM Tris, 0.8% NaCl, 0.1% Tween-20)]. A seguir, as membranas foram incubadas com os anticorpos primários para Calpaina 10 (ab28220 abcam®), Calpaína 1 (ab108400 abcam®) e Calpaína 2 (ab155666 abcam®), diluídas em TBS-T na proporção de 1:500, *overnight* (16 h) a 4 °C, seguidas de duas lavagens de 10 min cada, com TBS-T.

A incubação das membranas de nitrocelulose com o anticorpo secundário Anti-rabbit IgG, HRP-linked Antibody (Cell Signaling Technology®) foi realizada sob diluição de 1:2000 em TBS-T por 2 h e posteriormente as membranas foram submetidas a duas lavagens de 10 min cada, com TBS-T.

A expressão protéica das Calpaínas 1, 2 e 10 foram detectadas por quimioluminescência através do kit ECL detection reagents (Amersham GE HealthCare®), composto por uma solução de peróxido de hidrogênio e uma solução de luminol. Quando misturados (1:1) e incubado à membrana, ocorre reação com os anticorpos conjugados com HRP e a luz emitida é captada pelo *software* Image Studio Digits V.3.1., no instrumento LI-COR (Uniscience®), um sistema de emissão de luz.

4.3 Silenciamento gênico da Calpaína 10

Para reduzir os níveis da CAN10 nas linhagens de CM, foi utilizada a abordagem de silenciamento gênico por interferência de RNA (siRNA). Este mecanismo é mediado por pequenos RNAs de fita dupla (dsRNAs) que são capazes de reconhecer uma sequência de RNAm-alvo provocando sua clivagem ou repressão traducional. Para controle da especificidade de inibição foi utilizada um controle negativo de siRNA, denominado Scramble, o qual consiste numa mistura de siRNAs que não interferem em nenhum RNAm humano. A fim de realizar o silenciamento protéico da CAN10 através da transfecção do siRNA, foi necessária inicialmente a padronização de alguns parâmetros, tais como: confluência celular, concentração do reagente de transfecção e concentração do siRNA utilizado.

Para definir a densidade de células a ser utilizada, foram realizados testes de plaqueamento com 25x10³, 30x10³, 35x10³ e 40x10³ células, correspondentes às concentrações de: 6,94x10³, 8,33x10³, 9,72x10³ e 11,11x10³ células/cm². Ambas as linhagens HCC-1954 e MDA-MB-231 foram cultivadas em placas de 12 poços sob

condições normais. A confluência das culturas foram avaliadas após 24 e 48h de plaqueamento, para definir qual seria a mais adequada para o experimento.

A concentração ideal do reagente de transfecção - Lipofectamine® 3000 Transfection Reagent (Invitrogen®), foi definida a fim de evitar efeitos de citotoxicidade celular. Para isto, foi realizado um controle (MOCK), o qual as células foram submetidas ao procedimento de transfecção na ausência de siRNA. Desta forma, as células foram cultivadas com meio de transfecção (meio de cultura RPMI-1640 sem antibiótico, 4% de SFB e 0.004mM de glutamina) e foram tratadas com diferentes doses (1,5; 2,0 e 2,5 e 3,0µg) do reagente de transfecção por 24h. A seguir, os citos centrifugados de cada condição foram obtidos como descrito no item 4.1 e ressuspensos em 300µL de PBS (SIGMA-ALDRICH®). A viabilidade celular foi avaliada através da contagem das células em câmara de Neubauer e as 4 condições de MOCK foram comparadas com o controle de transfecção não tratado (células cultivadas apenas com o meio de transfecção – CTRL).

Buscando determinar qual concentração de siRNA a ser utilizada a fim de obter uma eficiência de transfecção acima de 80%, as células foram submetidas às seguintes condições: (1) células cultivadas apenas com o meio de transfecção (controle de transfecção não tratado - CTRL); (2) células cultivadas com o meio de transfecção e suplementadas com reagente de transfecção (MOCK) e (3) células cultivadas com o meio de transfecção e 50 nM do siRNA TYE[™] 563 (IDT®) por 24 h. O siRNA TYE[™] 563 (IDT®) é um duplex de RNA conjugado com fluorescência que não irá proporcionar degradação de nenhum RNAm, utilizado para monitorar a eficiência de transfecção. O fluoróforo emite uma luz de acordo com suas características fluorescentes (Abmax 549 nm Emmax 563 nm); sendo assim a eficiência de transfecção e viabilidade celular foram analisadas através da citometria de fluxo.

Para tais análises, os centrifugados celulares de cada condição foram obtidos como descrito no item 4.1, seguidos de duas lavagens com 300 µL de PBS (SIGMA-ALDRICH®) e centrifugações a 1500 rpm por 10 min cada. O sobrenadante foi retirado e as células foram fixadas com 300 µL de paraformaldeído 4% diluídos em PBS (SIGMA-ALDRICH®). Foram adquiridos 10000 eventos no citômetro de fluxo BD Accuri[™] C6 (Biosciences®), e as avaliações de eficiência de transfecção e viabilidade celular foram realizadas através do *software* BD Accuri[™] C6 Plus.

Após a padronização da eficiência de transfecção, as linhagens HCC-1954 e MDA-MB-231 foram submetidas ao *silenciamento* transiente. Para tal, as células

foram incubadas com meio de transfecção e com (1) siRNA para *CAPN10* (Hs_CAPN10_17 FlexiTube siRNA, Qiagen®) e (2) siRNA Scramble (SC-37007, Santa Cruz Biotech®). A viabilidade celular e a morfologia do controle negativo de siRNA (Scramble) foram monitoradas e comparadas com o controle não tratado (CTRL). Após 24 h, todas as células foram incubadas com o meio de cultura usual descrito no item 4.1.

4.3.1 Quantificação da taxa de silenciamento de Calpaína 10

Para avaliar a redução de calpaína 10, os RNAs totais das condições CTRL, Scramble e siRNA *CAPN10*, de ambas linhagens foram extraídos em tempos de 24, 48 e 72 h após o silenciamento. A análise da redução dos transcritos de *CAPN10* foi realizada por PCR quantitativo em Tempo Real.

4.3.1.1 Extração e quantificação do RNA total

Inicialmente foi necessário realizar a extração e quantificação do RNA total das amostras CTRL, Scramble e siRNA CAPN10 de ambas as linhagens em cada tempo anteriormente mencionado. Para isto, foi removido o meio de cultura seguido de duas lavagens com PBS. As células foram lisadas através da homogeneização a partir da adição de 350 μ L do tampão RLT (Qiagen®) acrescido com β mercaptoethanol (SIGMA®) na proporção 1:100. A seguir, foram adicionados 350 µL de etanol 70% (diluídos em H₂O livre de RNAse). Os RNAs extraídos foram purificados com o uso do kit RNeasy (Qiagen®), que fornece uma purificação de RNA de alta gualidade a partir de células utilizando colunas de membrana sílica de rotação com afinidade para RNA e possui uma capacidade de ligação de até 100 µg de RNA. Após o procedimento, as amostras de RNA foram eluídas em 20 µL de H₂O livre de RNAse. Os RNAs foram quantificados no espectofotômetro ND-1000 (Nanodrop Technologies®) através do *software* NanoDrop ND-1000®, no comprimento de onda de 260 nm e estocados a -70 °C até a sua utilização. Como controle de qualidade, somente foram avaliados posteriormente os RNAs com razão de absorbância 260/280 no intervalo de $1.8 \ge 2.2$.

4.3.1.2 Digestão com DNAse I e Transcrição Reversa (RT)

Após a extração e quantificação, foi necessário realizar um processo de digestão das amostras com DNAse a fim de eliminar possíveis contaminações com DNA genômico. Desta forma, 2 µg do RNA total obtido de cada amostra, foram submetidos à reação de digestão com a enzima *DNAse I* (Invitrogen®), de acordo com o protocolo do fabricante. Ao final deste procedimento, 2 µg do RNA total de cada foram submetidos à transcrição reversa, para produção do DNA complementar (cDNA), realizada com a enzima *SuperScript II* (Invitrogen®) de acordo com o protocolo do fabricante. Os cDNAs foram armazenados a -20°C até sua utilização.

4.3.1.3 Elaboração dos inciadores

Os iniciadores foram desenhados de acordo com instruções contidas no manual do *Power SYBR® Green PCR Master Mix and Real Time-PCR* e com o auxílio da ferramenta disponível *on-line* no site da IDT (*Integrated DNA Technologies* www.idt.org). As sequências dos RNAs mensageiros (RNAm) foram obtidas no banco de dados do genoma humano (<u>www.ncbi.nlm.nih.gov/nucleotide</u>). Os inciadores, senso (S) e antisenso (AS) foram elaborados a partir dos RNAm obtidos através do número de acesso (NM_) dos genes em questão no *site* www.ncbi.nlm.nih.gov. Abaixo estão discriminados os iniciadores utilizados:

Gene	Sequência de iniciadores (5`- 3`)	Temperatura de anelamento
CAPN10	(S) GGG AGT TCC ATG CCT TCA TT (AS) TAC CTG GCT CCA CCC TT	60ºC
GAPDH	(S) GTC AAC GGA TTT GGT CGT ATT G (AS) TGG AAG ATG GTG ATG GGA TTT	60ºC

 Tabela 4.1: Sequência dos iniciadores utilizados para avaliação por PCR quantitativo em tempo real.

4.3.1.4 PCR quantitativo em Tempo Real:

Os níveis dos transcritos de *CAPN10* foram quantificados através da técnica PCR quantitativo em Tempo Real (RT-qPCR) com o sistema *SYBR Green*® (Qiagen), um intercalante de DNA que se liga ao longo da dupla fita de DNA formada, resultando na emissão de fluorescência durante a extensão das novas fitas, permitindo que a reação seja quantificada e acompanhada em tempo real.

Utilizamos o gene constitutivo endógeno *GAPDH* como normalizador deste experimento. Para isto, foi necessário realizar uma curva padrão do gene *GAPDH* e uma curva padrão do gene de interesse - *CAPN10*, a fim de obter os *thresholds* a serem aplicados em cada experimento correspondente e uma equação de relação entre massa e amplificação, fornecidos pelo *software* do termociclador (Rotor-Gene Q Series Software - Qiagen).

As reações para análise quantitativa foram realizadas em triplicatas e consistiram de 2.5 μ L da mistura de iniciadores a 2 μ M, 2.5 μ L de cDNA (6 ng/ μ L) e 5 μ L do reagente SYBR Green Master Mix (Applied Biosystems), e foram submetidas à incubação inicial no termociclador (Corbett®) de 95 °C por 10 min seguidos por uma série de 55 ciclos de 95 °C por 20 s, 60 °C por 30 s e 72 °C por 30 s, resultando em uma curva de dissociação (*melting*) ao final de cada reação. Para uma melhor otimização da reação, a temperatura do anelamento do iniciador de *CAPN10* foi ajustada para 62 °C.

Para a realização da quantificação relativa, analisamos o ciclo cuja amplificação do gene de interesse atinge o *thershold*, permitindo assim detectar o ciclo do *threshold* (Ct) no qual o *amplicon* sobrepôs a amplificação basal (*background*). Para cada gene, o Ct foi aplicado na equação gerada pela curva padrão, assim sendo convertidos à massa. Os níveis dos transcritos da calpaína 10 foram normalizados pelos níveis dos transcritos de *GAPDH*.

4.4 Análise do perfil de transcritos através da técnica de microarranjo

A fim de verificar possíveis genes relacionados com a expressão e atividade CAN10, foi realizada uma análise do perfil global de transcritos de ambos os modelos silenciados (siRNA) e comparados com controle (Scramble). A técnica de microarranjo permite a identificação e quantificação dos transcritos de genes através da complementariedade de bases de sondas presentes no *chip* de microarranjo específico. Em nosso trabalho utilizamos o GeneChip Human 1.0 ST Arrays (Affymetrix), que possui quatro sondas por éxon e cerca de 40 sondas por gene, permitindo a análise em dois níveis - expressão à nível transcricional e *splicing* alternativo. Além de identificar e quantificar a expressão global de todos os transcritos derivados de um gene, o *chip* de microarranjo utilizado também possui sequências para genes não codificantes, tais como RNAs longos não codificantes (IncRNAs) e microRNAs (miRNAs).

Para identificar o perfil dos transcritos, inicialmente, avaliamos a integridade e qualidade dos RNAs provenientes das linhagens silenciadas ou não, através da utilização do kit RNA Nano Chips (Agilent Technologies®) de acordo com o protocolo do fabricante. A análise do *chip* foi realizada pelo equipamento BioAnalyser® (Agilent Technologies®). A matriz do gel aplicada nos capilares do *chip* contém uma mistura de fluoróforos e marcadores de peso molecular. A ligação dos fluoróforos ao marcador de peso e às amostras de RNA resultam na emissão de fluorescência que é quantificada, permitindo a separação dos RNA ribossomais 18S e 28S. Assim, este resultado permite a verificação da integridade do RNA total a partir da atribuição de um número de integridade do RNA (RIN) que varia de 1 a 10, sendo 10 o valor para amostras com alta integridade.

Para realização do ensaio de microarranjo, foram necessários 100 ng de RNA total de cada condição, para sintetizar um cDNA fita dupla; posteriormente foi realizada uma nova transcrição utilizando o kit GeneChip® Whole Transcript (WT) Labeling Assay e a qualidade e concentração deste cRNA foi verificada utilizando o espectrofotômetro. Este cRNA foi purificado e foi realizada uma nova síntese de cDNA com adição de iniciadores randômicos e uma mistura contendo dUTPs e dNTPs, em seguida, o cDNA foi purificado e a concentração foi mensurada utilizando o espectofotômetro ND-1000 (Nanodrop Technologies®) através do software NanoDrop ND-1000[®], no comprimento de onda de 260 nm.Posteriormente, este cDNA foi fragmentado utilizando o kit GeneChip® WT Terminal Labeling e biotinilado utilizando o kit de marcação de transcritos (Affymetrix®), que possibilita a determinação do perfil genético de cada amostra. A hibridização com o GeneChip Human 1.0 ST Arrays (Affymetrix) foi realizada à uma temperatura de 65 °C durante 17 h à rotação de 60 rpm em forno de hibridização. Seguidamente, os chips foram lavados e corados de acordo com o protocolo do fabricante e digitalizadas usando o GeneChip® Scanner 3000. O software Affymetrix Expression Console versão 1.0 foi usado para criar valores de expressão resumidos (CHP-files), e foi aplicado um algoritmo estatístico altamente robusto, que fornece um valor de significância estatística para cada gene individual dentro de um fenótipo. Os dados foram analisados usando o *software* Affymetrix Transcriptome Analysis Console (TAC), e os genes diferencialmente expressos foram classificados como aumentados ou diminuídos obedecendo como critério um fold-change ± 1.5 e posteriormente analisados е categorizados através dos softwares **ADHoRe®**

(<u>http://bioinformatics.psb.ugent.be/software/details/i--ADHoRe</u>) e MetaCore™ (<u>http://thomsonreuters.com/metacore/</u>).

4.5 Análise in sílico dos genes diferencialmente expressos

Com o intuito de verificar quais genes diferencialmente expressos eram comuns em ambas amostras silenciadas que mimetizam os subtipos HER2⁺ (HCC-1954) e TN (MDA-MB-231), construiu-se o Diagrama de Venn através do *software* ADHoRe®.

Finalmente, para avaliar as funções moleculares, vias de sinalização e *networks* de interação, bem como os reguladores *master* dos genes diferencialmente expressos, utilizou-se o *software* MetaCore[™]. O MetaCore[™] é um *software* integrado para análises funcionais de mutação, transcriptômica, metabolômica, proteômica e miRNoma de amostras biológicas. É baseado em um banco de dados de alta qualidade, frequentemente atualizado pelo corpo de curadores que lêem publicações de pesquisa e extraem informações validadas e de impacto relacionadas à todas as formas de interação entre genes, vias moleculares, associações à doenças, metabolismo e informações de toxicidade.

Sendo assim, os arquivos dos genes diferencialmente expressos das amostras de siRNA de ambas linhagens, foram carregados para o banco de dados e a análise de enriquecimento foi realizada de acordo com as ontologias funcionais no MetaCore[™]. Este *software* também permitiu verificar quais fatores de transcrição poderiam estar regulando positivamente ou negativamente os genes diferencialmente expressos, com base nos dados da literatura.

4.6 Validação dos genes de interesse das análises in sílico e do microarranjo

A partir das análises *in sílico*, selecionamos alguns genes relevantes relacionados aos processos celulares encontrados, bem como alguns genes de interesse que apresentaram expressão gênica diferencial entre amostras silenciadas e Scramble, para validar suas expressões através da análise quantitativa por RTqPCR. Para isto, foram utilizados os mesmos RNAs totais das amostras siRNA *CAPN10* e Scramble avaliadas no ensaio de microarranjo como material de partida, obedecendo o protocolo anteriormente descrito no item 4.3.1.3. O desenho dos

iniciadores foram realizados de acordo com o item 4.4.3. Abaixo estão discriminados os iniciadores utilizados:

Gene	Sequência de iniciadores (5`- 3`)	Temperatura de anelamento
BCL-2	(S) GAG GAT TGT GGC CTT CTT TG (AS) GTT CAG GTA CTC AGT CAT CC	62°C
CAPN1	(S) AGA GTG GAA CAA CGT GGA (A) GGT GAA CTC CGG CAT GAA	60°C
CAPN2	(S) GCC GCG GCG GTT GAA AG TAA (AS) AGC TTG GGC AGT TGT CAT	60°C
CDH1 (E-CAD)	(S) TGG CGT CTG TAG GAA GGC A (AS) GGC TCT TTG ACC ACC GCT CT	60°C
CDH2 (N-CAD)	(S) ACC AGG ACT ATG ACT TGA GCC (AS) GGC GTG GAT GGG TCT TTC A	60°C
MMP16	(S) TAT TCG CCG TGC CTT TGA T (AS) CCA CAT CAC GTT TGC CAT TT	60°C
TCF-4	(S) GAT GAA TCA GCC TGG CTA TGC (AS) GCT GAG GAG TGT GAT GGA TAG	60°C
SNAIL	(S) TCG GAA GCC TAA CTA CAG CGA (AS) AGA TGA GCA TTG GCA GCG AG	60°C
SNAIL 2 (SLUG)	(S) AAG CAT TTC AAC GCC TCC AAA (AS) GGA TCT CTG GTT GTG GTA TGA CA	62°C

Tabela 4.2: : Sequência dos iniciadores utilizados para avaliação por PCR quantitativo em tempo real.

4.7 Análise estatística

As análises estatísticas foram realizadas com auxílio do programa GraphPad Prism v6® (GraphPad Software Inc.). O teste utilizado foi teste t de Student. Foram considerados estatisticamente significativos experimentos cujo valor de P foi menor ou igual a 0,05 após a análise de, no mínimo, três experimentos independentes. * p < 0,05, ** p < 0,01, *** p < 0,001, , **** p < 0,0001.

5. RESULTADOS

Conforme exposto anteriormente, Panis e colaboradores identificaram a CAN10 em plasma sanguíneo e em biópsias de pacientes com CM, por estudo proteômico. Além disto, também foi observada a expressão desta proteína nas linhagens HCC-1954 e MDA-MB-231 que mimetizam os subtipos agressivos de CM HER2+ e TN, respectivamente (PANIS *et al.*, 2015). Nos últimos anos as calpaínas têm sido estudadas em diversos processos tumorigênicos (STORR *et al.*, 2011); porém, a CAN10 é pouco explorada em comparação com as CAN1 e CAN2. Assim, em posse dos modelos *in vitro* HCC-1954 e MDA-MB-231 que superexpressam a mesma, buscamos investigar o efeito da ausência de CAN10 na expressão gênica global destas linhagens a fim de obter indícios da atuação da mesma e sua relação com a agressividade destes modelos *in vitro* do CM.

5.1 Calpaínas podem ser secretadas em modelos in vitro de CM

Uma vez que não há relatos na literatura de uma possível secreção de CAN10 por células do tecido mamário, inicialmente verificamos se esta proteína também poderia ser secretada pelas linhagens celulares de CM que possuem aumento de sua expressão.

Primeiramente, foi realizada a quantificação e concentração dos sobrenadantes obtidos da cultura celular de ambas as linhagens. Foi realizada uma diluição de 1:5 e 1:10 para cada sobrenadante concentrado, uma vez que a coluna é capaz de concentrar em até 39x. Para assegurar que a quantificação das proteínas totais presentes no sobrenadante de cada linhagem celular permaneceu equivalente após diluição das amostras, e as diferenças de expressão encontradas fossem inerentes do perfil de expressão de proteínas, foi realizada eletroforese em gel SDS-PAGE 8% (Figura 5.1). Pelo perfil obtido, escolhemos a diluição de 1:5 para prosseguir com ensaio de Western blot. Além da avaliação da expressão de CAN10, também investigamos a expressão de CAN1 e CAN2, uma vez que estas proteínas já foram relacionadas com o CM.

Desta forma, verificamos que ambas as linhagens que mimetizam os subtipos agressivos de CM, são capazes de secretar a CAN10 (Figura 5.2A). Em relação às calpaínas típicas, identificamos que ambas CAN1 e CAN2 estão presentes no sobrenadante das linhagens celulares HCC-1954 e MDA-MB-231

(Figura 5.2A). O controle de *loading* (ou carregamento) foi obtido pela coloração das membranas de nitrocelulose após transferência, com o reagente de Rouge Ponceau (figura 5.2B).

Figura 5.1: Controle de qualidade das amostras de sobrenadante das culturas celulares HCC-1954 e MDA-MB-231. Foram resolvidos 10 µg de proteínas em gel SDS-PAGE 8%, do sobrenadante de ambas as culturas celulares pré concentração na coluna da Amicon® (1:1) e pós-concentração (dil 1:5 e dil 1:10). Coloração do gel por Coomasie-Blue R-250. dil: diluição.

Figura 5.2: Identificação da expressão das calpaínas 10, 1 e 2 no sobrenadante da cultura celular das linhagens HCC-1954 e MDA-MB-231. (A) Expressão das proteínas CAN10, CAN1 e CAN2 no sobrenadante das culturas celulares dos modelos *in vitro* HCC-1954 e MDA-MB-231, por Western blot. Foram resolvidos 30 µg de proteínas em gel SDS-PAGE 8%, transferidos para membrana de nitrocelulose e incubadas com os anticorpos primários anti-calpaína 10, calpaína 1, e calpaína 2, em diluição 1:500. (B) Controle *loading* ou de carregamento (representativo) do ensaio de western blot pela coloração com Reagente Rouge Ponceau da membrana de nitrocelulose póstransferência.

Os resultados obtidos demonstram que as calpaínas 10, 1 e 2 podem ser secretadas por linhagens celulares de CM. Estes dados corroboram com os achados em pacientes, evidenciando que os modelos *in vitro* utilizados são robustos para a investigação da relação de CAN10 com fenótipos agressivos do CM.

5.2 Silenciamento gênico da CAN10

Para avaliar as possíveis vias e sinalizações relacionadas à CAN10, bem como sua contribuição no fenótipo agressivo do CM, optamos por realizar o silenciamento transiente da mesma a partir da transfecção de RNA de interferência (siRNA) nas linhagens HCC-1954 (HER2+) e MDA-MB-231 (TN), as quais apresentam aumento de expressão desta proteína.

O silenciamento por RNA de interferência (siRNA) é um mecanismo de silenciamento gênico pós-transcricional. Esse mecanismo, é mediado por pequenos RNAs de fita dupla (dsRNAs), que são processados e incorporados ao complexo citoplasmático denominado complexo de silenciamento induzido por RNA (RISC). A transfecção de siRNAs permite modular a expressão gênica levando ao silenciamento à curto prazo do gene/proteína de interesse. Assim, perfil (s) de expressão gênica, fenótipos específicos, a resposta à tratamentos, entre outros, podem ser avaliados após o silenciamento gênico (SCHERR; EDER, 2007).

Para que a transfecção seja bem-sucedida e os efeitos observados sejam inerentes ao *knockdown* da proteína, alguns parâmetros precisaram ser ajustados, tais como: (1) confluência celular, (2) concentração do reagente de transfecção e (3) concentração do siRNA.

A confluência celular sugerida pelo protocolo da Lipofectamina 3000 (Invitrogen®) é de 50% ou mais. Para que as nossas linhagens celulares atingissem tal confluência, conduzimos uma curva de concentração celular $(6,94x10^3, 8,33x10^3, 9,72x10^3 \text{ e } 11,11x10^3 \text{ células/cm}^2)$ e avaliamos a confluência 24 e 48h após plaqueamento. Ambas linhagens alcançaram a confluência desejada (50%) após 48h de plaqueamento. A concentração celular inicial para a linhagem HCC-1954 foi de 11,11x10³ células/cm² e 8,33x10³ células/cm² para a linhagem MDA-MB-231 (Figura 5.3).

Figura 5.3: Avaliação da confluência celular das linhagens HCC-1954 e MDA-MB-231 para realização do experimento de transfecção de siRNA por lipofectamina 3000. A confluência celular das linhagens (A) HCC-1954 e (B) MDA-MB-231 foi avaliada após 24 e 48h, nas seguintes concentrações iniciais: 6,94x10³, 8,33x10³, 9,72x10³ e 11,11x10³ células/cm² O experimento foi conduzido em placa de 12 poços.

Com objetivo de atestar que os efeitos biológicos observados após a transfecção com siRNA fossem relacionados apenas ao silenciamento da CAN10, foi necessário verificar a concentração máxima de lipofectamina a ser utilizada, sem que houvesse interferência na viabilidade celular. Ao realizar a curva de doses com 1,5; 2,0; 2,5 e 3,0 µg de lipofectamina, após 48 horas de plaqueamento, em ambas as linhagens, foi possível verificar uma redução de viabilidade celular nas doses 2,5 µg e 3 µg de lipofectamina. Como não houve diferença entre as doses 1,5 e 2 µg, optamos por utilizar a dose de 2 µg do reagente de transfecção, sendo a taxa de viabilidade celular superior à 95% nesta concentração (Figura 5.4).

Figura 5.4: Padronização da concentração de lipofectamina 3000 para realização do experimento de transfecção. A confluência e morfologia celular das linhagens (A) HCC-1954 e (C) MDA-MB-231 foram avaliadas no período de 24 horas após a curva de doses (1.5, 2, 2.5 e 3 μg) de lipofectamina 3000. A viabilidade celular das células incubadas com lipofectamina das linhagens (B) HCC-1954 e (D) MDA-MB-231 foi avaliada através da contagem de células em câmara de Neubauer e comparada com a viabilidade das células controle (CTRL).

O cálculo da eficiência de transfecção é importante para verificar a taxa de células transfectadas, a fim de assegurar que o siRNA esteja em uma concentração celular capaz de exercer o efeito biológico desejado. Desta forma, a eficiência de transfecção observada para a linhagem HCC-1954 foi 90,2%, enquanto que a linhagem MDA-MB-231 apresentou uma taxa de eficiência de transfecção de 93,8% (Figura 5.5), após transfecção com 50nM de siRNA TYE. Estes valores foram determinados através da mediana de intensidade de fluorescência (MIF) de cada linhagem, a qual se desconta aos valores de fluorescência emitida pelas células marcadas os valores de autofluorescência de cada tipo celular.

Figura 5.5: Eficiência de transfecção das linhagens HCC-1954 e MDA-MB-231. Histogramas representativos da análise por citometria de fluxo da eficiência de transfecção das linhagens **(A)** HCC-1954 e **(B)** MDA-MB-231. Os valores de mediana de intensidade de autofluorescência (M1) e da fluorescência emitida por células marcadas (M2), estão representados em percentagem em ambos histogramas. As condições avaliadas foram: Controle (preto), mock (azul) e siRNA TYE-563 (vermelho). **(C)** Gráfico representativo da eficiência de transfecção de ambas as linhagens utilizando 2 µg de lipofectamina e 50nM de siRNA TYE-563.

Após padronização de todas as variáveis importantes do protocolo de transfecção de siRNA, prosseguimos para o silenciamento gênico da CAN10 em ambas as linhagens. É necessário ressaltar que este silenciamento é transiente, logo, nossa primeira preocupação foi identificar qual seria o melhor tempo para verificar a redução e recuperação dos transcritos de *CAPN10*.

A transfecção do siRNA *CAPN10* na concentração de 50nM foi realizada em replicatas experimentais (n=3), obedecendo a padronização descrita previamente. O monitoramento do nível transcricional de *CAPN10* de ambas as linhagens silenciadas foram realizados nos períodos de 24, 48 e 72 h após a transfecção. Não foi observada alteração de morfologia neste período e a confluência da cultura não ultrapassou 80%, garantindo a homeostase das células.

Em ambas as linhagens celulares foi observado um gradiente de quantificação dos transcritos de *CAPN10*. Foi possível verificar que para as células da linhagem HCC-1954 houve uma redução de 31,26% 65,18% e 46,88% nos níveis de transcritos de *CAPN10*, nos períodos de 24, 48 e 72 h, respectivamente, após transfecção (Figura 5.6). Já para as células da linhagem MDA-MB-231, a taxa de silencimento gênico de *CAPN10* foi de 83,61%, 66,91% e 24,43% após 24, 48 e 72 h de transfecção (Figura 5.6)

Silenciamento gênico CAPN10

Figura 5.6: Taxa de silenciamento da *CAPN10* após a transfecção de siRNA. A quantificação relativa por RT-qPCR dos transcritos de *CAPN10* nas linhagens HCC-1954 e MDA-MB-231 foi realizada nos períodos de 24, 48 e 72h após transfecção com siRNA *CAPN10*. Os níveis transcricionais foram normalizados pelo gene endógeno *GAPDH*, e o silenciamento gênico avaliado após comparação com seus respectivos scramble. * $p \le 0.05$; *** $p \le 0.001$.

Uma vez que as maiores taxa de silenciamento de transcritos de *CAPN10* foram observadas nos tempos de 24h para a linhagem MDA-MB-231 e 48h para a linhagem HCC-1954, foram escolhidos para realização do microarranjo, os RNAs referentes aos tempos de 48h e 72h pós transfecção, respectivamente, para avaliar o efeito máximo do silenciamento da proteína CAN10.

5.3 CAN10 está relacionada com diferentes alvos nas linhagens celulares HCC-1954 (HER2⁺) e MDA-MB-231 (TN)

A caracterização do perfil de expressão gênica em tumores é importante para compreender as alterações moleculares que refletem em vias celulares e processos biológicos alterados. Diversas metodologias podem ser empregadas para avaliação de expressão gênica. O ensaio de microarranjo permite investigar a expressão de diversos genes em uma dada amostra biológica usando uma reação de hibridização para tal propósito (HASIN *et al.*, 2017). A partir deste ensaio é possível realizar comparações, resultando na identificação de genes diferencialmente expressos (DE) relacionados com a pergunta de interesse.

Desta maneira, comparamos o perfil de expressão gênica global das amostras silenciadas (si*CAPN10*) com o perfil de expressão gênica global das

amostras não silenciadas (sc) em ambas as linhagens HCC-1954 e MDA-MB-231, utilizando o ensaio de microarranjo.

Primeiramente, verificamos a integridade e qualidade dos RNAs totais de HCC-1954 sc, HCC-1954 si*CAPN10*, MDA-MB-231 sc e MDA-MB-231 si*CAPN10*. Todas as amostras apresentaram uma pontuação máxima de integridade do RNA (RIN=10), o que significa que não foi identificada presença de contaminantes nem degradações nas amostras de RNA total.

Após verificação da qualidade e integridade das amostras de RNA total, prosseguimos para o experimento de microarranjo. Como ponto de corte, selecionamos os genes com expressão diferencial de 1.5 vezes (*fold-change* ±1.5). Desta forma, após comparação com os respectivos controles, identificamos 1727 genes diferencialmente expressos (DE) na linhagem HCC-1954 si*CAPN10*, sendo 859 genes com expressão aumentada e 868 genes com expressão diminuída. Na linhagem MDA-MB-231 si*CAPN10*, encontramos 677 genes DE, sendo 299 genes com expressão aumentada e 378 genes com expressão diminuída (Figura 5.7). A lista de todos os genes DE em ambas as linhagens estão expostas nos anexos A e B.

siRNA CAPN10

Figura 5.7: Perfil de expressão gênica global das linhagens silenciadas para CAPN10. Foram identificados um total de 1727 genes diferencialmente expressos na linhagem HCC-1954 si*CAPN10*, sendo 859 genes com expressão aumentada e 868 genes com expressão diminuída. A linhagem MDA-MB-231 si*CAPN10* apresentou 299 genes com expressão aumentada e 378 genes com expressão diminuída, totalizando 677 genes diferencialmente expressos.

Após a identificação do perfil de expressão gênica global das linhagens celulares silenciadas para CAN10, realizamos uma análise comparativa *in silico* com construção de um Diagrama de Venn com os genes DE de ambas as linhagens para

verificar se os alvos da CAN10 eram comuns em ambos modelos *in vitro* silenciados. Esta análise indicou que 133 genes DE são comuns em ambas (Figura 5.8), sugerindo que os alvos da CAN10 são diferentes entre os modelos que mimetizam os subtipos HER2⁺ e TN, uma vez que este número representa menos de 10% dos genes DE da linhagem HCC-1954 si*CAPN10* e menos de 20% dos genes DE da linhagem MDA-MB-231 si*CAPN10*.

Figura 5.8: Análise comparativa *in sílico* pelo diagrama de Venn dos modelos de HER2⁺ (HCC-1954) e Triplo-Negativo (MDA-MB-231) silenciados para calpaína 10. A comparação das listas de genes diferencialmente expressos de ambos modelos *in vitro* silenciados para calpaína 10 foi realizada através do *software* online ADHoRe®.

5.4 Vias de sinalização relacionadas à CAN10 nas linhagens celulares HCC-1954 (HER2⁺) e MDA-MB-231 (TN)

A partir do resultado obtido com o diagrama de Venn demonstrando que diferentes alvos foram alterados após o silenciamento gênico de CAN10, nos questionamos quais seriam as vias de sinalização e os processos biológicos alterados em ambos modelos. Isto porque diferentes alvos não implicam, necessariamente, em atuação de diferentes vias. Para isto, utilizamos o *software MetaCore*TM, onde inserimos a lista com os genes DE de cada modelo com seus respectivos valores de expressão. A partir destes dados, este *software* forneceu uma variedade de vias de sinalização nas quais os genes DE e outros genes presentes em seu banco de dados.

Nesta análise *in silico*, foram geradas listas com as 10 vias celulares mais representativas relacionadas aos 1727 genes DE da linhagem HCC-1954 si*CAPN10*.

(Tabela 5.1) e com as 10 vias enriquecidas dos 677 genes DE da linhagem MDA-MB-231 si*CAPN10* (Tabela 5.2).

Tabela 5.1: As 10 vias de sinalização enriquecidas a partir dos genes diferencialmente expressos da linhagem HCC-1954 silenciada para calpaína 10.

	Vias de sinalização - HCC-1954
1	Ativação plaquetária induzida pelo estresse de corte
2	Regulação da diferenciação de células progenitoras epiteliais pulmonares
3	Remodelamento da matriz extracelular do endométrio
4	Th17na fibrose cística
5	Th17na fibrose cística (modelo murino)
6	Injúria glomerular na nefrite lúpica
7	Regulação de microRNAs no câncer colorretal
8	Papel das plaquetas na iniciação na reestenose de stent
9	Sinalização de NF-AT na hipertrofia cardíaca
10	Via de sinalização de IL-33

Tabela 5.2: Vias de sinalização enriquecidas a partir dos genes diferencialmente da linhagem MDA-MB-231 silenciada para calpaína 10.

	Vias de sinalização - MDA-MB-231
1	Regulação da transição de G1/S (ciclo celular)
2	Sinalização de TGFβ via SMADs no Câncer de Mama
3	Indução da TEM dependente de TGFβ via MAPK
4	Sinalização de TGF ^β via cascatas de cinases no Câncer de Mama
5	Sinalização da Plasmina
6	Sinalização de Oncostatina M via MAPK
7	Indução da TEM dependente de TGFβ via SMADS
8	Sinalização da liberação do hormônio Gonadotrofina
9	Sinalização do receptor Glicocorticóide
10	Resolução de inflamação na cicatrização de infarto do miocárdio

A partir destas análises *in sílico* foi possível identificar que as vias de sinalização são diferentes entre ambos modelos *in vitro* silenciados para CAN10. Além disso, a análise dos mapas de interações livres fornecidos pelo software MetacoreTM, possibilitou a identificação de genes que potencialmente estariam relacionados com os genes DE da linhagem HCC-1954 si*CAPN10* (Figura 5.9), e da linhagem MDA-MB-231 si*CAPN10* (Figura 5.10). Estes genes estariam relacionados com processos biológicos conhecidos em CM, como o caso dos genes *SLUG*, *SNAIL*, *ECAD* - relacionados com a regulação da transição-epitélio-mesenquimal (TEM)- e os genes *c-MYC* e *WNT* - relacionados com a regulação da apoptose e proliferação.

Figura 5.9: Mapa de interação livre (*network***) gerado a partir dos genes diferencialmente expressos da linhagem HCC-1954 si***CAPN10.* Este mapa, gerado pelo software MetacoreTM, permitiu identificar interação entre proteínas codificadas por genes relacionados com a regulação da transição epitélio-mesenquimal como *SLUG* e *ECAD*, e de genes relacionados com a regulação da proliferação, como *TCF-4* e *WNT*, sendo este último encontrado como diferencialmente expressos. Genes com a expressão diminuída foram assinalados com um circulo azul e os genes com expressão aumentada foram assinalados com um círculo vermelho. As legendas dos simbolos dispostos neste mapa de interação podem ser colsultadas no anexo C.

Figura 5.10: Mapa de interação livre (*network*) gerado a partir dos genes diferencialmente expressos da linhagem MDA-MB-231 si*CAPN10*. Neste mapa, novamente as proteínas codificadas pelos genes DE interagem com membros da transição epitélio-mesenquimal como *SNAIL*, *ECAD* e *MMP-2*, além de *c-Fos* e *c-Jun* (*AP1*), relacionados com proliferação. Genes com a expressão diminuída foram assinalados com um circulo azul e os genes com expressão aumentada foram assinalados com um círculo vermelho. As legendas dos simbolos dispostos neste mapa de interação podem ser colsultadas no anexo C.

5.5 Avaliação do envolvimento da CAN10 nos processos biológicos relacionados a fenótipos agressivos no CM

Como relatado anteriormente, já foram descritas diversas proteínas alvos das calpaínas 1 e 2, e muitos destes estão relacionadas com processos de TEM, migração, invasão, apoptose e proliferação (STORR *et al.*, 2011). Em nossas análises observamos vias de sinalização e processos biológicos que influenciam na agressividade do CM, e que já foram descritos para as calpaínas típicas. Desta forma, selecionamos alguns dos genes que apareceram nos mapas de interações livre juntamente com outros membros de vias relacionadas à estes processos biológicos. Sendo assim, os transcritos dos genes *SNAIL, SLUG, ECAD, NCAD, MMP16, BCL-2 e TCF4,* foram avaliados em ambos os modelos silenciados e comparados com as amostras controle, por RT-qPCR.

Nossos resultados demonstraram que a partir do silenciamento da CAN10, houve um aumento de 20% na expressão dos transcritos de SNAIL (p <0.05) e um aumento na expressão dos transcritos de 42% SLUG (p<0,0001) na linhagem HCC-1954 siCAPN10 quando comparada com o controle (Figura 5.11A e 5.11B). Já na linhagem MDA-MB-231 siCAPN10, é possível observar que não houve alteração estatisticamente significativa na expressão dos transcritos de SNAIL (Figura 5.11A) em relação à amostra controle, porém, a expressão dos transcritos de SLUG reduziu 28% (p <0,01) em relação ao controle (5.11B). Quando analisada a expressão dos transcritos de ECAD após o silenciamento da CAN10 na linhagem MDA-MB-231, identificamos um aumento de 75% dos transcritos deste gene (p<0,0001) em comparação com o controle, enguanto que na linhagem HCC-1954 silenciada para CAN10 não houve alteração estatisticamente significativa (Figura 5.11C) na mesma comparação. Além disso, foi possível observar que a expressão do marcador mesenguimal NCAD foi reprimida 57% e 75% em ambos modelos *in vitro* silenciados para CAN10 respectivamente (Figura 5.11D). Foi possível verificar uma redução de 53% dos transcritos de MMP16 na linhagem HCC-1954 silenciada para CAN10 (p <0,001), em relação ao controle, enquanto que na linhagem MDA-MB-231 silenciada para CAN10, esta expressão não foi estatisticamente significativa (Figura 5.11E).

Figura 5.11: Análise quantitativa de genes envolvidos no processo de Transição Epitélio-Mesênquimal após o silenciamento da calpaína 10 em ambos modelos *in vitro* HER2⁺ e Triplo-Negativo. Quantificação relativa por RT-qPCR dos fatores de transcrição (A)*SNAIL* e (B)*SLUG*, envolvidos com a regulação da TEM; (C) do marcados epitelial *ECAD* (D) do marcador mesenquimal *NCAD* e da (E)*MMP16*, nas amostras silenciadas para CAN10 (siRNA *CAPN10*) e nas amostras controle (scramble) de ambas as linhagens celulares HCC-1954 e MDA-MB-231, após normalização com a expressão de *GAPDH*. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Um dos genes relacionados com a regulação da apoptose é o BCL-2, o qual possui função anti-apoptótica (RADHA; RAGHAVAN, 2017). Na análise do nível dos transcritos deste gene nas linhagens HCC-1954 si*CAPN10* e MDA-MB-231 si*CAPN10* foi possível observar que no modelo *in vitro* do subtipo HER2⁺, a ausência da CAN10 leva à uma redução de 66% da expressão gênica de *BCL-2* (p<0,0001),

porém não há diferença estatística na expressão deste transcrito no modelo *in vitro* do subtipo TN silenciado para CAN10, em relação ao seu controle (Figura 5.12A).

No que diz respeito à proliferação, o fator de transcrição TCF-4 está envolvido na via de sinalização Wnt/β-catenina, desempenhando um papel crítico na embriogênese, no controle de proliferação e diferenciação celular (RAVINDRANATH *et al.*, 2011). Desta forma, realizamos a quantificação dos transcritos de *TCF-4* nos modelos silenciados para CAN10, e verificamos que no modelo TN, a ausência da CAN10 leva à uma redução de 66% dos transcritos deste gene (Figura 5.12B). A quantificação dos transcritos de *TCF-4* se mostrou indetectável na linhagem HCC-1954 através da técnica de RT-qPCR.

Figura 5.12: Análise quantitativa de genes envolvidos na regulação da apoptose e proliferação celular após o silenciamento da calpaína 10 em ambos modelos in vitro HER2⁺ e Triplo-Negativo. Quantificação relativa por RT-qPCR dos transcritos de (A) *BCL-2*, relacionado com a regulação da apoptose e (B)*TCF4*, fator de transcrição que regula a proliferação celular, nas amostras silenciadas para CAN10 (siRNA *CAPN10*) e nas amostras controle (scramble) de ambas as linhagens celulares HCC-1954 e MDA-MB-231, após normalização com a expressão de *GAPDH*. ****

Além disso, também selecionamos os genes de *CAPN1* e *CAPN2*, para verificar possíveis interações com a CAN10, uma vez que através da ferramenta STRING® (<u>https://string-db.org</u>) - um banco de dados online, o qual fornece interações proteína-proteína conhecidas e previstas - foram demonstradas evidências que homólogos da CAN10 e as subunidades regulatórias das calpaínas típicas 1 e 2 são capazes de interagir em outras espécies. Porém, nossos resultados sugerem que a expressão gênica da CAN10 não interfere nos transcritos de ambas calpaínas tipícas (Figura 5.13A e 5.13B).

Figura 5.13: Análise quantitativa dos genes codificadores das calpaínas típicas 1 e 2 após o silenciamento da calpaína 10 em ambos modelos in vitro HER2⁺ e Triplo-Negativo. Quantificação relativa por RT-qPCR transcritos das calpaínas típicas (A) 1 e (B) 2, nas amostras silenciadas para CAN10 (siRNA *CAPN10*) e nas amostras controle (scramble) de ambas as linhagens celulares HCC-1954 e MDA-MB-231, após normalização com a expressão de *GAPDH*.

A partir destes resultados, fica evidente que alguns genes foram mais suscetíveis às alterações mediadas pelo silenciamento da CAN10. Por exemplo, a ausência de CAN10 levou a um *shift* de expressão de *ECAD* e *NCAD* na linhagem TN. Além disso, é importante levar em consideração as diferenças de expressão dos genes avaliados entre as linhagens controle. Ainda, é necessário ressaltar que a CAN10 não é um fator de transcrição, e sim uma protease. Assim, as alterações no âmbito transcricional observadas após o silenciamento da mesma, representam um possível efeito secundário desta proteína. Ou seja, os alvos diretos (ativados ou inativados pela CAN10) seriam responsáveis pela regulação gênica observada. Assim, a identificação dos possíveis reguladores destes transcritos foi necessária para adicionar informação de como CAN10 poderia interferir na regulação da expressão gênica.

5.6 Contribuição da CAN10 na regulação da expressão gênica

A regulação da expressão gênica é obtida através de mecanismos complexos de controle realizados em níveis, sendo eles: controle da transcrição gênica, controle do processamento de RNAm, controle da localização e transporte do RNAm, controle da tradução, controle da degradação do RNAm e controle da atividade proteica. Os fatores de transcrição são proteínas reguladoras da expressão gênica,

sendo capazes de se ligar à regiões promotoras dos genes, regulando a sua transcrição (SPITZ; FURLONG, 2012). Sendo assim, após a identificação *in silico* das vias relacionadas à CAN10 nos modelos agressivos de CM, nossas análises se voltaram para a identificação dos possíveis reguladores dos genes DE em ambos modelos silenciados.

O *software* Metacore[™], além de fornecer possíveis vias de sinalização, mapas de interação e processos biológicos, também possui uma ferramenta a qual é capaz de identificar fatores de transcrição que regulam positivamente ou negativamente genes de uma dada análise. Diferente do que acontece nas análises das possíveis vias de sinalização e mapas de interações livre, nesta análise todos os genes potencialmente regulados são genes DE, não sendo adicionadas informações da literatura que não estejam relacionadas com a lista de genes DE.

Nas tabelas 5.3 e 5.4 encontram-se as listas dos 10 fatores de transcrição que estatisticamente seriam capazes de regular os genes encontrados DE nos modelos HER2⁺ e TN silenciados para CAN10 respectivamente.

	Fatores de Transcrição	Total de genes DE regulados
1	CREB1	436
2	c-Myc	213
3	SP1	174
4	ESR1	148
5	p53	147
6	YY1	142
7	NF-kB	136
8	Oct-3/4	128
9	AP1 (c-Jun)	110
10	Receptor Andrógeno	111

Tabela 5.3: Lista dos 10 fatores de transcrição potencialmente reguladores dos genes diferencialmente expressos no modelo HER2⁺ silenciado para calpaína 10.

	Fatores de Transcrição	Total de genes DE regulados
1	CREB1	222
2	с-Мус	128
3	p53	113
4	SP1	106
5	ESR1	99
6	Oct-3/4	92
7	AP1 (c-Jun)	86
8	Receptor Andrógeno	85
9	NF-kB	82
10	HIF1A	81

Tabela 5.4: Lista dos 10 fatores de transcrição potencialmente reguladores dos genes diferencialmente expressos no modelo TN silenciado para calpaína 10.

Ao comparar ambas as listas, podemos verificar que, com exceção dos reguladores YY1 e HIFIA, todos os outros são comuns em ambos os modelos *in vitro* silenciados, com diferentes representatividades (*p value*). Dentre os possíveis reguladores encontrados nestas análises, os fatores de transcrição NF-κB, AP1 (c-Jun) e c-Myc já. foram descritos como alvos das calpaínas típicas 1 e 2 (WATT; MOLLOY, 1993; LIU *et al.*, 1996)

Desta forma, estas análises *in sílico* evidenciam que a CAN10 pode influenciar na expressão dos transcritos encontrados DE via interação com reguladores envolvidos na ativação/repressão destes genes.

Além da alteração de expressão/atividade de fatores de transcrição, o desbalanço na regulação Epigenética também é capaz de afetar massivamente a expressão gênica. Em nossos resultados, também foi possível identificar alterações na expressão de genes relacionados com a regulação epigenética, como RNAs longos não codificantes (lncRNAs) e microRNAS (miRNAs).

A partir do silenciamento da CAN10, foi possível observar que aproximadamente 4% dos genes DE são relacionados com a regulação epigenética nos modelos *in vitro* que mimetizam os subtipos HER2⁺ e TN, incluindo RNAs longos não codificantes (IncRNAs) e microRNAs (miRNAs), sendo estes mais representativos no modelo HER2⁺ silenciado.

Durante nossa análise inicial (*fold-change* ± 1.5), foram identificados um total de 75 IncRNAs DE. Deste, majoritariamente, foram encontrados alterados na linhagem HCC-1954: 61 IncRNAs DE, sendo 8 com expressão aumentada e 53 com expressão diminuída. Na linhagem MDA-MB-231 foram identificados 14 IncRNA DE, entre eles 8 aumentados e 6 diminuídos, quando comparado ao controle (Figura
5.14A). Com relação aos miRNAs, 34 foram identificados como DE no modelo *in vitro* de HER2⁺ silenciado para CAN10: 10 com expressão aumentada e 24 com sua expressão diminuída, comparados ao controle. Para o modelo TN silenciado, identificamos 3 miRNAs DE, sendo 1 com expressão aumentada e 2 com expressão diminuída (Figura 5.14B).

Figura 5.14: Perfil de expressão de InRNAs e miRNAs das linhagens HCC-1954 e MDA-MB-231 silenciadas para calpaína 10. (A) No total, 85 lncRNAs foram identificados como diferencialmente expressos em ambas linhagens avaliadas: 61 lnRNAs diferencialmente expressos em HCC-1954 silenciada para calpaína 10 - 8 aumentados e 53 diminuídos quando comparados ao controle. A linhagem MDA-MB-231 apresentou 8 lncRNAs aumentados e 6 diminuídos. (B) Foram encontrados um total de 34 miRNAs diferencialmente expressos na linhagem HCC-1954 silenciada para calpaína 10, sendo 10 com expressão aumentada e 24 com expressão diminuída. A linhagem MDA-MB-231 silenciada para calpaína 10 apresentou 2 miRNAs com expressão aumentada e 1 miRNA com expressão diminuída, totalizando 3 miRNAs diferencialmente expressos. Análise realizada com *fold-change* de ±1.5.

Como a via de ação de miRNAs em cancer coloretal foi representativa e reportada na análise in silico inicial (total genes DE), e pelo fato de que não há Metacore[™]. informacões massivas sobre IncRNAs no decidimos dar prosseguimento com a análises in silico dos miRNAs. Sendo assim, filtramos apenas os miRNAs que apresentaram uma diferença de expressão de ± 1.5 vezes, e inserimos as listas dos miRNAs DE de cada modelo silenciado para CAN10 separadamente no *software* Metacore[™]. Foi possível observar que as 10 vias mais representativas estão relacionadas com a tumorigênese e a agressividade tumoral na linhagem HCC-1954 (Tabela 5.5). Uma vez que o volume de *input* de miRNAs diferencialmente expressos da linhagem MDA-MB-231 foi menor, somente 6 vias celulares foram representativas para esta linhagem (Tabela 5.6); entretanto, mesmo

com apenas 3 miRNAs as vias de resistência à apoptose e envolvimento de miRNAs com papel da célula B foram listadas somente para o modelo *in vitro* de TN.

Tabela 5.5: Vias de sinalização enriquecidas a partir dos 34 miRNAs diferencialmente expressos da linhagem HCC-1954 silenciada para calpaína 10.

	Vias de sinalização miRNAs - HCC-1954		
1	Regulação de miRNAs no câncer coloretal		
2	Papel dos miRNAs na migração, sobrevivência e angiogênese no câncer coloretal		
3	Papel dos miRNAs na proliferação celular no câncer coloretal		
4	miRNAs em câncer de próstata		
5	miRNAs no Melanoma		
6	Supressão da sinalização de p53 no mieloma múltiplo		
7	Papel das alterações epigenéticas na proliferação e diferenciação de células SCLC		
8	Papel hipotético de miRNAs na fibrose pós infarto do miocárdio		
9	Regulação de diferenciação de células progenitoras epiteliais pulmonares		
10	Modulação da resposta do tumor às células T citotóxicas pela hipóxia em tumores		

Tabela 5.6: Vias de sinalização enriquecidas a partir dos 3 miRNAs diferencialmente expressos da linhagem MDA-MB-231 silenciada para calpaína 10.

	Vias de sinalização miRNAs - MDA-MB-231
1	miRNAs em câncer de próstata
2	miRNAs no Melanoma
3	Papel dos miRNAs na proliferação celular no câncer coloretal
4	Supressão da sinalização de p53 no mieloma múltiplo
5	Vias de apoptose e resistência à apoptose em células de câncer de pulmão
6	Papel das células B em SLE

Para melhor compreender se a observação de miRNAs DE foi um achado isolado, ou se o silenciamento da CAN10 poderia levar a alteração de mais miRNAs decidimos realizar uma segunda avaliação dos genes DE. Desta vez, selecionamos como ponto de corte os miRNAs que apresentaram sua expressão aumentada ou diminuída em até ± 1.3 vezes. Nesta segunda análise foi possível identificar 76 miRNAs DE sendo 19 aumentados e 57 diminuídos no modelo *in vitro* que mimetiza o subtipo HER2⁺ silenciado para CAN10, e 21 miRNAs DE, sendo 13 aumentados e 8 diminuídos, no modelo *in vitro* que mimetiza o subtipo TN silenciado (Figura 5.15).

Figura 5.15: Perfil de expressão de miRNAs das linhagens HCC-1954 e MDA-MB-231 silenciadas para *CAPN10.* Foram encontrados um total de 76 miRNAs diferencialmente expressos na linhagem HCC-1954 silenciada para calpaína 10, sendo 19 com expressão aumentada e 57 com expressão diminuída. A linhagem MDA-MB-231 silenciada para calpaína 10 apresentou 13 miRNAs com expressão aumentada e 8 miRNA com expressão diminuída, totalizando 21 miRNAs diferencialmente expressos. Análise realizada com *fold-change* de ±1.3.

Após estes achados, carregamos as listas completas contendo os miRNAs DE com *fold-change* de até ±1.3 dos modelos *in vitro* silenciados para CAN10, no software Metacore[™], separadamente. As lista com os miRNAs adicionais com *fold-change* no intervalo entre 1.49 ≤ 1.3 para o modelo HER2+ (n=42) e para o modelo TN (n=18) se encontram nos anexos D e E respectivamente. Como observado na tabela 5.7 para a linhagem HER2+, não houve expressiva alteração das vias enriquecidas pelo Metacore[™], mostrando que os 42 miRNAs adicionados à lista ou estão correlacionados com as mesmas vias, ou não possuem descrição robusta na literatura.

Tabela 5.7: Vias de sinalização enriquecidas a partir dos 76 miRNAs diferencialmente expressos da linhagem HCC-1954 silenciada para calpaína10.

	Vias de sinalização miBNAs - HCC-1954		
1	miRNAs no Melanoma		
2	Regulação de miRNAs no câncer coloretal		
3	Papel dos miRNAs na migração, sobrevivência e angiogênese no câncer coloretal		
4	Papel dos miRNAs na proliferação celular no câncer coloretal		
5	miRNAs no Melanoma		
6	miRNAs em câncer de próstata		
7	Sinalização de TGFβ via miRNAs no câncer de mama		
8	Papel hipotético de miRNAs na fibrose pós infarto do miocárdio		
9	Papel das alterações epigenéticas na proliferação e diferenciação de células SCLC		
10	Diminuição da expressão de MITF no melanoma		

Já para a linhagem MDA-MB-231, o aumento do número de miRNAs DE (21) permitiu o enriquecimento de 10 vias de sinalização, entre elas, novamente uma via relacionada à TEM; porém, outras vias como a sinalização independente de CIKS induzindo IL-17 em PTMs e via de sinalização do ácido hialurônico/CD44 no câncer (Tabela 5.8) também foram identificadas *in silico*.

Tabela 5.8: Vias de sinalização enriquecidas a partir dos 21 miRNAs diferencialmente expressos da linhagem MDA-MB-231 silenciada para calpaína 10.

	Vias de sinalização miRNAs - MDA-MB-231
1	miRNAs em câncer de próstata
2	Supressão da sinalização de p53 no mieloma múltiplo
3	Sinalização de TGFβ via miRNAs no câncer de mama
4	Papel dos miRNAs na proliferação celular no câncer coloretal
5	miRNAs no Melanoma
6	Regulação da TEM dependente de miRNA
7	Via de sinalização independente de CIKS induzindo IL-17 em PTMs
8	Sinalização de ácido hialurônico/CD44 no câncer
9	Regulação de miRNAs no câncer colorretal
10	Indução da invasão de células do câncer de mama via ErbB2

Também realizamos a avaliação dos fatores de transcrição relacionados com os miRNAs DE, a fim de correlacionar com os fatores de transcrição identificados pelo MetacoreTM, para os genes DE. Nas análises *in silico* dos reguladores positivos e/ou negativos dos miRNAs DE de ambas linhagens silenciadas para CAN10 (Tabelas 5.9 e 5.10), verificamos novamente os fatores de transcrição NF κ B (Figuras 5.16 e 5.17) e c-Myc, (Figuras 5.18 e 5.19) entre os 10 fatores como reguladores destes miRNAs. O fator de transcrição anteriormente encontrado - AP1 (c-Jun)- foi listado com menor *p value*, não sendo listado como os 10 mais representativos.

Tabela 5.9: Lista dos 10 fatores de transcrição potencialmente reguladores dos 76 miRNAs diferencialmente expressos no modelo HER2+ silenciado para calpaína 10.

	Fatores de Transcrição	Total de genes DE regulados
1	с-Мус	38
2	p53	35
3	STAT3	33
4	ReIA (p65 NF-kBsubunit)	31
5	E2F1	29
6	SMAD4	29
7	ESR1 (nuclear)	28
8	HIF1A	27
9	Androgen receptor	25
10	N-Myc	24

Tabela 5.10: Lista dos 10 fatores de transcrição potencialmente reguladores dos 21 miRNAs diferencialmente expressos no modelo Triplo-Negativo silenciado para calpaína 10.

	Fatores de Transcrição	Total de genes DE regulados
1	p53	12
2	HIF1A	11
3	TCF8	11
4	c-Myc	11
5	SIP1 (ZFHX1B)	10
6	Androgen receptor	10
7	SMAD4	10
8	ReIA (p65 NF-kBsubunit)	10
9	SP1	8
10	ESR1 (nuclear)	8

Figura 5.16: NFκB como regulador dos miRNAs diferencialmente expressos do modelo HER2⁺ silenciado para calpaína 10. Rede de interações positivas (setas verdes) ou negativas (setas vermelhas) entre o fator de transcrição NFκB e os miRNAs que tiveram sua expressão aumentada (círculo vermelho) e com os genes que tiveram sua expressão diminuída (círculo azul) após o silenciamento da calpaína 10 na linhagem HCC-1954. As setas cinzas representam interações indefinidas.

Figura 5.17: NFKB como regulador dos miRNAs diferencialmente expressos do modelo Triplo-Negativo silenciado para calpaína 10. Rede de interações positivas (setas verdes) ou negativas (setas vermelhas) entre o fator de transcrição NFKB e os miRNAs que tiveram sua expressão aumentada (círculo vermelho) e com os genes que tiveram sua expressão diminuída (círculo azul) após o silenciamento da calpaína 10 na linhagem MDA-MB-231. As setas cinzas representam interações indefinidas.

Figura 5.18: c-MYC como regulador dos miRNAs diferencialmente expressos do modelo HER2⁺ silenciado para calpaína 10. Rede de interações positivas (setas verdes) ou negativas (setas vermelhas) entre o fator de transcrição c-Myc e os miRNAs que tiveram sua expressão aumentada (círculo vermelho) e com os genes que tiveram sua expressão diminuída (círculo azul) após o silenciamento da calpaína 10 na linhagem HCC-1954. As setas cinzas representam interações indefinidas.

Figura 5.19: c-Myc como possível dos miRNAs diferencialmente expressos do modelo Triplo-Negativo silenciado para calpaína 10. Rede de interações positivas (setas verdes) ou negativas (setas vermelhas) entre o fator de transcrição c-Jun e os genes que tiveram sua expressão aumentada (círculo vermelho) e com os genes que tiveram sua expressão diminuída (círculo azul) após o silenciamento da calpaína 10 na linhagem HCC-1954. As setas cinzas representam interações indefinidas.

A partir da rede de interações dos fatores de transcrição e seus alvos, no modelo HER2+ silenciado para CAN10, foi possível idenficar que NF κ B e c-Myc são capazes de regular positivamente muitos miRNAs que apresentam sua expressão aumentada. Além disto, foi possível verificar que uma parcela dos miRNAs seria capaz de regular negativamente estes fatores de transcrição. Os miR-124-3p, miR-138-5p, miR-7a-5p, miR9-5p - identificados com expressão diminuída - são capazes de regular negativamente a expressão de NF κ B; outros miRNAs DE como por exemplo, os miR-132-3p, miR-134-5p, miR-135a-5p, miR-150-5p e miR-let-7a-5p também apresentam sua expressão diminuída e regulam negativamente a expressão de c-Myc.

Com relação à análise *in silico* das redes de interação dos fatores de transcrição e os miRNAs DE do modelo TN, verificamos que o fator de transcrição NFKB regula negativamente e/ou positivamente alguns miRNAs, não sendo aparentemente representativo no modelo TN. Com relação ao fator de transcrição c-Myc, verificamos que a maioria dos miRNAs que estão sendo regulados positivamente, apresentam sua expressão diminuída. Além disso, c-Myc regula negativamente a expressão do miR-101-1, e este apresenta sua expressão aumentada.

Ao final, o conjunto de análises *in silico* realizadas e a validação dos níveis transcricionais de alguns genes evidenciaram que o silenciamento da CAN10 foi

capaz de alterar a expressão de genes relacionados com vias de sinalização e processos biológicos associados à agressividade do CM. Além disso, estes resultados sugerem que as alterações transcricionais observadas pelo silenciamento da CAN10 são reflexo do envolvimento da mesma no controle da expressão gênica, potencialmente via de regulação da ativação/repressão de fatores de transcrição, como NFκB e c-Myc e via de regulação epigenética no CM, principalmente na linhagem HCC-1954.

6. DISCUSSÃO

Durante a tumorigênese, diversos processos ocorrem em conjunto e são responsáveis por transformar progressivamente uma célula saudável em uma célula tumoral (HANAHAN; WEINBERG, 2011); dependendo do grau de diferenciação estas células podem ser mais ou menos agressivas. Os tumores de mama pertencentes aos subtipos HER2+ e TN apresentam uma alta taxa de proliferação sendo classificados como mais agressivos e mais suscetíveis à metástase, sendo assim, na maioria dos casos, de prognóstico ruim (YERSAL; BARUTCA, 2014). Desta maneira, é de suma importância identificar fatores que possam contribuir para a agressividade destes subtipos.

Um estudo proteômico realizado anteriormente em nosso laboratório identificou a presença da CAN10 elevada no plasma sanguíneo de pacientes HER2-(PANIS *et al.*, 2015). Dados não publicados por nosso grupo demonstraram que as calpaínas CAN3 e CAN15 estão presentes no exossomo destas pacientes, sugerindo que as calpaínas podem ser secretadas via vesículas. Assim, mecanismos de secreção poderiam justificar a presença da CAN10 no plasma sanguíneo destas pacientes. Desta maneira, em nosso estudo investigamos se esta proteína também poderia ser identificada nos sobrenadantes das culturas celulares que mimetizam os subtipos HER2+ e TN. De fato, a expressão da CAN10 foi identificada no sobrenadante destas culturas, bem como a expressão de CAN1 e CAN2. Porém, o mecanismo responsável pela presença desta proteína nos sobrenadantes e no plasma sanguíneo de pacientes HER2- e sua função no CM, ainda permanecem desconhecidos.

Com o objetivo de verificar as funções relacionadas com CAN10 nos modelos agressivos de CM, realizamos o silenciamento transiente desta proteína nos modelos *in vitro* de HER2+ e TN. Este silenciamento permitiu avaliar, por um curto período de tempo, os efeitos mais significativos da redução da mesma, em ambos modelos. A partir da análise transcriptômica, identificamos diversos genes DE nestes modelos silenciados em relação aos seus respectivos controles. Inicialmente, o *cutoff* utilizado para esta análise foi de ± 2 ; porém, ao inserir a lista destes gene DE no *software* de análise *in sllico* utilizado, observamos que os genes identificados DE se sobrepuseram em diversas vias de sinalização enriquecidas. Por conta da CAN10 ser uma protease a redução deste *cut-off* para ± 1.5 possibilitou verificar genes DE -

que foram ocultados em nossa primeira análise - a partir do silenciamento da mesma. Desta forma observamos um aumento significativo de genes DE, sendo este número mais expressivo no modelo HER2+ silenciado para CAN10 (n=1727), do que no modelo *in vitro* de TN (n=677).

As metodologias de larga escala fornecem uma variedade de informações cuja exploração massiva só é possível através do uso de ferramentas computacionais adequadas com a finalidade de entender os sistemas biológicos relacionados com a pergunta de interesse. Dessa forma, a compreensão de comportamentos biológicos, incluindo os efeitos de modificações e perturbações dos mesmos pode ser alcançada. Diversos *softwares* são capazes de realizar este tipo de análise, em nosso estudo utilizamos o *software* MetacoreTM (EKINS *et al.*, 2007). Dentre as diversas análises realizadas nesta ferramenta, a análise da rede de interações livres (*network*) dos genes DE nos permitiu identificar membros de vias de sinalização relacionados à regulação de processos biológicos como: TEM, migração, invasão, apoptose e proliferação. A partir destes dados, validamos quantitativamente a expressão de alguns membros relacionados a estes processos mencionados (*SNAIL, SLUG, NCAD, ECAD, MMP16, BCL2* e *TCF4*).

Entre os processos biológicos relacionados aos genes DE destas linhagens silenciadas para CAN10, a TEM é um mecanismo essencial que orienta o desenvolvimento durante várias fases da embriogênese. Este processo biológico ocorre progressivamente e compreende várias etapas que envolvem alterações reversíveis, capazes de permitir que uma célula epitelial, a qual interage com a membrana basal, se transforme gradativamente em uma célula com fenótipo mesenquimal, a qual possui uma maior capacidade de migração, invasão e resistência à apoptose (THIERY, 2002). Desta forma, o estímulo deste processo após a embriogênese pode levar à metástase. Alguns fatores de transcrição, como Snail e Slug em conjunto com outros, atuam (1) reprimindo a transcrição de genes relacionados ao fenótipo epitelial (como genes codificadores de proteínas de adesão como claudinas, citoqueratinas e E-caderina), e (2) ativando a expressão de proteínas relacionadas com o fenótipo mesenquimal (como fibronectina, vimentina e N-caderina). A partir desta regulação, uma célula epitelial adquire gradativamente uma maior capacidade de migração e invasão para sítios secundários (JIE et al., 2017).

A metástase é um processo de disseminação de células tumorais do tumor primário para um sítio secundário através dos vasos sanguíneos e linfáticos. Uma

vez que as células epiteliais respondem aos sinais induzidos pela TEM, uma sucessão de eventos biológicos ocorre simultaneamente e são responsáveis por fazer com que as células adquiram propriedades migratórias e invasivas. Um destes eventos é atuação de proteases responsáveis por conduzir à ruptura da membrana basal e ingresso celular nos sítios secundários. Dentre estas proteínas, podemos citar as metaloproteínases (MMPs), que são uma família de proteínas capazes de digerir a matriz extracelular (WANG; ZHOU, 2011)

Após o silenciamento da CAN10 na linhagem HCC-1954, observamos alterações estatisticamente significativas na expressão dos transcritos de *SNAIL*, *SLUG e NCAD*. Porém, não foi possível observar alterações na expressão transcricional de *ECAD*. De acordo com estes achados, podemos supor que neste modelo, a CAN10 não seria capaz de alterar a expressão de fatores de transcrição que regulam a TEM. Entretanto, mais importante que as alterações na expressão de transcritos dos reguladores *SNAIL* e *SLUG*, é necessário verificar a localização/ativação dos mesmos para avaliar os possíveis efeitos biológicos após o silenciamento da CAN10.

Em relação à migração, identificamos *MMP16* como um dos genes DE no ensaio de microarranjo do modelo HER2+ silenciado para CAN10. A partir do ensaio de RT-qPCR identificamos uma redução de aproximadamente 50% dos transcritos da *MMP16* neste modelo silenciado para CAN10. Sabe-se que as calpaínas típicas 1 e 2 estão associadas à regulação da migração celular por conta da sua capacidade em clivar proteínas responsáveis pela adesão celular, além disto estas calpaínas atuam em conjunto com as MMPs, contribuindo para o remodelamento da matriz extracelular e invasividade (WEAVER, 2006; CORTESIO *et al.*, 2008; JANG *et al.*, 2010; STORR *et al.*, 2015).

Já no modelo TN, a partir do silenciamento da CAN10, não observamos alterações nos transcritos de *SNAIL*, porém observamos uma leve redução nos transcritos de *SLUG* e consequente aumento da expressão de *ECAD* e diminuição de *NCAD*. Estes últimos apresentaram um *shift* de expressão neste modelo silenciado em comparação com seu controle. Estes resultados indicam que possivelmente a presença da CAN10 no modelo TN leva a um aumento da TEM. Sabe-se que para que a TEM ocorra são necessários que vários fatores de transcrição estejam atuando em conjunto (THIERY, 2002). É importante salientar que ajustes finos na expressão dos fatores de transcrição podem levar à alterações

na localização/funcionalidade dos mesmos, consequentemente alterando a regulação de seus genes alvos (SPITZ; FURLONG, 2012).

Portanto, a partir destes resultados, verificamos que a CAN10 está envolvida nos eventos da TEM nas linhagens HER2+ (capacidade migratória) e TN (alteração da expressão dos genes relacionados aos fenótipos epitelial e mesenquimal).

Outro processo biológico que possivelmente está relacionado com a CAN10 é a apoptose. A apoptose é um processo cuja regulação é essencial para manutenção da homeostase; alterações na sua regulação contribuem para a tumorigênese. A via mitocondrial da apoptose (via intrínseca) é regulada pela família das proteínas Bcl-2. Estas proteínas podem ser indutoras ou repressoras da apoptose. Os membros da família Bcl-2, como Bcl-2 e Bcl-XL são reguladores antiapoptóticos, em contra partida, Bax, Bid e Bak são proteínas pró-apoptóticas (OUYANG et al., 2012). O silenciamento da CAN10 foi capaz de reduzir a expressão de BCL-2 no modelo in *vitr*o de HER2+. Apesar de estudos não correlacionarem diretamente a atividade da CAN10 com a expressão de Bcl-2, já se sabe que a ativação excessiva ou a inibição desta calpaína é capaz de induzir a disfunção mitocondrial provocando apoptose através da clivagem de proteínas mitocondriais (ARRINGTON et al., 2006). Além disso, Johnson e colaboradores identificaram que a CAN10 pode estar relacionada com a apoptose em células β -pancreáticas via caspases (JOHNSON *et al.*, 2004). Em contradição, Covington e colaboradores reportaram que a expressão da CAN10 pode ser essencial para a sobrevivência das células β-pancreáticas (COVINGTON et al., 2009). A partir da identificação da redução transcricional de BCL-2 no modelo HER2+ silenciado para CAN10, podemos sugerir que a CAN10 possui algum envolvimento na regulação este processo.

A proliferação celular foi identificada como possível processo relacionado aos genes DE de ambas linhagens silenciadas para CAN10. Uma das vias de sinalização relacionadas a este processo é a via canônica de WNT, e a ativação da mesma já foi relacionada com diversos tumores (SHERWOOD, 2015). Fatores de transcrição da família de TCF/LEF são reguladores desta via, a qual é ativada através da ligação de proteínas WNT aos receptores Frizzled que inicia a cascata de sinalização (TEO; KAHN, 2010). Na análise dos genes DE no modelo HER2⁺ identificamos a diminuição da expressão dos genes Wnt (*WISP2*) e Frizzled (*FZD1*), com um *fold-change* de -1,75 e -1,57 de expressão, respectivamente. A partir do mapa de interação livre (*network*) gerado na análise *in sílico,* identificamos que *TCF4* interage com genes DE no modelo HER2⁺ silenciado. Apesar de *TCF4* não ter

aparecido no mapa de interação livre no modelo TN, foi possível verificar, através da quantificação de seus transcritos, que houve uma redução dos mesmos após o silenciado da CAN10 neste modelo. A partir de nossos resultados parece que a CAN10 está relacionada com a regulação da via canônica de WNT, uma vez que observamos alterações na expressão de genes desta via no modelo HER2+ e alteração no regulador desta via no modelo TN. Entretanto, é importante avaliar a expressão/ativação da β-catenina, proteína efetora da via, em ambos modelos para confirmar a relação da CAN10 com a via de WNT nestes modelos.

Estudos anteriores identificaram que proteínas de outras espécies homólogas às calpaínas podem interagir entre si (LEE et al., 1998; HATA et al., 2001; HATA et al., 2010), desta forma, em nosso estudo analisamos os níveis transcricionais das calpaínas típicas CAN1 e CAN2 após o silenciamento da CAN10 nos modelos HER2+ e TN. Ao verificar que o silenciamento da CAN10 não alterou os níveis dos transcritos destas calpaínas típicas, podemos admitir que os resultados obtidos pelas análises dos genes DE de ambos modelos silenciados, são de fato, reflexos diretos ou indiretos do silenciamento da CAN10. Como a CAN10 não é um fator de transcrição, sabemos que a identificação dos genes DE relacionados aos processos biológicos após o silenciamento da CAN10 é um efeito secundário da atuação da mesma em alvos capazes de regular a expressão gênica. Durante o desenvolvimento embrionário, vias de sinalização atuam em diferentes processos biológicos e regiões do embrião, sendo reguladas por fatores de transcrição com a finalidade de tornar as células capazes de proliferar, migrar, se diferenciar e formar tecidos, resultando na organogênese. A ativação/repressão de fatores de transcrição culmina na alteração da expressão de diversos genes que podem estar envolvidos em uma ou em várias vias de sinalização relacionadas à processos biológicos distintos ou não (CAIRNS et al., 2011). Sendo assim, em nosso estudo, focamos em identificar quais seriam os fatores de transcrição capazes de regular os genes identificados como DE nos modelos silenciados para CAN10.

Alguns dos alvos já descritos para as calpaínas 1 e 2 são fatores de transcrição envolvidos na regulação de diversas vias de sinalização e processos biológicos. A clivagem destes alvos resulta na degradação dos mesmos ou na modulação de sua função (MORETTI *et al.*, 2014). Estudos já reportaram que CAN1 e CAN2 são capazes de clivar o fator de transcrição YY1 e p53 no citoplasma, levando a inatividade de sua função por conta de sua degradação (KUBBUTAT; VOUSDEN, 1997; WALOWITZ *et al.*, 1998).

Outro alvo citoplasmático importante já descrito para as CAN1 e CAN2, é o fator de transcrição c-Myc. Este fator de transcrição é uma oncoproteína que medeia a regulação da apoptose, proliferação e diferenciação celular (CONACCI-SORRELL; EISENMAN, 2011). Diferente de YY1 e p53, a clivagem deste fator pelas CAN1 e CAN2 não provoca sua degradação. Neste caso, o processamento de c-Myc resulta na formação de uma proteína denominada Myc-nick, consequentemente ocorrendo a perda de função como regulador transcricional. Conacci-Sorrell e colaboradores identificaram que as células de câncer de cólon quando expostas à condições de estresse (hipoxia e privação de nutrientes), aumentam a produção de Myc-nick, (CONACCI-SORRELL et al., 2011). Além disso, é sabido que a expressão de Mycnick promove vários mecanismos que contribuem para a progressão tumoral, como por exemplo o aumento da capacidade migratória e sobrevivência celular, através de associações com acetiltransferases e indução da acetilação de diversas proteínas citoplasmáticas como α-tubulina. Porém, esta contribuição ocorre de uma forma menos representativa quando comparado com a função de c-Myc como regulador transcricional (ANDERSON et al., 2016).

Além da clivagem direta destes fatores de transcrição, as calpaínas já foram descritas atuando indiretamente na ativação/repressão de vias e sinalizações celulares. Um exemplo é a ação em reguladores positivos/negativos destas vias. Há evidências de que CAN1 e CAN2 clivam IKKβ resultando na translocação de NFkB para o núcleo e consequente ativação da via (PIANETTI *et al.*, 2001). Apesar disto, estudos sugerem que estas calpaínas possam estar presentes no núcleo e são capaz de clivar NFkB e os fatores de transcrição c-Jun e c-Fos, inativando estas vias (YANI *et al.*, 1991; WATT *et al.*,1993; LIU *et al.*, 1996; PARIAT *et al.*, 2000).

Ma e colaboradores reportaram que a CAN10 está presente no núcleo de células derivadas do epitélio do cristalino de camundongos, além de sua presença no citoplasma e nas mitocôndrias. Além disso, foi verificado que a CAN10 possui sinal característico de localização nuclear no domínio III. Curiosamente, através do ensaio de IHQ, Ma e colaboradores verificaram uma redução na marcação de CAN10 intracelular e aumento da marcação nuclear após o aumento intracelular de Ca²⁺ (MA *et al.*, 2001), ratificando a presença e ativação desta proteína no núcleo.

Desta forma, a partir da identificação destes fatores de transcrição (c-Myc, NFkB, c-Jun e c-Fos) como possíveis reguladores dos genes DE em ambos modelos *in vitro* silenciados, sugerimos que a CAN10 pode estar envolvida na regulação da expressão gênica através da proteólise dos mesmos.

A regulação da expressão gênica também pode ser controlada através da epigenética, sendo capaz de regular a transcrição gênica em diversos níveis mediante atuação de basicamente três mecanismos: (1) metilação do DNA, (2) modificações pós-traducionais das histonas/remodelamento de cromatina e (3) através da atuação de ncRNAs (ABDUL et al., 2017). Atualmente, estes mecanismos estão sendo estudados em diversos tumores, inclusive no CM (HU et al., 2018). Em nossas análises, observamos a presença de genes DE relacionados com a epigenética, principalmente IncRNAs e miRNAs, sendo os mesmos mais representativos no modelo in vitro de HER2⁺. Como o chip utilizado no ensaio de microarranjo não possui dados do miRNoma humano, reduzimos o cut-off para ±1.3, com a finalidade de verificar se a partir do silenciamento da CAN10 outros genes relacionados à regulação epigenética poderiam ser identificados. De fato, após a redução deste limite identificamos um maior número de IncRNAs e miRNAs DE, evidenciando que a CAN10 está relacionada com a regulação epigenética, principalmente no que se refere à estas classes de ncRNAs, e realmente há uma maior representatividade no modelo in vitro de HER2+. Como a regulação epigenética pode alterar significativamente a expressão gênica, nossas análises subsequentes levaram em consideração os IncRNAs e miRNAs que apresentaram diferenças de expressão neste intervalo de corte.

Na literatura, observamos que alguns dos IncRNAs identificados como DE no modelo HER2+ silenciado para CAN10 já foram relacionados com recorrência de CM, principalmente após a quimioterapia e redução da taxa de sobrevivência global de pacientes com CM, como o caso dos LINC00654, LOC100287728 e LOC284241 (SOUDYAB *et al.*, 2016; DING *et al.*, 2017). Dentre os IncRNAs identificados como DE no modelo TN, o LINC01116 já foi correlacionado com a agressividade tumoral (BEAVER *et al.*, 2017). Apesar do grande número de IncRNAs identificados como DE, poucos são bem caracterizados. Como estes ncRNAs atuam nos diversos níveis da regulação da expressão gênica de formas distintas são necessários estudos mais aprofundados para uma melhor compreensão e caracterização dos mesmos.

No que diz respeito aos miRNAs encontrados DE em ambos modelos silenciados, alguns já foram relacionados com a agressividade no CM e outros associados aos subtipos estudados. Por exemplo, os miR-21, miR-30c-5p, miR-124 e miR-150 (DE MATTOS-ARRUDA *et al.*, 2015; DU *et al.*, 2016; GONG *et al.*, 2016), encontrados como DE no modelo HER2+ silenciado para CAN10, já foram

associados com piores respostas ao tratamento devido ao envolvimento dos mesmos na resistência à terapias direcionadas ao HER2.

Na literatura a expressão diferenciada de alguns miRNAs já foi relacionada com os modelos TN quando comparada com subtipos menos agressivos. Em nosso estudo, identificamos que, dentre os miRNAs que tiveram sua expressão diminuída após o silenciamento da CAN10, os miR-21, miR-26a-1 e miR-153-2 já foram descritos como aumentados no subtipo TN (LIU *et al.*, 2015; CHEN *et al.*, 2017; FKIH M'HAMED *et al.*, 2017; LÜ *et al.*, 2017). Portanto, na presença de CAN10 estes miRNAs apresentam sua expressão aumentada, corroborando com os achados na literatura.

Como a metodologia utilizada em nosso trabalho não é específica para identificação de miRNAs, nós não podemos afirmar que os miRNAs encontrados como DE neste são àqueles mais representativos, nem os mais relevantes após o silenciamento da CAN10 em ambos modelos. Além disso, não é possível afirmar qual seria o mecanismo pelo qual a CAN10 poderia influenciar na expressão destes ncRNAs.

Dentre os reguladores descritos na análise geral de ambos modelos silenciados, c-Myc e NFkB também apareceram como sendo capazes de regular os miRNAs DE de nosso trabalho. Estudos reportaram que alguns dos miRNAs encontrados como DE em ambos modelos silenciados são capazes de regular por feedback positivo ou negativo a expressão destes fatores de transcrição (VAZ et al., 2011; JACKSTADT; HERMEKING, 2014), aumentando a complexidade deste estudo. Além das calpaínas típicas 1 e 2 terem como alvos estes fatores de transcrição, estudos já correlacionaram as mesmas com a biogênese e o processamento de miRNAs, através da clivagem das enzimas Drosha e Dicer. Um estudo reportou que calpaínas típicas são capazes de clivar Drosha: sob condições de estresse Drosha é exportado para o citoplasma para ser degradado, esta degradação ocorre mediante clivagem via calpaínas 1 e 2 (YANG et al., 2015). Além da clivagem de Drosha, Lugli e colaboradores demonstraram que a CAN1 é capaz de clivar e ativar a função enzimática de Dicer nas vesículas sinápticas de camundongos, após aumento de íons Ca²⁺ durante a atividade neuronal (LUGLI et al., 2005). Em contrapartida, Elgheznawy e colaboradores sugerem que alterações na expressão de miRNAs nas plaquetas de pacientes com Diabetes Mellitus podem ser associadas à ativação da CAN2 e consequente proteólise da Dicer, porém, neste

caso a clivagem de Dicer resultou na diminuição da atividade da mesma (ELGHEZNAWY *et al.*, 2015).

Desta forma, a pergunta final que permanece em aberto é se as alterações na expressão gênica encontradas neste trabalho são efeitos secundários da regulação da expressão gênica (1) via ativação/inibição dos fatores de transcrição; (2) via alterações na regulação epigenética, principalmente no que se refere à biogênese e processamento de miRNAs ou (3) um conjunto de ambas hipóteses.

Neste trabalho, foi realizada a identificação de genes DE após o silenciamento da CAN10 em modelos agressivos de CM. Este *screening* inicial foi capaz de identificar possíveis funções biológicas da CAN10, desta forma o modelo proposto ao final deste trabalho é resultado da compilação de todas as análises realizadas juntamente com dados da literatura. Os alvos de CAN10 descritos neste modelo participam da regulação dos processos biológicos de TEM, migração, invasão, proliferação e apoptose; e foram relacionados com os genes DE de ambos modelos após silenciamento da CAN10.

A partir dos resultados obtidos pela identificação de genes DE em ambos modelos silenciados para CAN10 e as análises *in sílico* realizadas juntamente com as validações experimentais de nosso estudo, podemos sugerir, que nos modelos agressivos de CM, a CAN10 tem funções semelhantes as calpaínas 1 e 2. Sendo assim, foi possível desenvolver um modelo propondo os fatores de transcrição como potenciais alvos diretos da CAN10 em ambos subtipos agressivos de CM, sendo a função da CAN10 diferenciada em cada um destes subtipos.

Um dos alvos propostos para CAN10 no modelo HER2+ foi c-Myc, sua clivagem levaria a formação da proteína Myc-nick, relacionada com processos de migração (ANDERSON *et al.*, 2016). Através da clivagem deste regulador, eventos relacionados com a migração celular estariam sendo ativados. Em nosso estudo observamos que a expressão de miRNAs regulados positivamente por *c-MYC* aumentou após o silenciamento da CAN10 no modelo HER2+, além disso, identificamos uma redução nos níveis de MMP16. Isto significa que a presença de CAN10 neste modelo, provoca uma redução da expressão destes miRNAs e um aumento da expressão de MMP16. Sabendo que c-Myc é capaz de regular a expressão de vários ncRNAs (WANG *et al.*, 2013; KIM *et al.*, 2015), a clivagem deste fator de transcrição pela CAN10 poderia justificar uma maior alteração na expressão de ncRNAs, principalmente IncRNAs e miRNAs neste modelo. Além disso, a clivagem de c-Myc pela CAN10 justificaria o maior comprometimento com os

processos iniciais da TEM no modelo HER2+, visto que a ativação de Myc-nick provoca um aumento da capacidade migratória.

Além da clivagem de c-Myc no modelo HER2+, propomos que a CAN10 também seja capaz de clivar YY1. Este fator de transcrição foi identificado como um possível regulador de diversos genes DE neste modelo, sua função está relacionada com processos biológicos como diferenciação, replicação e proliferação celular (GORDON *et al.*, 2006). A clivagem deste fator de transcrição pela CAN10 pode alterar a regulação destes processos, resultando na parada da diferenciação celular e aumento da proliferação celular neste modelo.

A partir do silenciamento da CAN10 no modelo TN, foi possível observar um aumento da expressão dos fatores de transcrição *c-JUN* e *c-FOS* sugerindo que a mesma tenha alvos diretos que possam regular a expressão destes fatores de transcrição. A função destes somente poderá ser avaliada após evidências da sua localização no núcleo e investigação dos genes alvos específicos para os mesmos. Além de sua possível atuação no núcleo, a CAN10 possivelmente também estaria ativa no citoplasma de células deste modelo, sendo capaz de regular a atividade de p53 através de sua clivagem.

Em relação ao fator de transcrição NFkB, existe uma divergência de regulação, a qual dependendo da localização e ativação da CAN10, ela possa ser capaz de (1) ativar NFkB indiretamente através da translocação deste regulador para o núcleo via clivagem Ikβ no citoplasma ou (2) inativar NFkB diretamente no núcleo através da clivagem e degradação deste fator de transcrição. Por conta da dualidade da função da CAN10 à NFkB, ainda não é possível definir com clareza como ela é capaz de regular, e se a mesma é capaz de regular este fator de transcrição em ambos modelos. NFkB é responsável por regular diversos processos envolvidos com a tumorigênese, como a proliferação e sobrevivência celular e inflamação (XIA et al., 2014). Além disso, um estudo anterior realizado por nosso grupo já identificou o envolvimento de NF^kB na ativação de fatores de transcrição que regulam a TEM nos modelos agressivos de CM (PIRES et al., 2017). Sabe-se que existe uma maior ativação de NFkB em células de CM que superexpressam HER2. Em nosso estudo observamos que no modelo HER2+ silenciado para CAN10 foi possível identificar um aumento na expressão de genes relacionados com a via canônica de NFkB, de resposta inflamatória. É sabido que alguns destes também podem ser regulados pelos fatores de transcrição c-JUN, c-FOS e ainda c-JUN/c-FOS. Assim, nossos resultados são inclusivos quanto à ação de CAN10 via NFkB em HER2+, sendo

necessária maior investigação e validação da função/atividade deste fator de transcrição. Já no silenciamento da CAN10 no modelo TN, foi possível observar que, apesar deste fator de transcrição ter sido apontado como up-regulador, não houve grande alteração na expressão de genes DE relacionados à via canônica de NFkB, indicando que possivelmente, neste modelo, a CAN10 não possua atuação como regulador do mesmo.

Com relação a atuação da CAN10 na regulação epigenética, o mecanismo pelo qual a CAN10 regula (direta ou indiretamente) membros relacionados com regulação epigenética ainda não pôde ser compreendido. Porém, nosso estudo apontou para uma possível regulação via fatores de transcrição, como c-MYC, que pode ser capaz de alterar a expressão de miRNAs em um feedback positivo. Além disso, a biogênese de miRNAs pode ser regulada pela CAN10 mediante clivagem de Dicer e Drosha. A partir de dados já publicados para as CAN1 e CAN2, sugerimos que o envolvimento da CAN10 na inibição da biogênese de miRNA pode ocorrer via clivagem e inativação de Drosha (YANG *et al.*, 2015) e Dicer (ELGHEZNAWY *et al.*, 2015). Entretanto, na literatura já foi proposto que a CAN1 é capaz de clivar e ativar Dicer (LUGLI *et al.*, 2005), mostrando que possa ser necessário um balanço entre as atividades das duas enzimas. Ainda, é sabido que na biogênese de miRNAs a clivagem também pode ser mediada por Argonauta 2 (independente de Dicer), o que justificaria a parcela de miRNAs aumentados (YANG *et al.*, 2012).

Figura 6.1: Modelo proposto ao compilar os resultados obtidos neste trabalho. Modelo esquemático ilustrativo indicando os possíveis alvos da calpaína 10 nos modelos agressivos de câncer de mama. Este modelo proposto foi criado a partir da compilação dos resultados obtidos após o silenciamento da calpaína 10, através da identificação de genes diferencialmente expressos e das análises *in sílico* realizadas neste trabalho e baseado em dados da literatura.

Para melhor compreender como a CAN10 se comporta e em quais processos celulares ela está envolvida, estudos aprofundados ainda precisam ser desenvolvidos, principalmente no que se refere à identificação dos alvos diretos da mesma e a localização/ativação exata da CAN10 e dos potenciais fatores de transcrição referidos, nos modelos agressivos de CM.

7. CONCLUSÕES

- As calpaínas 10, 1 e 2, foram identificadas em sobranadante de cultura das linhagens HCC-1954 e MDA-MB-231, sugerindo sua secreção nos modelos *in vitro*.
- A partir do silenciamento gênico da calpaína 10 nas linhagens celulares HCC-1954 e MDA-MB-231, foi possível obter o perfil de expressão gênica diferencial de cada modelo, quando comparados com seus respectivos controles (scramble), sendo identificados 1727 genes diferencialmente expressos na linhagem HER2+ e 677 genes diferencialmente expressos na linhagem TN.
- A construção de Diagrama de Venn, revelou que os alvos da calpaína 10 possuem pouca sobreposição entre os modelos agressivos de CM.
- Os processos biológicos TEM, migração, invasividade, proliferação e apoptose foram representativos em ambas as linhagens, por análise *in silico*. Membros destatas vias como SNAIL, SLUG, N-CAD, E-CAD, MMP16, BCL-2 e TCF4 foram validados com resultados distintos nas linhagens silenciadas para calpaína 10. A calpaína 10 não está relacionada com expressão das calpaínas 1 e 2.
- Foram identificados fatores de transcrição como potenciais reguladores dos genes diferencialmente expressos na linhagem HCC-1954 (NFkB, c-MYC e YY1) e na linhagem MDA-MB-231 (p53, c-JUN e c-FOS). NFKB e c-MYC podem regular os miRNAs diferencialmente expressos.
- CAN10 possui envolvimento com a regulação epigenética nos modelos agressivos de CM, principalmente no que se refere a regulação de IncRNAs e miRNAs. A regulação dos miRNAs pode ser indireta, via fatores de transcrição, ou direta, através da regulação da biogênse de miRNAs mediante clivagem de Drosha e Dicer.

8. REFERÊNCIAS

ABDUL, Qudeer Ahmed *et al.* Epigenetic modifications of gene expression by lifestyle and environment. Archives of Pharmacal Research, 2017.

ALORAIFI, Fatima. *et al.* Detection of novel germline mutations for breast cancer in non- *BRCA1* / *2* families. v. 282, n. 17, p. 3424–3437, FEBS Journal, 2015.

ANDERSON, Sarah. *et al.* **MYC-nick promotes cell migration by inducing fascin expression and Cdc42 activation**. p. 5481–5490, PNAS, 2016.

APELLANIZ-RUIZ, M. *et al.* Human genetics : international projects and personalized medicine. Drug Metabolism and Personalized Therapy, 2015.

ARRINGTON, David D; VAN VLEET, Terry R; SCHNELLMANN, Rick G. Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. v. 291, n. 6, p. C1159–C1171, American journal of physiology. Cell physiology, 2006.

ATENCIO, Isabella A. *et al.* **Calpain inhibitor 1 activates p53-dependent apoptosis in tumor cell lines.** v. 11, n. 5, p. 247–53, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research, 2000.

AUGEREAU, Paule *et al.* Hormonoresistance in advanced breast cancer : a new revolution in endocrine therapy. p. 335–346, Therapeutic Advances in Medical Oncology Review, 2017.

BASELGA, Jose et al. Phase II study of weekly intravenous recombinant

humanized anti-p185HER2 monoclonal antibody in patients with HER2/neuoverexpressing metastatic breast cancer. v. 14, n. 3, p. 737–744, Journal of Clinical Oncology, 1996.

BASELGA, Jose. *et al.* **Advances in the management of HER2-positive early breast cancer.** v. 119, p. 113–122, Critical reviews in oncology/hematology, 2017.

BASSE, Clémence; AROCK, Michel. The increasing roles of epigenetics in breast cancer: Implications for pathogenicity, biomarkers, prevention and treatment. v. 137, n. 12, p. 2785–2794, International Journal of Cancer, 2015.

BEAVER, Laura M. *et al.* Long noncoding RNAs and sulforaphane : a target for chemoprevention and suppression of prostate cancer. v. 42, p. 72–83, The Journal of Nutritional Biochemistry, 2017.

BERSE, Brygid; LYNCH, Julie A. **Molecular diagnostic testing in breast cancer.** v. 31, n. 2, p. 108–121, Seminars in Oncology Nursing, 2015.

BRACCI, Laura. *et al.* Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. v. 21, n. 1, p. 15–25, Cell Death & Differentiation, 2014.

BRADFORD, Marion M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. v. 72, p. 248–54, Analytical biochemistry, 1976.

BROWN, David *et al.* **Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations.** v. 8, p. 14944, Nature Communications, 2017.

CARRICK, Sue *et al.* Single agent versus combination chemotherapy for metastatic breast cancer. n. 2, Cochrane Database Syst Rev.2009.

CECILIO, Adma Poliana *et al.* **Breast cancer in Brazil: Epidemiology and treatment challenges.** v. 7, p. 43–49, Breast Cancer: Targets and Therapy, 2015.

CHAKRABORTI, Sajal *et al.* **Implications of calpains in health and diseases**. v. 49, n. 5, p. 316–328, Indian Journal of Biochemistry and Biophysics, 2012.

CHANG, Jeremy T-H *et al.* Identification of MicroRNAs as Breast Cancer **Prognosis Markers through the Cancer Genome Atlas.** p. 1–13, Plos one , 2016.

CHEN, Junqing *et al.* **Bioinformatics identification of dysregulated microRNAs in triple negative breast cancer based on microRNA expression profiling.** p. 3017– 3023, Oncology Letters, 2017.

COATES, A. S. *et al.* Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. v. 26, n. 8, p. 1533–1546, Annals of Oncology, 2015.

CONACCI-SORRELL, Maralice; EISENMAN, Robert. N. **Post-translational control** of Myc function during differentiation. v. 10, n. 4, p. 604–610, Cell cycle 2011.

CORTESIO, Christa L. *et al.* Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. The v. 180, n. 5, p. 957–971, Journal of Cell Biology, 2008.

COVINGTON, Marisa D.; ARRINGTON, David D.; SCHNELLMANN, Rick G. Calpain

10 is required for cell viability and is decreased in the aging kidney. v. 296, n. 3, p. F478–F486, American journal of physiology. Renal physiology, 2009.

DAVIES, Christina. *et al.* Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptorpositive breast cancer: ATLAS, a randomised trial. v. 381, n. 9869, p. 805–816, The Lancet, 2013.

DE ABREU, Francine B; WELLS, Wendy A and TSONGALIS, Gregory J. The Emerging Role of the Molecular Diagnostics Laboratory in Breast Cancer Personalized Medicine. v. 183, n. 4, p. 1075–1083, The American Journal of Pathology, 2013

DE MATTOS-ARRUDA, Leticia *et al.* MicroRNA-21 links epithelial-tomesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. v. 6, n. 35, p. 37269–80, Oncotarget, 2015.

DING, Xianfeng *et al.* Long non-coding RNAs may serve as biomarkers in breast cancer combined with primary lung cancer. v. 8, n. 35, p. 58210–58221, Oncotarget, 2017.

DU, F. *et al.* A miRNA-based signature predicts development of disease recurrence in HER2 positive breast cancer after adjuvant trastuzumab-based treatment. May, p. 1–9, Nature, 2016.

EBCTCG - Early Breast Cancer Trialists' Collaborative Group. **Relevance of breast** cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. v. 378, n 9793, p771–784, The Lancet, 2011.

EKINS, Sean *et al.* **Pathway mapping tools for analysis of high content data.** v. 356, n. 6, p. 319–350, Methods in molecular biology, 2007.

ELGHEZNAWY, Amro. *et al.* Dicer cleavage by calpain determines platelet microRNA levels and function in diabetes. v. 117, n. 2, p. 157–165, Circulation Research, 2015.

FERLAY, Jacques *et al.* Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. v. 136, n. 5, p. E359–E386, International Journal of Cancer, 2015.

FKIH M'HAMED, Insaf *et al.* miR-10b, miR-26a, miR-146a And miR-153
Expression in Triple Negative Vs Non Triple Negative Breast Cancer: Potential
Biomarkers. v. 23, n. 4, p. 815–827, Pathology & Oncology Research, 2017.

FONG, Pui-yee *et al.* Association of Diabetes Susceptibility Gene Calpain-10 with Pancreatic Cancer Among Smokers., v. 41, n. 3, p. 203–208, Journal of Gastrointestinal Cancer, 2010.

FRANCES, Carmen P. *et al.* Identification of a protective haplogenotype within CAPN10 gene influencing colorectal cancer susceptibility. v. 22, n. 12, p. 2298–2302, Journal of Gastroenterology and Hepatology (Australia), 2007.

GOLL, Darrel E. *et al.* **The Calpain System.** v. 83, n. 3, p. 731–801, Physiological Reviews, 2003.

GONG, Chang *et al.* **Prognostic Value of a BCSC-associated MicroRNA Signature in Hormone Receptor-Positive HER2-Negative Breast Cancer.** v. 11, p. 199–209, EBioMedicine, 2016.

GORDON, S. *et al.* Transcription factor YY1: Structure, function, and therapeutic implications in cancer biology. v. 25, n. 8, p. 1125–1142, Oncogene, 2006.

HAN, Weiwei; Du, Yongli **Recent Development of the Second and Third Generation Irreversible Epidermal Growth Factor Receptor Inhibitors.** v. 14, n. 7, p. e1600372, Chemistry & Biodiversity, 2017.

HANAHAN, Douglas; WEINBERG, Robert A. **The hallmarks of cancer.** v. 100, n. 1, p. 57–70, Cell, 2000.

HANAHAN, Douglas; WEINBERG, Robert A. Hallmarks of cancer: The next generation. v. 144, n. 5, p. 646–674, Cell, 2011.

HARBECK, Nadia. Insights into biology of luminal HER2 vs. enriched HER2 subtypes: Therapeutic implications. v. 24, p. S44–S48, Breast, 2015.

HATA, Shoji. *et al.* Both the conserved and the unique gene structure of stomach-specific calpains reveal processes of calpain gene evolution. J v. 53, n. 3, p. 191–203, Journal of Molecular Evolution, 2001.

HATA, Shoji. *et al.* Calpain 8/nCL-2 and Calpain 9/nCL-4 constitute an active protease complex, G-Calpain, involved in gastric mucosal defense., v. 6, n. 7, p. 1–14, PLoS Genetics 2010.

HOWLADER N. *et al.*, **SEER Cancer Statistics Review**, **1975-2013**. National p. 1992–2013, Cancer Institute, 2016.

HU, Xiaowen *et al.* The role of long noncoding RNAs in cancer : the dark matter matters. v. 48, p. 8–15, Current Opinion in Genetics & Development, 2018.

HURST, Jillian H. **Pioneering geneticist Mary-Claire King receives the 2014** Lasker~Koshland Special Achievement Award in Medical Science. v. 124, n. 10, p. 4148–4151, The Journal of clinical investigation, 2014.

INCA - INSTITUTO NACIONAL DE CANCER JOSÉ ALENCAR GOMES DA SILVA - Estimativa 2018.

INCA. Políticas e ações para prevenção do câncer no Brasil: alimentação, nutrição e atividade física.
2. reimpr. p. 2–3, Instituto Nacional de Câncer.
Coordenação Geral de Ações Estratégicas. Coordenação de Prevenção e Vigilância
Rio de Janeiro: INCA, 2012

IRVIN, M. R. *et al.* Genetic risk factors for type 2 diabetes with pharmacologic intervention in African-American patients with schizophrenia or schizoaffective disorder. v. 114, n. 1–3, p. 50–56, Schizophrenia Research, 2009.

JACKSTADT, Rene; HERMEKING, Heiko. **MicroRNAs as regulators and mediators of c-MYC function.** Vol. 1849, Is 5, p. 544-553BBA - Gene Regulatory Mechanisms, 2014.

JANG, Hyo Sang; LAL, Sangeer; GREENWOOD, Jeffrey. A. **Calpain 2 is Required for Glioblastoma Cell Invasion: Regulation of Matrix Metalloproteinase 2.** v. 35, n. 11, p. 1796–1804, Neurochemical Research, 2010.

JANG, Min Hye *et al.* A comparison of Ki-67 counting methods in luminal Breast Cancer: The Average Method vs. the Hot Spot Method. v. 12, n. 2, p. e0172031, PLOS ONE, 2017.

JOHNSON, James D. et al. RyR2 and calpain-10 delineate a novel apoptosis

pathway in pancreatic islets. v. 279, n. 23, p. 24794–24802, Journal of Biological Chemistry, 2004.

JOVANOVIC, Jovana *et al.* **The epigenetics of breast cancer.** v. 4, n. 3, p. 242–254, Molecular Oncology, 2010.

KIM, Taewan *et al.* Role of MYC-Regulated long noncoding RNAs in cell cycle regulation and tumorigenesis. v. 107, n. 4, p. 1–11, Journal of the National Cancer Institute, 2015.

KISS, Róbert R. *et al.* Calcium-induced tripartite binding of intrinsically disordered calpastatin to its cognate enzyme, calpain. v. 582, n. 15, p. 2149–2154, FEBS Letters, 2008.

KOREN, Shany.; BENTIRES-ALJ, Mohamed. **Breast Tumor Heterogeneity: Source of Fitness, Hurdle for Therapy.** v. 60, n. 4, p. 537–546, Molecular Cell, 2015.

KOTNIS, Ashwin.; SARIN, Rajiv; MULHERKAR, Rita. Genotype, phenotype and cancer: Role of low penetrance genes and environment in tumour susceptibility. v. 30, n. 1, p. 93–102, J. Biosci, 2005.

KUBBUTAT, Michael H G; VOUSDEN, Karen H. Proteolytic Cleavage of Human p53 by Calpain : a Potential Regulator of Protein Stability. v. 17, n. 1, p. 460–468, Mol Cell Biol, 1997.

KULKARNI, S. *et al.* Calpain regulates sensitivity to trastuzumab and survival in **HER2-positive breast cancer.** v. 29, n. 9, p. 1339–50, Oncogene, 2010.

LAKHANI, Sunil R. *et al.* **WHO classification of tumours of the breast.** IARC WHO Classification of Tumours, 2012.

LEE, Alice; DJAMGOZ, Mustafa B A. Triple negative breast cancer: Emerging therapeutic modalities and novel combination therapies. v. 62, p. 110–122, Cancer treatment reviews, 2018.

LEE, Hahn-Jun *et al.* Molecular Cloning and Characterization of a Novel Tissue-Specific Calpain Predominantly Expressed in the Digestive Tract. v. 379, p. 175–183, Biol. Chem, 1998.

LIU, Hairong *et al.* Long non-coding RNAs as prognostic markers in human breast cancer. v. 7, n. 15, Oncotarget, 2015.

LIU, Peng *et al.* **miR-26a suppresses tumour proliferation and metastasis by targeting metadherin in triple negative breast cancer.** v. 357, n. 1, p. 384–392, Cancer Letters, 2015.

LIU, Zhen-Qiu *et al.* **Proteolytic processing of nuclear factor KB by calpain in vitro.** v. 385, p. 109–113, FEBS Letters, 1996.

LÜ, Lingshuang *et al.* MicroRNAs in the prognosis of triple-negative breast cancer., v. 96, n. 22, Medicine, 2017.

LUGLI, Giovanni *et al.* Dicer and elF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. v. 94, n. 4, p. 896–905, Journal of Neurochemistry, 2005.

LV, Quanxia *et al.* Molecular Mechanisms and Translational Therapies for Human Epidermal Receptor 2 Positive Breast Cancer. v. 17, n. 12, p. 2095, International Journal of Molecular Sciences, 2016.

MA, Hong *et al.* Characterization and Expression of Calpain 10: A novel ubiquitous calpain with nuclear localization. v. 276, n. 30, p. 28525–28531, Journal of Biological Chemistry, 2001.

MAKKI, Jaafar. **Diversity of breast carcinoma: Histological subtypes and clinical relevance.** v. 8, n. 1, p. 23–31, Clinical Medicine Insights: Pathology, 2015.

MARSHALL, Catriona *et al.* Evidence that an isoform of calpain-10 is a regulator of exocytosis in pancreatic beta-cells., v. 19, n. 1, p. 213–224, Molecular endocrinology (Baltimore, Md.), 2005.

MARTIN, Miguel *et al.* **A phase two randomised trial of neratinib monotherapy versus lapatinib plus capecitabine combination therapy in patients with HER2+ advanced breast cancer.** European Journal of Cancer, v. 49, n. 18, p. 3763–3772, dez. 2013.

MIGNOT, Fabien *et al.* Concurrent administration of anti-HER2 therapy and radiotherapy: Systematic review. v. 124, n. 2, p. 190–199, Radiotherapy and Oncology, 2017.

MILIK, Sandra N. *et al.* How to train your inhibitor: Design strategies to overcome resistance to Epidermal Growth Factor Receptor inhibitors. v. 142, p. 131–151, European Journal of Medicinal Chemistry, 2017.

MILLER, Elizabeth et al. Current treatment of early breast cancer: adjuvant and

neoadjuvant therapy. F1000 Research, 2014

Moore, K.L.; Persaud, T.V.N. **Embriologia Básica.** Rio de Janeiro, Elsevier, 7a ed., 2008

MORENO-LUNA, Ramón *et al.* Calpain 10 gene and layngeal cancer: a survival analysis. v. 33, p. 72–76, Head and Neck, 2011.

MORETTI, Daniele *et al.* **Calpains and cancer: Friends or enemies?** v. 564, p. 26–36, Archives of Biochemistry and Biophysics, 2014.

MORIGI, Consuelo. Highlights from the 15th St Gallen International Breast Cancer Conference 15 – 18 March , 2017 , Vienna : tailored treatments for patients with early breast cancer. p. 1–12, ecancermedicalscience, 2017.

MOUNSEY, Louisa A. *et al.* Changing Natural History of HER2–Positive Breast Cancer Metastatic to the Brain in the Era of New Targeted Therapies. v. 18, n. 1, p. 29–37, Clinical Breast Cancer, 2018.

MULLER, William J. **Oncogenes and Tumor Suppressor Genes.** p. 1–18, Cold Spring Harb Perspect Biol, 2010.

MUZNY, Donna M. *et al.* Comprehensive molecular portraits of human breast tumours. v. 487, n. 7407, p. 61–70, Nature, 2012.

NAKASHOJI, Ayako *et al.* The updated network meta-analysis of neoadjuvant therapy for HER2-positive breast cancer. v. 62, p. 9–17, Cancer treatment reviews, 2018.

NOUNOU, Mohamed I. et al. Breast Cancer: Conventional Diagnosis and

Treatment Modalities and Recent Patents and Technologies. v. 9, n. Suppl 2, p. 17–34, Breast cancer : basic and clinical research, 2015.

OUYANG, L. *et al.* **Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis.** v. 45, n. 6, p. 487–498, Cell Proliferation, 2012.

PALAZZO, Alexander F; LEE, Eliza S. Non-coding RNA: what is functional and what is junk? v. 6, p. 2, Frontiers in genetics, 2015.

PANDURANGAN, Muthuraman *et al.* **The calpain system and diabetes.** v. 21, n. 2, p. 161–167, Pathophysiology, 2014.

PANIS, Carolina *et al.* The positive is inside the negative: HER2-negative tumors can express the HER2 intracellular domain and present a HER2-positive phenotype. v. 357, n. 1, p. 186–195, Cancer Letters, 2015.

PARIAT, Magali *et al.* The sensitivity of c-Jun and c-Fos proteins to calpains depends on conformational determinants of the monomers and not on formation of dimers formation of dimers. v. 138, p. 129–138, Biochemical Society 2000.

PEROU, Charles M. *et al.* **Molecular Portraits Breast Cancer.** v. 533, May, p. 747–752, Nature 2000.

PERRI, F. *et al.* Epigenetic control of gene expression : Potential implications for cancer treatment. v. 111, p. 166–172, Critical Reviews in Oncology / Hematology, 2017.

PIANETTI, Stefania *et al.* Her-2/neu overexpression induces NF-kappaB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IkappaB-alpha that can be inhibited by the tumor suppressor PTEN. v. 20, n. 11, p. 1287–1299, Oncogene, 2001.

PIRES, Bruno. R. B. *et al.* NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells. v. 12, n. 1, p. e0169622, Plos One, 2017.

PRAT, Aleix; PEROU, Charles M. Deconstructing the molecular portraits of breast cancer. v. 5, p. 5–23, Molecular Oncology, 2010.

PRONINA, Irina V. *et al.* **DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression.** v. 604, p. 1–8, Gene, 2017.

PU, Xuan *et al.* Calpain-1 is associated with adverse relapse free survival in breast cancer: A confirmatory study. v. 68, n. 7, p. 1021–1029, Histopathology, 2016.

RADHA, Gudapureddy; RAGHAVAN, Sathees C. **BCL2: A promising cancer therapeutic target.** v. 1868, n. 1, p. 309–314, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2017.

RANDALL, Leslie M; POTHURI, Bhavana **Gynecologic Oncology The genetic prediction of risk for gynecologic cancers**. v. 141, n. 1, p. 10–16, Gynecologic Oncology, 2016.

RAVINDRANATH, A. *et al.* Wnt–β-catenin–Tcf-4 signalling-modulated invasiveness is dependent on osteopontin expression in breast cancer. v. 105, n. 4, p. 542–551, 1 British Journal of Cancer, 2011.

RAYNAUD, Peggy. *et al.* Correlation between bovine calpastatin mRNA transcripts and protein isoforms. v. 440, p. 46–53, Archives of Biochemistry and Biophysics, 2005.

RIVENBARK, Ashley G.; O'CONNOR, Siobhan M.; COLEMAN, William B. **Molecular** and cellular heterogeneity in breast cancer: Challenges for personalized medicine. v. 183, n. 4, p. 1113–1124, American Journal of Pathology, 2013.

ROSAI, Juan. Ackerman's surgical pathology. 11 ed p.1495, Mosby, 2011.

ROMAGNOLO, Donato F. *et al.* Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. p. 1310–1329, Mol. Nutr. Food, 2016.

SALEHIN, Darius *et al.* Immunhistochemical analysis for expression of calpain **1, calpain 2 and calpastatin in endometrial cancer.** v. 30, n. 7, p. 2837–43, Anticancer research, 2010.

SAPINO, Anna. *et al.* Current challenges for HER2 testing in diagnostic pathology: state of the art and controversial issues. v. 3, n. May, p. 1–9, Front Oncon., 2013.

SAUTER, Edward R **Reliable Biomarkers to Identify New and Recurrent Cancer.** v. 13, n. 4, p. 162–167, European journal of breast health, 2017.

SCALIA-WILBUR, Jennifer *et al.* Breast Cancer Risk Assessment: Moving Beyond BRCA 1 and 2. v. 26, n. 1, p. 3–8, Seminars in Radiation Oncology, 2016.

SCHERR, Michaela; EDER, Matthias. Gene Silencing by Small Regulatory RNAs

in Mammalian Cells. v. 6, n. 4, p. 444–449, Cell Cycle, 2007.

SCHNITT, Stuart J. Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. v. 23 Suppl 2, n. S2, p. S60–S64, Modern pathology, 2010.

SEGOVIA-MENDOZA, Mariana *et al.* Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence. v. 5, n. 9, p. 2531–61, American journal of cancer research, 2015.

SEREMWE, Mutsa; SCHNELLMANN, Rick G.; BOLLAG, Wendy B. Calpain-10 activity underlies angiotensin Il-induced aldosterone production in an adrenal glomerulosa cell model. v. 156, n. 6, p. 2138–2149, Endocrinology, 2015.

SHERWOOD, Victoria. **WNT Signaling: an Emerging Mediator of Cancer Cell Metabolism?**, v. 35, n. 1, p. 2–10, Molecular and Cellular Biology, 2015.

SHIOVITZ, S.; KORDE, L. A. Genetics of breast cancer: a topic in evolution. 26: 1291–1299, Annals of Oncology, 2015.

SHOKOUH, Taghipour Zahir; EZATOLLAH, Aalipour; BARAND, Poorya. Interrelationships Between Ki67, HER2/neu, p53, ER, and PR Status and Their Associations With Tumor Grade and Lymph Node Involvement in Breast Carcinoma Subtypes: Retrospective-Observational Analytical Study. v. 94, n. 32, p. e1359, Medicine, 2015.

SINGLETARY, S. Eva; GREENE, Frederick L.; SOBIN, Leslie H.. Classification of isolated tumor cells. v. 98, n. 12, p. 2740–2741, Cancer, 2003.
SKOOG, Petter. *et al.* Tumor tissue protein signatures reflect histological grade of breast cancer. v. 12, n. 6, p. e0179775, PLOS ONE, 2017.

SONG, Jun-long *et al.* **Progress in the clinical detection of heterogeneity in breast cancer**. 5(12):3475–3488, Cancer Medicine, 2016.

SORIMACHI, Hiroyuki; HATA, Shoji; ONO, Yasuko. **Impact of genetic insights into** calpain biology. v. 150, n. 1, p. 23–37, Journal of Biochemistry, 2011.

SORLIE, T. *et al.* Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. v. 98, n. 19, p. 10869–10874, Proceedings of the National Academy of Sciences, 2001.

SOUDYAB, Mohammad; IRANPOUR, Mostafa AND GHAFOURI-FARD ,Soudeh. **Role of Long Non-Coding RNAs in Breast Cancer**. v. 19, n. 7, Archives of Iranian Medicine, 2016.

SPITZ, François; FURLONG, Eileen E. M. Transcription factors: from enhancer binding to developmental control. v. 13, n. 9, p. 613–626, Nature Reviews Genetics, 2012.

STORR, Sarah. J. *et al.* **The calpain system and cancer.** v. 11, n. 5, p. 364–374, Nature reviews. Cancer, 2011.

STORR, Sarah. J. *et al.* Calpain in Breast Cancer: Role in Disease Progression and Treatment Response. v. 82, n. 3–4, p. 133–141, Pathobiology,2015.

SUBRAMANIAN, Anuradha *et al.* Development of nanotheranostics against metastatic breast cancer - A focus on the biology & mechanistic approaches. v.

33, n. 8, p. 1897–1911, Biotechnology Advances, 2015.

SWAIN, Sandra. M. *et al.* **Pertuzumab, trastuzumab, and docetaxel for HER2positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study.** v. 14, n. 6, p. 461–471, The Lancet Oncology, 2013.

TEO, Jia Ling; KAHN, Michael. **The Wnt signaling pathway in cellular proliferation and differentiation: A tale of two coactivators.** v. 62, n. 12, p. 1149–1155, Advanced Drug Delivery Reviews, 2010.

TESHOME, Mediget.; HUNT, Kelly. K. **Neoadjuvant Therapy in the Treatment of Breast Cancer.** v. 23, n. 3, p. 505–523, Surgical Oncology Clinics of North America, 2014.

THIERY, Jean Paul. **Epithelial–mesenchymal transitions in tumour progression.** v. 2, n. 6, p. 442–454, Nature Reviews Cancer, 2002.

TURASHVILI, Gulisa; BROGI, Edi. **Tumor Heterogeneity in Breast Cancer.** v. 4, p. 227, Frontiers in Medicine, 2017.

TURNER, Mark D. Coordinated control of both insulin secretion and insulin action through calpain-10-mediated regulation of exocytosis? v. 91, n. 4, p. 305–307, Molecular Genetics and Metabolism, 2007.

VAZ, Candida *et al.* Micrornas modulate the dynamics of the NF-κB signaling pathway. v. 6, n. 11, PLoS ONE 2011.

VIALE, G. The current state of breast cancer classification. v. 23, n. suppl 10, p.

x207–x210, Annals of Oncology, 2012.

VOROBIOF, Daniel A. Recent advances in the medical treatment of breast cancer. v. 5, p. 2786, F1000Research, 2016.

XIA, Yifeng; SHEN, Shen; VERM, Inder M. **NF-κB, an active player in human** cancers v. 2, n. 9, p. 823-830, Immunol Res., 2014.

WAHLER, Joseph; SUH, Nanjoo. **Targeting HER2 Positive Breast Cancer with Chemopreventive Agents.** v. 1, n. 5, p. 324–335, Current pharmacology reports, 2015.

WALOWITZ, Jennifer L *et al.* **Proteolytic Regulation of the Zinc Finger Transcription Factor YY1 , a Repressor of Muscle-restricted Gene Expression**. v. 273, n. 12, p. 6656–6661, The journal of Biological Chemistry, 1998.

WANG, Xingwu. *et al.* C-Myc modulates microRNA processing via the transcriptional regulation of Drosha. v. 3, p. 1–7, Scientific Reports, 2013.

WANG, Yifan; ZHOU, Binhua P. Epithelial-mesenchymal transition in breast cancer progression and metastasis v. 30, n. 9, p. 603–11 Chinese journal of cancer, 2011.

WATT, Fujiko; MOLLOY, Peter. L. **Specific cleavage of transcription factors by the thiol.** v. 21, n. 22, p. 5092–5100, Nucleic Acids Research, 1993.

WEAVER, Alissa M. Invadopodia: specialized cell structures for cancer invasion. p. 97–105 Clin Exp Metastasis, 2006.

89

WINSHIP, Ingrid; SOUTHEY, Melissa C. Gene panel testing for hereditary breast cancer. v. 204, n. 5, p. 188–190. The Medical Journal of Australia, 2016.

WOLFF, Antonio C. *et al.* Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update.
v. 31, n. 31, p. 3997–4013, Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 2013.

WONG, Eric; REBELO, Jenna. Breast cancer pathogenesis and histologic vs. molecular subtypes. 2012

YANG, H. *et al.* Calpain-mediated androgen receptor breakdown in apoptotic prostate cancer cells. v. 217, n. 3, p. 569–576, Journal of Cellular Physiology, 2008.

YANG, JR-Shiuan YANG; MAURIN, Thomas; LAI, Eric C. Functional parameters of Dicer-independent microRNA biogenesis. v. 18, n. 5, p. 945–957, Rna, 2012.

YANG, Qian. *et al.* Stress Induces p38 MAPK-Mediated Phosphorylation and Inhibition of Drosha-Dependent Cell Survival Article Stress Induces p38 MAPK-Mediated Phosphorylation and Inhibition of Drosha-Dependent Cell Survival. v. 57, n. 4, p. 721–734, Molecular Cell, 2015.

YANG, Xiaohong R. *et al.* Associations of Breast Cancer Risk Factors With Tumor Subtypes: A Pooled Analysis From the Breast Cancer Association Consortium Studies. v. 103, n. 3, p. 250–263, JNCI: Journal of the National Cancer Institute, 2011.

YANI, Moshe; HIRAM, Syu-ichi. Degradation of transcription factors , c-Jun and

c-Fos, by calpain. v. 287, n. 1, p. 57–61, FEBS, 1991.

YERSAL, Ozlem; BARUTCA, Sabri. **Biological subtypes of breast cancer: Prognostic and therapeutic implications.** v. 5, n. 3, p. 412–24, World journal of clinical oncology, 2014.

YOSHIKAWA, Y. *et al.* **Isolation of two novel genes, down-regulated in gastric cancer.** v. 91, n. 5, p. 459–63, Japanese journal of cancer research : Gann, 2000.

YUN, Miyong. *et al.* **Readers of histone modifications.** v. 21, n. 4, p. 564–578, Cell Research, 2011.

ZANARDI, Elisa *et al.* Better Together: Targeted Combination Therapies in Breast Cancer. v. 42, n. 6, p. 887–895, Seminars in Oncology, 2015.

ZHANG, Jun-Fei *et al.* Novel therapeutic strategies for patients with triplenegative breast cancer. v. 9, p. 6519–6528, OncoTargets and therapy, 2016.

ZHANG, Xiao-Yan; XU, Cong-Jian. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications. v. 8, n. 46, p. 81558–81571, Oncotarget, 2017.

91

9. Anexos

ANEXO A – Tabela dos genes diferencialmente expressos após silenciamento da calpaína 10 na linhagem HCC-1954 siCAPN10 (fold change 1.5)

Símbolo do Gene	Descrição	Fold Change
LOC100287728	uncharacterized LOC100287728	-3.51
CYP4Z1	cytochrome P450, family 4, subfamily Z, polypeptide 1	-2.97
LCE2D	late cornified envelope 2D	-2.6
LOC100034248	uncharacterized LOC100034248	-2.55
LOC105372258	uncharacterized LOC105372258	-2.55
KRTAP10-1	keratin associated protein 10-1	-2.48
EYS	eyes shut homolog (Drosophila)	-2.43
LY86-AS1	LY86 antisense RNA 1	-2.4
GRAP	GRB2-related adaptor protein	-2.32
CCDC127	coiled-coil domain containing 127	-2.26
COL11A2	collagen, type XI, alpha 2	-2.26
DEFB124	defensin, beta 124	-2.24
SP5	Sp5 transcription factor	-2.21
NPW	neuropeptide W	-2.19
LOC100652807	putative uncharacterized protein C3orf53	-2.16
TBX4	T-box 4	-2.15
ZSCAN5B	zinc finger and SCAN domain containing 5B	-2.11
LOC441956	uncharacterized LOC441956	-2.1
OR2T8	olfactory receptor, family 2, subfamily T, member 8	-2.1
PPP3R2	protein phosphatase 3, regulatory subunit B, beta	-2.1
IGKV1D-42	immunoglobulin kappa variable 1D-42 (non-functional)	-2.09
KLK11	kallikrein related peptidase 11	-2.09
ADGRL2	adhesion G protein-coupled receptor L2	-2.08
CH507-9B2.8	uncharacterized LOC105372831	-2.04
LOC105377139	uncharacterized LOC105377139	-2.04

Símbolo do Gene	Descrição	Fold Change
LINC00654	long intergenic non-protein coding RNA 654	-2.03
PRAMEF12	PRAME family member 12	-2.03
LOC101060256	tripartite motif-containing protein 51-like	-2.02
ZNF488	zinc finger protein 488	-2.02
PIR	pirin	-2.01
LOC284241	synaptojanin-1	-2
OR2B7P	olfactory receptor, family 2, subfamily B, member 7 pseudogene	-1.99
LINC00537	long intergenic non-protein coding RNA 537	-1.98
LOC100506571	uncharacterized LOC100506571	-1.98
MIR339	microRNA 339	-1.98
TLCD2	TLC domain containing 2	-1.98
C3orf79	chromosome 3 open reading frame 79	-1.97
LOC100996325	uncharacterized LOC100996325	-1.96
MIR194-2	microRNA 194-2	-1.96
SMCR5	Smith-Magenis syndrome chromosome region, candidate 5 (non-protein coding)	-1.96
CELF3	CUGBP, Elav-like family member 3	-1.95
CRACR2A	calcium release activated channel regulator 2A	-1.95
MIR30C1	microRNA 30c-1	-1.94
AKR1C2	aldo-keto reductase family 1, member C2	-1.93
OR2T32P	olfactory receptor, family 2, subfamily T, member 32 pseudogene	-1.93
RNY4P13	RNA, Ro-associated Y4 pseudogene 13	-1.93
COTL1P1	coactosin-like F-actin binding protein 1 pseudogene 1	-1.92
GPR142	G protein-coupled receptor 142	-1.92
IGF2BP3	insulin-like growth factor 2 mRNA binding protein 3	-1.92
MAGEL2	MAGE family member L2	-1.92
SYTL5	synaptotagmin-like 5	-1.92
WFDC10A	WAP four-disulfide core domain 10A	-1.92
KRTAP10-4	keratin associated protein 10-4	-1.91
PRAMEF18	PRAME family member 18	-1.91
PRAMEF19	PRAME family member 19	-1.91

Símbolo do Gene	Descrição	Fold Change
PRAMEF22	PRAME family member 22	-1.91
KIAA2012	KIAA2012	-1.9
GOT1L1	glutamic-oxaloacetic transaminase 1-like 1	-1.89
NPFFR1	neuropeptide FF receptor 1	-1.89
SPNS1	spinster homolog 1 (Drosophila)	-1.89
ZNF667-AS1	ZNF667 antisense RNA 1 (head to head)	-1.89
OR7E129P	olfactory receptor, family 7, subfamily E, member 129 pseudogene	-1.88
PRPH2	peripherin 2 (retinal degeneration, slow)	-1.87
SERTM1	serine-rich and transmembrane domain containing 1	-1.87
TEKT5	tektin 5	-1.87
TSPYL6	TSPY-like 6	-1.87
CECR1	cat eye syndrome chromosome region, candidate 1	-1.86
DENND2D	DENN/MADD domain containing 2D	-1.86
EBF4	early B-cell factor 4	-1.86
HCRP1	hepatocellular carcinoma-related HCRP1	-1.86
MIR375	microRNA 375	-1.86
NAALADL2	N-acetylated alpha-linked acidic dipeptidase-like 2	-1.86
CD177	CD177 molecule	-1.85
FADS6	fatty acid desaturase 6	-1.85
LOC401320	uncharacterized LOC401320	-1.85
MYLPF	myosin light chain, phosphorylatable, fast skeletal muscle	-1.85
TRBV21OR9-2	T cell receptor beta variable 21/OR9-2 (pseudogene)	-1.85
CYP2W1	cytochrome P450, family 2, subfamily W, polypeptide 1	-1.84
ECRP	ribonuclease, RNase A family, 2 (liver, eosinophil-derived neurotoxin) pseudogene	-1.84
GNB3	guanine nucleotide binding protein (G protein), beta polypeptide 3	-1.84
KBTBD12	kelch repeat and BTB (POZ) domain containing 12	-1.84
UCN	urocortin	-1.84
LCNL1	lipocalin-like 1	-1.83
PTGDS	prostaglandin D2 synthase 21kDa (brain)	-1.83
CAB39L	calcium binding protein 39-like	-1.82

Símbolo do Gene	Descrição	Fold Change
CEND1	cell cycle exit and neuronal differentiation 1	-1.82
LPAL2	lipoprotein, Lp(a)-like 2, pseudogene	-1.82
PP14571	uncharacterized LOC100130449	-1.82
PRAMEF7	PRAME family member 7	-1.82
PRAMEF8	PRAME family member 8	-1.82
AGMAT	agmatinase	-1.81
ERVH48-1	endogenous retrovirus group 48, member 1	-1.81
GPT	glutamic-pyruvate transaminase (alanine aminotransferase)	-1.81
INSRR	insulin receptor-related receptor	-1.81
FLJ38773	uncharacterized protein FLJ38773	-1.8
FNDC4	fibronectin type III domain containing 4	-1.8
KRTAP10-11	keratin associated protein 10-11	-1.8
LOC105369183	uncharacterized LOC105369183	-1.8
LOC105379539	tyrosine-protein phosphatase non-receptor type 23-like	-1.8
MIR9-3	microRNA 9-3	-1.8
MIRLET7B	microRNA let-7b	-1.8
MIRLET7BHG	MIRLET7B host gene	-1.8
OR10S1	olfactory receptor, family 10, subfamily S, member 1	-1.8
PACS2	phosphofurin acidic cluster sorting protein 2	-1.8
ATP10A	ATPase, class V, type 10A	-1.79
GCOM1	GRINL1A complex locus 1	-1.79
KRTAP5-4	keratin associated protein 5-4	-1.79
MYZAP	myocardial zonula adherens protein	-1.79
POLR2M	polymerase (RNA) II (DNA directed) polypeptide M	-1.79
SLC6A17	solute carrier family 6 (neutral amino acid transporter), member 17	-1.79
WDR86	WD repeat domain 86	-1.79
ABCB8	ATP binding cassette subfamily B member 8	-1.78
BBC3	BCL2 binding component 3	-1.78
CH17-351M24.1	uncharacterized LOC644767	-1.78
KRTAP5-1	keratin associated protein 5-1	-1.78

Símbolo do Gene	Descrição	Fold Change
KRTAP5-3	keratin associated protein 5-3	-1.78
LOC101928751	uncharacterized LOC101928751	-1.78
LOC105372315	endogenous retrovirus group S71 member 1 Env polyprotein	-1.78
MFSD6L	major facilitator superfamily domain containing 6-like	-1.78
MIR326	microRNA 326	-1.78
DIP2C	disco-interacting protein 2 homolog C	-1.77
FOXN4	forkhead box N4	-1.77
FXYD6	FXYD domain containing ion transport regulator 6	-1.77
FXYD6-FXYD2	FXYD6-FXYD2 readthrough	-1.77
IGSF9B	immunoglobulin superfamily, member 9B	-1.77
KRTAP6-2	keratin associated protein 6-2	-1.77
MAGEB5	MAGE family member B5	-1.77
OPN4	opsin 4	-1.77
OR13J1	olfactory receptor, family 13, subfamily J, member 1	-1.77
OR51F2	olfactory receptor, family 51, subfamily F, member 2	-1.77
OR6C76	olfactory receptor, family 6, subfamily C, member 76	-1.77
TNNI1	troponin I type 1 (skeletal, slow)	-1.77
C1orf64	chromosome 1 open reading frame 64	-1.76
C4orf50	chromosome 4 open reading frame 50	-1.76
GNAI2	guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 2	-1.76
MCCD1	mitochondrial coiled-coil domain 1	-1.76
MYO18B	myosin XVIIIB	-1.76
NEU2	sialidase 2 (cytosolic sialidase)	-1.76
XIRP1	xin actin binding repeat containing 1	-1.76
CDC14C	cell division cycle 14C	-1.75
CLDN19	claudin 19	-1.75
COX4I2	cytochrome c oxidase subunit IV isoform 2 (lung)	-1.75
HOPX	HOP homeobox	-1.75
KLRC4-KLRK1	KLRC4-KLRK1 readthrough	-1.75
MMP16	matrix metallopeptidase 16 (membrane-inserted)	-1.75

Símbolo do Gene	Descrição	Fold Change
ODF3L1	outer dense fiber of sperm tails 3-like 1	-1.75
OR51D1	olfactory receptor, family 51, subfamily D, member 1	-1.75
PRSS50	protease, serine 50	-1.75
SH2D7	SH2 domain containing 7	-1.75
SIGLEC1	sialic acid binding Ig-like lectin 1, sialoadhesin	-1.75
SPACA5B	sperm acrosome associated 5B	-1.75
TOPAZ1	testis and ovary specific PAZ domain containing 1	-1.75
WISP2	WNT1 inducible signaling pathway protein 2	-1.75
AGR2	anterior gradient 2, protein disulphide isomerase family member	-1.74
AQP2	aquaporin 2 (collecting duct)	-1.74
CCDC13	coiled-coil domain containing 13	-1.74
CHST6	carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 6	-1.74
HHATL	hedgehog acyltransferase-like	-1.74
IGHV3-35	immunoglobulin heavy variable 3-35 (non-functional)	-1.74
IGHV3-72	immunoglobulin heavy variable 3-72	-1.74
IGHV3-73	immunoglobulin heavy variable 3-73	-1.74
KLK3	kallikrein related peptidase 3	-1.74
LOC100509814	uncharacterized LOC100509814	-1.74
MIR137HG	MIR137 host gene	-1.74
MIR2682	microRNA 2682	-1.74
MRAP2	melanocortin 2 receptor accessory protein 2	-1.74
MYOD1	myogenic differentiation 1	-1.74
SCARF2	scavenger receptor class F, member 2	-1.74
SKOR2	SKI family transcriptional corepressor 2	-1.74
CILP2	cartilage intermediate layer protein 2	-1.73
DND1	DND microRNA-mediated repression inhibitor 1	-1.73
EXOC3L2	exocyst complex component 3-like 2	-1.73
HARS	histidyl-tRNA synthetase	-1.73
KIR2DL1	killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 1	-1.73
KIR2DL2	killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 2	-1.73

Símbolo do Gene	Descrição	Fold Change
KIR3DL3	killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 3	-1.73
LCE1D	late cornified envelope 1D	-1.73
LOC105370686	uncharacterized LOC105370686	-1.73
LRRFIP1	leucine rich repeat (in FLII) interacting protein 1	-1.73
PLA2G3	phospholipase A2, group III	-1.73
PLCXD3	phosphatidylinositol-specific phospholipase C, X domain containing 3	-1.73
PRM2	protamine 2	-1.73
ANKRD1	ankyrin repeat domain 1 (cardiac muscle)	-1.72
FBXO17	F-box protein 17	-1.72
FGF17	fibroblast growth factor 17	-1.72
GAMT	guanidinoacetate N-methyltransferase	-1.72
HSD3BP4	hydroxy-delta-5-steroid dehydrogenase, 3 beta, pseudogene 4	-1.72
KRTAP10-10	keratin associated protein 10-10	-1.72
LINC00334	long intergenic non-protein coding RNA 334	-1.72
MIR187	microRNA 187	-1.72
NPAP1	nuclear pore associated protein 1	-1.72
ZCCHC24	zinc finger, CCHC domain containing 24	-1.72
ERVK3-2	endogenous retrovirus group K3, member 2	-1.71
FAM132A	family with sequence similarity 132, member A	-1.71
GAST	gastrin	-1.71
HSD17B1P1	hydroxysteroid (17-beta) dehydrogenase 1 pseudogene 1	-1.71
IGKV7-3	immunoglobulin kappa variable 7-3 (pseudogene)	-1.71
LHFP	lipoma HMGIC fusion partner	-1.71
LOC100129581	uncharacterized LOC100129581	-1.71
LOC284912	uncharacterized LOC284912	-1.71
LRRC56	leucine rich repeat containing 56	-1.71
PRG3	proteoglycan 3	-1.71
PRSS36	protease, serine 36	-1.71
SBK2	SH3 domain binding kinase family, member 2	-1.71
CNGA4	cyclic nucleotide gated channel alpha 4	-1.7

Símbolo do Gene	Descrição	Fold Change
FAM201B	family with sequence similarity 201, member B	-1.7
LY6H	lymphocyte antigen 6 complex, locus H	-1.7
MAGEA5	MAGE family member A5	-1.7
MIR132	microRNA 132	-1.7
NPPB	natriuretic peptide B	-1.7
NRXN2	neurexin 2	-1.7
RAPSN	receptor-associated protein of the synapse	-1.7
SNORA80B	small nucleolar RNA, H/ACA box 80B	-1.7
ZSCAN10	zinc finger and SCAN domain containing 10	-1.7
ACTL9	actin-like 9	-1.69
AMER3	APC membrane recruitment protein 3	-1.69
C16orf86	chromosome 16 open reading frame 86	-1.69
C1orf111	chromosome 1 open reading frame 111	-1.69
CHRNG	cholinergic receptor, nicotinic gamma	-1.69
CSDC2	cold shock domain containing C2, RNA binding	-1.69
FUT5	fucosyltransferase 5 (alpha (1,3) fucosyltransferase)	-1.69
GPA33	glycoprotein A33 (transmembrane)	-1.69
IGF2-AS	IGF2 antisense RNA	-1.69
KIAA0125	KIAA0125	-1.69
LOC105375299	uncharacterized LOC105375299	-1.69
LOC286359	uncharacterized LOC286359	-1.69
LOC441233	uncharacterized LOC441233	-1.69
MIR150	microRNA 150	-1.69
MRVI1-AS1	MRVI1 antisense RNA 1	-1.69
SLC35G4	solute carrier family 35, member G4	-1.69
SLC35G6	solute carrier family 35, member G6	-1.69
SYTL3	synaptotagmin-like 3	-1.69
TTC28-AS1	TTC28 antisense RNA 1	-1.69
C10orf82	chromosome 10 open reading frame 82	-1.68
CSAG1	chondrosarcoma associated gene 1	-1.68

Símbolo do Gene	Descrição	Fold Change
FAM92B	family with sequence similarity 92, member B	-1.68
IFNA13	interferon, alpha 13	-1.68
LINC01587	long intergenic non-protein coding RNA 1587	-1.68
LOC401040	uncharacterized LOC401040	-1.68
LOC440313	protein enabled homolog	-1.68
MIR138-1	microRNA 138-1	-1.68
MIR210	microRNA 210	-1.68
MRGPRX3	MAS-related GPR, member X3	-1.68
MYCNOS	MYCN opposite strand	-1.68
OR10G2	olfactory receptor, family 10, subfamily G, member 2	-1.68
RASL10B	RAS-like, family 10, member B	-1.68
RXFP4	relaxin/insulin-like family peptide receptor 4	-1.68
SDS	serine dehydratase	-1.68
SORL1	sortilin-related receptor, L(DLR class) A repeats containing	-1.68
TSPAN32	tetraspanin 32	-1.68
ABCC2	ATP binding cassette subfamily C member 2	-1.67
BLID	BH3-like motif containing, cell death inducer	-1.67
C17orf105	chromosome 17 open reading frame 105	-1.67
CPN2	carboxypeptidase N, polypeptide 2	-1.67
DEFA4	defensin, alpha 4, corticostatin	-1.67
GRIN2C	glutamate receptor, ionotropic, N-methyl D-aspartate 2C	-1.67
HILS1	histone linker H1 domain, spermatid-specific 1, pseudogene	-1.67
KCNK12	potassium channel, two pore domain subfamily K, member 12	-1.67
LINC00319	long intergenic non-protein coding RNA 319	-1.67
LRRC32	leucine rich repeat containing 32	-1.67
NPR1	natriuretic peptide receptor 1	-1.67
NRROS	negative regulator of reactive oxygen species	-1.67
PEX11G	peroxisomal biogenesis factor 11 gamma	-1.67
PIGX	phosphatidylinositol glycan anchor biosynthesis class X	-1.67
SEZ6	seizure related 6 homolog (mouse)	-1.67

Símbolo do Gene	Descrição	Fold Change
THEG	theg spermatid protein	-1.67
UGT2B15	UDP glucuronosyltransferase 2 family, polypeptide B15	-1.67
AVPR2	arginine vasopressin receptor 2	-1.66
DDC-AS1	DDC antisense RNA 1	-1.66
FAM222B	family with sequence similarity 222, member B	-1.66
HIPK2	homeodomain interacting protein kinase 2	-1.66
KRTAP4-11	keratin associated protein 4-11	-1.66
KRTAP4-8	keratin associated protein 4-8	-1.66
LOC100131763	uncharacterized LOC100131763	-1.66
MIR9-1	microRNA 9-1	-1.66
OR10D1P	olfactory receptor, family 10, subfamily D, member 1 pseudogene	-1.66
OR2Z1	olfactory receptor, family 2, subfamily Z, member 1	-1.66
SLC25A34	solute carrier family 25, member 34	-1.66
TBXA2R	thromboxane A2 receptor	-1.66
TMEM214	transmembrane protein 214	-1.66
TNFRSF14	tumor necrosis factor receptor superfamily, member 14	-1.66
ADORA3	adenosine A3 receptor	-1.65
C1orf189	chromosome 1 open reading frame 189	-1.65
C9orf66	chromosome 9 open reading frame 66	-1.65
CEACAM16	carcinoembryonic antigen-related cell adhesion molecule 16	-1.65
DAND5	DAN domain family member 5, BMP antagonist	-1.65
DRD5	dopamine receptor D5	-1.65
GAGE2A	G antigen 2A	-1.65
GAGE2C	G antigen 2C	-1.65
GAGE2D	G antigen 2D	-1.65
GPR20	G protein-coupled receptor 20	-1.65
GRASP	GRP1 (general receptor for phosphoinositides 1)-associated scaffold protein	-1.65
LCE3D	late cornified envelope 3D	-1.65
LINC00910	long intergenic non-protein coding RNA 910	-1.65
NFAM1	NFAT activating protein with ITAM motif 1	-1.65

Símbolo do Gene	Descrição	Fold Change
NKX2-4	NK2 homeobox 4	-1.65
OR2C1	olfactory receptor, family 2, subfamily C, member 1	-1.65
PLSCR4	phospholipid scramblase 4	-1.65
POU3F2	POU class 3 homeobox 2	-1.65
RAX	retina and anterior neural fold homeobox	-1.65
TCAF1	TRPM8 channel-associated factor 1	-1.65
TMIGD3	transmembrane and immunoglobulin domain containing 3	-1.65
XCR1	chemokine (C motif) receptor 1	-1.65
XKR4	X-linked Kx blood group related 4	-1.65
ACTL8	actin-like 8	-1.64
AKR1C1	aldo-keto reductase family 1, member C1	-1.64
AKR1C3	aldo-keto reductase family 1, member C3	-1.64
ALDH3A1	aldehyde dehydrogenase 3 family, member A1	-1.64
AMBP	alpha-1-microglobulin/bikunin precursor	-1.64
C11orf16	chromosome 11 open reading frame 16	-1.64
CEMP1	cementum protein 1	-1.64
CNGA2	cyclic nucleotide gated channel alpha 2	-1.64
CYP2A7	cytochrome P450, family 2, subfamily A, polypeptide 7	-1.64
CYP2A7P1	cytochrome P450, family 2, subfamily A, polypeptide 7 pseudogene 1	-1.64
DRD4	dopamine receptor D4	-1.64
FCRL6	Fc receptor-like 6	-1.64
FEZF2	FEZ family zinc finger 2	-1.64
GSC2	goosecoid homeobox 2	-1.64
IL17C	interleukin 17C	-1.64
KIR2DS3	killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 3	-1.64
KIR2DS5	killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 5	-1.64
KRTAP5-10	keratin associated protein 5-10	-1.64
LOC105378085	uncharacterized LOC105378085	-1.64
LOC338797	uncharacterized LOC338797	-1.64
LOC389199	uncharacterized LOC389199	-1.64

Símbolo do Gene	Descrição	Fold Change
LOC401281	uncharacterized LOC401281	-1.64
MAGED4	melanoma antigen family D4	-1.64
MAGED4B	melanoma antigen family D4B	-1.64
OPLAH	5-oxoprolinase (ATP-hydrolysing)	-1.64
PDZD4	PDZ domain containing 4	-1.64
PKP1	plakophilin 1	-1.64
RHO	rhodopsin	-1.64
RPS29	ribosomal protein S29	-1.64
TCF23	transcription factor 23	-1.64
TM4SF5	transmembrane 4 L six family member 5	-1.64
WNT10A	wingless-type MMTV integration site family, member 10A	-1.64
ANXA9	annexin A9	-1.63
ASCL1	achaete-scute family bHLH transcription factor 1	-1.63
CARNS1	carnosine synthase 1	-1.63
CCDC114	coiled-coil domain containing 114	-1.63
CLDN6	claudin 6	-1.63
CLDN9	claudin 9	-1.63
FEZ1	fasciculation and elongation protein zeta 1	-1.63
GAGE12J	G antigen 12J	-1.63
GAGE4	G antigen 4	-1.63
GAGE8	G antigen 8	-1.63
HOXB1	homeobox B1	-1.63
HSD17B4	hydroxysteroid (17-beta) dehydrogenase 4	-1.63
IGFBP6	insulin like growth factor binding protein 6	-1.63
LINC00205	long intergenic non-protein coding RNA 205	-1.63
LOC102723701	uncharacterized LOC102723701	-1.63
LOC401123	uncharacterized LOC401123	-1.63
MTMR9LP	myotubularin related protein 9-like, pseudogene	-1.63
NXPH2	neurexophilin 2	-1.63
PLA2G2E	phospholipase A2, group IIE	-1.63

Símbolo do Gene	Descrição	Fold Change
PTPRN2	protein tyrosine phosphatase, receptor type, N polypeptide 2	-1.63
RAMP1	receptor (G protein-coupled) activity modifying protein 1	-1.63
S1PR2	sphingosine-1-phosphate receptor 2	-1.63
SIGLEC27P	sialic acid binding Ig-like lectin 27, pseudogene	-1.63
TLL2	tolloid like 2	-1.63
C2CD4A	C2 calcium-dependent domain containing 4A	-1.62
CYR61	cysteine-rich, angiogenic inducer, 61	-1.62
DLX1	distal-less homeobox 1	-1.62
GRIN2A	glutamate receptor, ionotropic, N-methyl D-aspartate 2A	-1.62
HTR3A	5-hydroxytryptamine (serotonin) receptor 3A, ionotropic	-1.62
IGKV1-33	immunoglobulin kappa variable 1-33	-1.62
IGKV1D-17	immunoglobulin kappa variable 1D-17	-1.62
IGKV1D-33	immunoglobulin kappa variable 1D-33	-1.62
IGKV1D-43	immunoglobulin kappa variable 1D-43	-1.62
KIF25	kinesin family member 25	-1.62
LELP1	late cornified envelope-like proline-rich 1	-1.62
LINC00311	long intergenic non-protein coding RNA 311	-1.62
LINC00474	long intergenic non-protein coding RNA 474	-1.62
LINC00982	long intergenic non-protein coding RNA 982	-1.62
LOC100130857	uncharacterized LOC100130857	-1.62
NAT8L	N-acetyltransferase 8-like (GCN5-related, putative)	-1.62
OPRD1	opioid receptor, delta 1	-1.62
OR13C9	olfactory receptor, family 13, subfamily C, member 9	-1.62
PRR31	proline rich 31	-1.62
PSG5	pregnancy specific beta-1-glycoprotein 5	-1.62
PSG7	pregnancy specific beta-1-glycoprotein 7 (gene/pseudogene)	-1.62
SLC36A2	solute carrier family 36 (proton/amino acid symporter), member 2	-1.62
TMEM179	transmembrane protein 179	-1.62
ABRA	actin binding Rho activating protein	-1.61
CCL21	chemokine (C-C motif) ligand 21	-1.61

Símbolo do Gene	Descrição	Fold Change
FEV	FEV (ETS oncogene family)	-1.61
FRMD3	FERM domain containing 3	-1.61
GOLGA6B	golgin A6 family, member B	-1.61
GPIHBP1	glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1	-1.61
IGFBP4	insulin like growth factor binding protein 4	-1.61
KRT17P5	keratin 17 pseudogene 5	-1.61
KRTAP10-2	keratin associated protein 10-2	-1.61
KRTAP12-4	keratin associated protein 12-4	-1.61
KRTAP4-7	keratin associated protein 4-7	-1.61
LAG3	lymphocyte-activation gene 3	-1.61
LOC441239	uncharacterized LOC441239	-1.61
OSM	oncostatin M	-1.61
PAPLN	papilin, proteoglycan-like sulfated glycoprotein	-1.61
RAET1E-AS1	RAET1E antisense RNA 1	-1.61
RIMBP2	RIMS binding protein 2	-1.61
RSPH6A	radial spoke head 6 homolog A (Chlamydomonas)	-1.61
SLC7A14	solute carrier family 7, member 14	-1.61
SPDYE7P	speedy/RINGO cell cycle regulator family member E7, pseudogene	-1.61
TAS2R3	taste receptor, type 2, member 3	-1.61
UBXN10	UBX domain protein 10	-1.61
ZNF783	zinc finger family member 783	-1.61
AMHR2	anti-Mullerian hormone receptor, type II	-1.6
ATP10D	ATPase, class V, type 10D	-1.6
CACNA1E	calcium channel, voltage-dependent, R type, alpha 1E subunit	-1.6
CAMP	cathelicidin antimicrobial peptide	-1.6
CCL3	chemokine (C-C motif) ligand 3	-1.6
COL15A1	collagen, type XV, alpha 1	-1.6
CYP4A11	cytochrome P450, family 4, subfamily A, polypeptide 11	-1.6
НҮРМ	huntingtin interacting protein M	-1.6
KLK8	kallikrein related peptidase 8	-1.6

Símbolo do Gene	Descrição	Fold Change
KLK9	kallikrein related peptidase 9	-1.6
KRTAP4-9	keratin associated protein 4-9	-1.6
LINC01503	long intergenic non-protein coding RNA 1503	-1.6
NCR2	natural cytotoxicity triggering receptor 2	-1.6
OR52E8	olfactory receptor, family 52, subfamily E, member 8	-1.6
POM121L12	POM121 transmembrane nucleoporin-like 12	-1.6
SLC22A31	solute carrier family 22, member 31	-1.6
SNORA36C	small nucleolar RNA, H/ACA box 36C	-1.6
SPACA5	sperm acrosome associated 5	-1.6
TESC	tescalcin	-1.6
ZBTB34	zinc finger and BTB domain containing 34	-1.6
C14orf180	chromosome 14 open reading frame 180	-1.59
C20orf85	chromosome 20 open reading frame 85	-1.59
CIDEC	cell death-inducing DFFA-like effector c	-1.59
CIDECP	cell death-inducing DFFA-like effector c pseudogene	-1.59
GIMAP1	GTPase, IMAP family member 1	-1.59
GIMAP1-GIMAP5	GIMAP1-GIMAP5 readthrough	-1.59
GPHB5	glycoprotein hormone beta 5	-1.59
HEYL	hes-related family bHLH transcription factor with YRPW motif-like	-1.59
HTR3E	5-hydroxytryptamine (serotonin) receptor 3E, ionotropic	-1.59
IL17D	interleukin 17D	-1.59
IL36RN	interleukin 36 receptor antagonist	-1.59
INSC	inscuteable homolog (Drosophila)	-1.59
KIAA0040	KIAA0040	-1.59
LCN8	lipocalin 8	-1.59
LINC00029	long intergenic non-protein coding RNA 29	-1.59
LOC100128035	VGSA5840	-1.59
LOC100288884	uncharacterized LOC100288884	-1.59
LOC105371034	uncharacterized LOC105371034	-1.59
LOC105371035	uncharacterized LOC105371035	-1.59

Símbolo do Gene	Descrição	Fold Change
LYPD2	LY6/PLAUR domain containing 2	-1.59
MOV10L1	Mov10 RISC complex RNA helicase like 1	-1.59
NDRG1	N-myc downstream regulated 1	-1.59
NKAIN4	Na+/K+ transporting ATPase interacting 4	-1.59
NLRP6	NLR family, pyrin domain containing 6	-1.59
PARD6B	par-6 family cell polarity regulator beta	-1.59
PODNL1	podocan-like 1	-1.59
PRX	periaxin	-1.59
RNF165	ring finger protein 165	-1.59
SAMD14	sterile alpha motif domain containing 14	-1.59
SLC22A8	solute carrier family 22 (organic anion transporter), member 8	-1.59
SLC25A5-AS1	SLC25A5 antisense RNA 1	-1.59
SLC35G5	solute carrier family 35, member G5	-1.59
SLC7A11	solute carrier family 7 (anionic amino acid transporter light chain, xc- system), member 11	-1.59
SLFNL1	schlafen like 1	-1.59
TLDC2	TBC/LysM-associated domain containing 2	-1.59
TPSAB1	tryptase alpha/beta 1	-1.59
TPSB2	tryptase beta 2 (gene/pseudogene)	-1.59
TPSD1	tryptase delta 1	-1.59
TREML2	triggering receptor expressed on myeloid cells-like 2	-1.59
USHBP1	Usher syndrome 1C binding protein 1	-1.59
VRK3	vaccinia related kinase 3	-1.59
WNT2	wingless-type MMTV integration site family member 2	-1.59
CCDC155	coiled-coil domain containing 155	-1.58
CECR2	cat eye syndrome chromosome region, candidate 2	-1.58
CHI3L1	chitinase 3-like 1 (cartilage glycoprotein-39)	-1.58
COLCA1	colorectal cancer associated 1	-1.58
DKK4	dickkopf WNT signaling pathway inhibitor 4	-1.58
ERN2	endoplasmic reticulum to nucleus signaling 2	-1.58
FAM215A	family with sequence similarity 215, member A (non-protein coding)	-1.58

Símbolo do Gene	Descrição	Fold Change
FAM71E2	family with sequence similarity 71, member E2	-1.58
GP1BB	glycoprotein lb (platelet), beta polypeptide	-1.58
GS52	uncharacterized LOC100287301	-1.58
HOXD12	homeobox D12	-1.58
KCNA10	potassium channel, voltage gated shaker related subfamily A, member 10	-1.58
KRT33B	keratin 33B, type I	-1.58
LIPH	lipase, member H	-1.58
LOC387720	collagen alpha-1(X) chain	-1.58
LTB	lymphotoxin beta (TNF superfamily, member 3)	-1.58
MAGEA8	MAGE family member A8	-1.58
MIRLET7A3	microRNA let-7a-3	-1.58
MMD2	monocyte to macrophage differentiation-associated 2	-1.58
MRGPRG	MAS-related GPR, member G	-1.58
OR52N2	olfactory receptor, family 52, subfamily N, member 2	-1.58
PRADC1	protease-associated domain containing 1	-1.58
PROP1	PROP paired-like homeobox 1	-1.58
PRUNE2	prune homolog 2 (Drosophila)	-1.58
RPRML	reprimo-like	-1.58
SCN4B	sodium channel, voltage gated, type IV beta subunit	-1.58
SIGLEC5	sialic acid binding Ig-like lectin 5	-1.58
SLC15A3	solute carrier family 15 (oligopeptide transporter), member 3	-1.58
SSX2	synovial sarcoma, X breakpoint 2	-1.58
SSX7	synovial sarcoma, X breakpoint 7	-1.58
TBX21	T-box 21	-1.58
ACOT6	acyl-CoA thioesterase 6	-1.57
APCDD1L	adenomatosis polyposis coli down-regulated 1-like	-1.57
ARID3C	AT rich interactive domain 3C (BRIGHT-like)	-1.57
C3orf70	chromosome 3 open reading frame 70	-1.57
CCDC154	coiled-coil domain containing 154	-1.57
CDIP1	cell death-inducing p53 target 1	-1.57

Símbolo do Gene	Descrição	Fold Change
CEACAM4	carcinoembryonic antigen-related cell adhesion molecule 4	-1.57
CECR6	cat eye syndrome chromosome region, candidate 6	-1.57
CNTD1	cyclin N-terminal domain containing 1	-1.57
CSF3	colony stimulating factor 3	-1.57
CTRB2	chymotrypsinogen B2	-1.57
DUOX2	dual oxidase 2	-1.57
FAM131A	family with sequence similarity 131, member A	-1.57
FDXR	ferredoxin reductase	-1.57
FLT3LG	fms-related tyrosine kinase 3 ligand	-1.57
FZD1	frizzled class receptor 1	-1.57
GFRA2	GDNF family receptor alpha 2	-1.57
GHRH	growth hormone releasing hormone	-1.57
GJA3	gap junction protein alpha 3	-1.57
GP9	glycoprotein IX (platelet)	-1.57
GPR146	G protein-coupled receptor 146	-1.57
GPR148	G protein-coupled receptor 148	-1.57
GPX2	glutathione peroxidase 2	-1.57
GRM6	glutamate receptor, metabotropic 6	-1.57
HHIPL1	HHIP-like 1	-1.57
LCE2C	late cornified envelope 2C	-1.57
LOC100506422	putative deoxyuridine 5-triphosphate nucleotidohydrolase-like protein FLJ16323	-1.57
LOC102723566	uncharacterized LOC102723566	-1.57
NRIP2	nuclear receptor interacting protein 2	-1.57
OR11N1P	olfactory receptor, family 11, subfamily N, member 1 pseudogene	-1.57
OR1R1P	olfactory receptor, family 1, subfamily R, member 1 pseudogene	-1.57
OR52A1	olfactory receptor, family 52, subfamily A, member 1	-1.57
OTX2	orthodenticle homeobox 2	-1.57
PINLYP	phospholipase A2 inhibitor and LY6/PLAUR domain containing	-1.57
PPY2P	pancreatic polypeptide 2, pseudogene	-1.57
PRR22	proline rich 22	-1.57

Símbolo do Gene	Descrição	Fold Change
TBC1D22A-AS1	TBC1D22A antisense RNA 1	-1.57
TTTY6	testis-specific transcript, Y-linked 6 (non-protein coding)	-1.57
TTTY6B	testis-specific transcript, Y-linked 6B (non-protein coding)	-1.57
VAX2	ventral anterior homeobox 2	-1.57
VENTX	VENT homeobox	-1.57
VN1R3	vomeronasal 1 receptor 3 (gene/pseudogene)	-1.57
WFDC1	WAP four-disulfide core domain 1	-1.57
WFIKKN2	WAP, follistatin/kazal, immunoglobulin, kunitz and netrin domain containing 2	-1.57
C11orf21	chromosome 11 open reading frame 21	-1.56
CDH4	cadherin 4, type 1, R-cadherin (retinal)	-1.56
CDK6	cyclin-dependent kinase 6	-1.56
CELA2B	chymotrypsin-like elastase family, member 2B	-1.56
CST4	cystatin S	-1.56
FLJ30679	uncharacterized protein FLJ30679	-1.56
GABARAPL1	GABA(A) receptor-associated protein like 1	-1.56
GAPDHS	glyceraldehyde-3-phosphate dehydrogenase, spermatogenic	-1.56
GLP2R	glucagon-like peptide 2 receptor	-1.56
GRID2	glutamate receptor, ionotropic, delta 2	-1.56
HAMP	hepcidin antimicrobial peptide	-1.56
HLF	hepatic leukemia factor	-1.56
IGHA1	immunoglobulin heavy constant alpha 1	-1.56
IGHV3-33	immunoglobulin heavy variable 3-33	-1.56
IGHV3-38	immunoglobulin heavy variable 3-38 (non-functional)	-1.56
IGHV3-43	immunoglobulin heavy variable 3-43	-1.56
IGHV3-53	immunoglobulin heavy variable 3-53	-1.56
IGKV2D-24	immunoglobulin kappa variable 2D-24 (non-functional)	-1.56
IGKV2D-30	immunoglobulin kappa variable 2D-30	-1.56
ISM1	isthmin 1, angiogenesis inhibitor	-1.56
KLHL34	kelch-like family member 34	-1.56
LMCD1	LIM and cysteine-rich domains 1	-1.56

Símbolo do Gene	Descrição	Fold Change
LOC441268	uncharacterized LOC441268	-1.56
LRRC16B	leucine rich repeat containing 16B	-1.56
MIR23A	microRNA 23a	-1.56
MOGAT1	monoacylglycerol O-acyltransferase 1	-1.56
MPP4	membrane protein, palmitoylated 4	-1.56
MT3	metallothionein 3	-1.56
MYOZ3	myozenin 3	-1.56
OR52B3P	olfactory receptor, family 52, subfamily B, member 3 pseudogene	-1.56
PDPN	podoplanin	-1.56
PEBP4	phosphatidylethanolamine-binding protein 4	-1.56
POU3F1	POU class 3 homeobox 1	-1.56
PRB1	proline-rich protein BstNI subfamily 1	-1.56
PRB2	proline-rich protein BstNI subfamily 2	-1.56
PRB4	proline-rich protein BstNI subfamily 4	-1.56
RCSD1	RCSD domain containing 1	-1.56
RPL21P131	ribosomal protein L21 pseudogene 131	-1.56
RTP5	receptor (chemosensory) transporter protein 5 (putative)	-1.56
SLC25A41	solute carrier family 25, member 41	-1.56
SNAI3-AS1	SNAI3 antisense RNA 1	-1.56
STK32B	serine/threonine kinase 32B	-1.56
TNFAIP8L3	tumor necrosis factor, alpha-induced protein 8-like 3	-1.56
VWC2	von Willebrand factor C domain containing 2	-1.56
ADAM11	ADAM metallopeptidase domain 11	-1.55
AP1G2	adaptor-related protein complex 1, gamma 2 subunit	-1.55
ARSH	arylsulfatase family, member H	-1.55
C17orf102	chromosome 17 open reading frame 102	-1.55
CEL	carboxyl ester lipase	-1.55
CELP	carboxyl ester lipase pseudogene	-1.55
CTF1	cardiotrophin 1	-1.55
CYP7A1	cytochrome P450, family 7, subfamily A, polypeptide 1	-1.55

Símbolo do Gene	Descrição	Fold Change
DLEU7	deleted in lymphocytic leukemia, 7	-1.55
DNASE1L2	deoxyribonuclease I-like 2	-1.55
EIF5A	eukaryotic translation initiation factor 5A	-1.55
FAM83C	family with sequence similarity 83, member C	-1.55
HNF1A	HNF1 homeobox A	-1.55
IGLV9-49	immunoglobulin lambda variable 9-49	-1.55
ITGA11	integrin alpha 11	-1.55
JPH4	junctophilin 4	-1.55
KANK4	KN motif and ankyrin repeat domains 4	-1.55
KRTAP5-5	keratin associated protein 5-5	-1.55
LGI3	leucine-rich repeat LGI family, member 3	-1.55
LINC00937	long intergenic non-protein coding RNA 937	-1.55
LINGO4	leucine rich repeat and Ig domain containing 4	-1.55
LOC100130071	GSQS6193	-1.55
LOC728283	uncharacterized LOC728283	-1.55
MIR193A	microRNA 193a	-1.55
MMP23A	matrix metallopeptidase 23A (pseudogene)	-1.55
MMP23B	matrix metallopeptidase 23B	-1.55
NFATC4	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4	-1.55
ODF3L2	outer dense fiber of sperm tails 3-like 2	-1.55
OR10H5	olfactory receptor, family 10, subfamily H, member 5	-1.55
OR7E93P	olfactory receptor, family 7, subfamily E, member 93 pseudogene	-1.55
OR8B1P	olfactory receptor, family 8, subfamily B, member 1 pseudogene	-1.55
OTOS	otospiralin	-1.55
PADI6	peptidyl arginine deiminase, type VI	-1.55
PCAT18	prostate cancer associated transcript 18 (non-protein coding)	-1.55
PHF24	PHD finger protein 24	-1.55
PLEKHA8P1	pleckstrin homology domain containing, family A member 8 pseudogene 1	-1.55
PLPPR3	phospholipid phosphatase related 3	-1.55
PTPRT	protein tyrosine phosphatase, receptor type, T	-1.55

Símbolo do Gene	Descrição	Fold Change
RASSF10	Ras association (RalGDS/AF-6) domain family (N-terminal) member 10	-1.55
RBP2	retinol binding protein 2, cellular	-1.55
RORC	RAR-related orphan receptor C	-1.55
SBSPON	somatomedin B and thrombospondin type 1 domain containing	-1.55
SFPQ	splicing factor proline/glutamine-rich	-1.55
SHISA7	shisa family member 7	-1.55
SPRR4	small proline-rich protein 4	-1.55
TCAF2	TRPM8 channel-associated factor 2	-1.55
TEX101	testis expressed 101	-1.55
TRIM71	tripartite motif containing 71, E3 ubiquitin protein ligase	-1.55
TSSK3	testis-specific serine kinase 3	-1.55
ACTL10	actin-like 10	-1.54
C14orf132	chromosome 14 open reading frame 132	-1.54
C22orf15	chromosome 22 open reading frame 15	-1.54
CCDC74A	coiled-coil domain containing 74A	-1.54
CD209	CD209 molecule	-1.54
CD28	CD28 molecule	-1.54
CD36	CD36 molecule (thrombospondin receptor)	-1.54
CIDEA	cell death-inducing DFFA-like effector a	-1.54
СКМ	creatine kinase, muscle	-1.54
COL20A1	collagen, type XX, alpha 1	-1.54
COL4A4	collagen, type IV, alpha 4	-1.54
CRB2	crumbs family member 2	-1.54
CTHRC1	collagen triple helix repeat containing 1	-1.54
DPYS	dihydropyrimidinase	-1.54
FOXA2	forkhead box A2	-1.54
GAP43	growth associated protein 43	-1.54
HAPLN4	hyaluronan and proteoglycan link protein 4	-1.54
HBA2	hemoglobin, alpha 2	-1.54
KCND1	potassium channel, voltage gated Shal related subfamily D, member 1	-1.54

Símbolo do Gene	Descrição	Fold Change
KRTAP13-4	keratin associated protein 13-4	-1.54
LINC00324	long intergenic non-protein coding RNA 324	-1.54
LINC00839	long intergenic non-protein coding RNA 839	-1.54
LOC102725001	putative ankyrin repeat domain-containing protein 20A5	-1.54
LOC105376792	uncharacterized LOC105376792	-1.54
LOC440570	uncharacterized LOC440570	-1.54
LOC642648	uncharacterized LOC642648	-1.54
LY6G5C	lymphocyte antigen 6 complex, locus G5C	-1.54
MESP1	mesoderm posterior bHLH transcription factor 1	-1.54
MIR218-2	microRNA 218-2	-1.54
MIR296	microRNA 296	-1.54
MIR504	microRNA 504	-1.54
NCAN	neurocan	-1.54
NES	nestin	-1.54
OLFM3	olfactomedin 3	-1.54
OR14A2	olfactory receptor, family 14, subfamily A, member 2	-1.54
OR5M2P	olfactory receptor, family 5, subfamily M, member 2 pseudogene	-1.54
PTH2	parathyroid hormone 2	-1.54
RAMP2-AS1	RAMP2 antisense RNA 1	-1.54
SEC14L5	SEC14-like lipid binding 5	-1.54
SERPINA2	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 2 (gene/pseudogene)	-1.54
SFTPD	surfactant protein D	-1.54
TESK1	testis-specific kinase 1	-1.54
TLL1	tolloid like 1	-1.54
TMEM196	transmembrane protein 196	-1.54
TMEM246	transmembrane protein 246	-1.54
WNT6	wingless-type MMTV integration site family, member 6	-1.54
ACY3	aminoacylase 3	-1.53
ADAMTS7	ADAM metallopeptidase with thrombospondin type 1 motif 7	-1.53
ADORA2A-AS1	ADORA2A antisense RNA 1	-1.53

Símbolo do Gene	Descrição	Fold Change
AIPL1	aryl hydrocarbon receptor interacting protein-like 1	-1.53
BEAN1	brain expressed, associated with NEDD4, 1	-1.53
CDH16	cadherin 16, KSP-cadherin	-1.53
COL2A1	collagen, type II, alpha 1	-1.53
CST9L	cystatin 9-like	-1.53
CYP1A2	cytochrome P450, family 1, subfamily A, polypeptide 2	-1.53
DENND1C	DENN/MADD domain containing 1C	-1.53
GSX2	GS homeobox 2	-1.53
H1FNT	H1 histone family, member N, testis-specific	-1.53
HPSE2	heparanase 2 (inactive)	-1.53
HSPB8	heat shock 22kDa protein 8	-1.53
KRTAP10-7	keratin associated protein 10-7	-1.53
KRTAP5-11	keratin associated protein 5-11	-1.53
LEFTY1	left-right determination factor 1	-1.53
LGALS7B	lectin, galactoside-binding, soluble, 7B	-1.53
LINC00176	long intergenic non-protein coding RNA 176	-1.53
LOC401296	uncharacterized LOC401296	-1.53
MAB21L3	mab-21-like 3 (C. elegans)	-1.53
MRAP	melanocortin 2 receptor accessory protein	-1.53
MRGPRD	MAS-related GPR, member D	-1.53
NIM1K	NIM1 serine/threonine protein kinase	-1.53
NLRC3	NLR family, CARD domain containing 3	-1.53
PADI4	peptidyl arginine deiminase, type IV	-1.53
PAGE2B	P antigen family, member 2B	-1.53
PEG3	paternally expressed 3	-1.53
PKI55	DKFZp434H1419	-1.53
PLBD1	phospholipase B domain containing 1	-1.53
PRB3	proline-rich protein BstNI subfamily 3	-1.53
PRORY	proline rich, Y-linked	-1.53
PRSS55	protease, serine, 55	-1.53

Símbolo do Gene	Descrição	Fold Change
RAET1L	retinoic acid early transcript 1L	-1.53
RASSF7	Ras association (RalGDS/AF-6) domain family (N-terminal) member 7	-1.53
RBAKDN	RBAK downstream neighbor (non-protein coding)	-1.53
RGL1	ral guanine nucleotide dissociation stimulator-like 1	-1.53
SLC2A11	solute carrier family 2 (facilitated glucose transporter), member 11	-1.53
SNORA80A	small nucleolar RNA, H/ACA box 80A	-1.53
SOHLH1	spermatogenesis and oogenesis specific basic helix-loop-helix 1	-1.53
SSBP3-AS1	SSBP3 antisense RNA 1	-1.53
ZCCHC12	zinc finger, CCHC domain containing 12	-1.53
ZIM2	zinc finger, imprinted 2	-1.53
ADGRG3	adhesion G protein-coupled receptor G3	-1.52
ANKRD60	ankyrin repeat domain 60	-1.52
APBB1	amyloid beta (A4) precursor protein-binding, family B, member 1 (Fe65)	-1.52
ASTN2	astrotactin 2	-1.52
BARHL2	BarH-like homeobox 2	-1.52
BATF	basic leucine zipper transcription factor, ATF-like	-1.52
BTN3A1	butyrophilin, subfamily 3, member A1	-1.52
CACNG5	calcium channel, voltage-dependent, gamma subunit 5	-1.52
COL4A6	collagen, type IV, alpha 6	-1.52
CORO1B	coronin, actin binding protein, 1B	-1.52
ENPP5	ectonucleotide pyrophosphatase/phosphodiesterase 5 (putative)	-1.52
FBXL19-AS1	FBXL19 antisense RNA 1 (head to head)	-1.52
FCN2	ficolin (collagen/fibrinogen domain containing lectin) 2	-1.52
FGF10	fibroblast growth factor 10	-1.52
FGF3	fibroblast growth factor 3	-1.52
HCRT	hypocretin (orexin) neuropeptide precursor	-1.52
HMCN2	hemicentin 2	-1.52
HMGCS2	3-hydroxy-3-methylglutaryl-CoA synthase 2 (mitochondrial)	-1.52
IFFO2	intermediate filament family orphan 2	-1.52
KCNA6	potassium channel, voltage gated shaker related subfamily A, member 6	-1.52

Símbolo do Gene	Descrição	Fold Change
LEFTY2	left-right determination factor 2	-1.52
LOC100130924	uncharacterized LOC100130924	-1.52
LOXL4	lysyl oxidase-like 4	-1.52
LRRC59	leucine rich repeat containing 59	-1.52
MIA	melanoma inhibitory activity	-1.52
MIA-RAB4B	MIA-RAB4B readthrough (NMD candidate)	-1.52
MIR485	microRNA 485	-1.52
MZB1	marginal zone B and B1 cell-specific protein	-1.52
NMS	neuromedin S	-1.52
OR5A1	olfactory receptor, family 5, subfamily A, member 1	-1.52
PADI3	peptidyl arginine deiminase, type III	-1.52
POU5F1B	POU class 5 homeobox 1B	-1.52
PRR23A	proline rich 23A	-1.52
PTPRCAP	protein tyrosine phosphatase, receptor type, C-associated protein	-1.52
RGS8	regulator of G-protein signaling 8	-1.52
SCEL	sciellin	-1.52
SEMA4D	sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 4D	-1.52
SLC8A1	solute carrier family 8 (sodium/calcium exchanger), member 1	-1.52
SNAP25	synaptosome associated protein 25kDa	-1.52
STH	saitohin	-1.52
SVOP	SV2 related protein	-1.52
SYCN	syncollin	-1.52
TCP10L	t-complex 10-like	-1.52
TMEM105	transmembrane protein 105	-1.52
UTF1	undifferentiated embryonic cell transcription factor 1	-1.52
YAE1D1	Yae1 domain containing 1	-1.52
ACPT	acid phosphatase, testicular	-1.51
ADARB2	adenosine deaminase, RNA-specific, B2 (inactive)	-1.51
AJAP1	adherens junctions associated protein 1	-1.51
AQP12A	aquaporin 12A	-1.51

Símbolo do Gene	Descrição	Fold Change
AQP12B	aquaporin 12B	-1.51
C5AR1	complement component 5a receptor 1	-1.51
CCDC157	coiled-coil domain containing 157	-1.51
CCDC74B	coiled-coil domain containing 74B	-1.51
COL3A1	collagen, type III, alpha 1	-1.51
COL6A6	collagen, type VI, alpha 6	-1.51
COMP	cartilage oligomeric matrix protein	-1.51
CXCL14	chemokine (C-X-C motif) ligand 14	-1.51
F2RL3	coagulation factor II (thrombin) receptor-like 3	-1.51
FGF19	fibroblast growth factor 19	-1.51
GNG13	guanine nucleotide binding protein (G protein), gamma 13	-1.51
GRP	gastrin-releasing peptide	-1.51
HPD	4-hydroxyphenylpyruvate dioxygenase	-1.51
JPH1	junctophilin 1	-1.51
KCNB2	potassium channel, voltage gated Shab related subfamily B, member 2	-1.51
KCNH4	potassium channel, voltage gated eag related subfamily H, member 4	-1.51
KRTAP10-6	keratin associated protein 10-6	-1.51
KRTAP24-1	keratin associated protein 24-1	-1.51
LILRA4	leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 4	-1.51
LOC729866	hCG1994895	-1.51
MPPED1	metallophosphoesterase domain containing 1	-1.51
MRGPRE	MAS-related GPR, member E	-1.51
MRGPRG-AS1	MRGPRG antisense RNA 1	-1.51
NKAIN1	Na+/K+ transporting ATPase interacting 1	-1.51
OR13F1	olfactory receptor, family 13, subfamily F, member 1	-1.51
OR52N4	olfactory receptor, family 52, subfamily N, member 4 (gene/pseudogene)	-1.51
OR52P1P	olfactory receptor, family 52, subfamily P, member 1 pseudogene	-1.51
OR6J1	olfactory receptor, family 6, subfamily J, member 1 (gene/pseudogene)	-1.51
PDE4A	phosphodiesterase 4A, cAMP-specific	-1.51
PDYN	prodynorphin	-1.51

Símbolo do Gene	Descrição	Fold Change
PNOC	prepronociceptin	-1.51
POMGNT1	protein O-linked mannose N-acetylglucosaminyltransferase 1 (beta 1,2-)	-1.51
POU3F4	POU class 3 homeobox 4	-1.51
RASGRP2	RAS guanyl releasing protein 2 (calcium and DAG-regulated)	-1.51
SH2D4B	SH2 domain containing 4B	-1.51
SH2D5	SH2 domain containing 5	-1.51
SNORA70D	small nucleolar RNA, H/ACA box 70D	-1.51
SOX17	SRY box 17	-1.51
SPEM1	spermatid maturation 1	-1.51
TEX37	testis expressed 37	-1.51
TRIM67	tripartite motif containing 67	-1.51
WFDC10B	WAP four-disulfide core domain 10B	-1.51
ZBED2	zinc finger, BED-type containing 2	-1.51
ADGRA1	adhesion G protein-coupled receptor A1	-1.5
ADRB1	adrenoceptor beta 1	-1.5
AMN	amnion associated transmembrane protein	-1.5
BTN3A3	butyrophilin, subfamily 3, member A3	-1.5
C8orf58	chromosome 8 open reading frame 58	-1.5
CCDC151	coiled-coil domain containing 151	-1.5
COL4A3	collagen, type IV, alpha 3 (Goodpasture antigen)	-1.5
COL7A1	collagen, type VII, alpha 1	-1.5
CRYBB2	crystallin beta B2	-1.5
CTRB1	chymotrypsinogen B1	-1.5
DES	desmin	-1.5
DMRTC2	DMRT-like family C2	-1.5
ELN	elastin	-1.5
FAM110D	family with sequence similarity 110, member D	-1.5
FAM27L	family with sequence similarity 27-like	-1.5
FITM1	fat storage-inducing transmembrane protein 1	-1.5
GDF10	growth differentiation factor 10	-1.5

Símbolo do Gene	Descrição	Fold Change
GPHA2	glycoprotein hormone alpha 2	-1.5
GRK1	G protein-coupled receptor kinase 1	-1.5
INHBE	inhibin beta E	-1.5
ISM2	isthmin 2	-1.5
KBTBD11	kelch repeat and BTB (POZ) domain containing 11	-1.5
KCNJ3	potassium channel, inwardly rectifying subfamily J, member 3	-1.5
LINC01588	long intergenic non-protein coding RNA 1588	-1.5
LINGO3	leucine rich repeat and Ig domain containing 3	-1.5
LOC101927806	uncharacterized LOC101927806	-1.5
LOC151174	uncharacterized LOC151174	-1.5
LTK	leukocyte receptor tyrosine kinase	-1.5
MEOX1	mesenchyme homeobox 1	-1.5
MIR711	microRNA 711	-1.5
MORN5	MORN repeat containing 5	-1.5
NLRP5	NLR family, pyrin domain containing 5	-1.5
NUDT18	nudix hydrolase 18	-1.5
OR13C4	olfactory receptor, family 13, subfamily C, member 4	-1.5
POM121L1P	POM121 transmembrane nucleoporin-like 1, pseudogene	-1.5
POM121L7	POM121 transmembrane nucleoporin-like 7	-1.5
POM121L8P	POM121 transmembrane nucleoporin-like 8 pseudogene	-1.5
PRELP	proline/arginine-rich end leucine-rich repeat protein	-1.5
PROCA1	protein interacting with cyclin A1	-1.5
PTPRG	protein tyrosine phosphatase, receptor type, G	-1.5
PVALB	parvalbumin	-1.5
ROR2	receptor tyrosine kinase-like orphan receptor 2	-1.5
SCARA3	scavenger receptor class A, member 3	-1.5
SEPT5	septin 5	-1.5
SERPINA11	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 11	-1.5
SIT1	signaling threshold regulating transmembrane adaptor 1	-1.5
SLC17A9	solute carrier family 17 (vesicular nucleotide transporter), member 9	-1.5

Símbolo do Gene	Descrição	Fold Change
TBX1	T-box 1	-1.5
TMEM229A	transmembrane protein 229A	-1.5
VPREB3	pre-B lymphocyte 3	-1.5
ACER3	alkaline ceramidase 3	1.5
AGAP11	ankyrin repeat and GTPase domain Arf GTPase activating protein 11	1.5
ANAPC4	anaphase promoting complex subunit 4	1.5
ARMC9	armadillo repeat containing 9	1.5
BMS1P3	BMS1 ribosome biogenesis factor pseudogene 3	1.5
BMS1P5	BMS1 ribosome biogenesis factor pseudogene 5	1.5
C1D	C1D nuclear receptor corepressor	1.5
CUL5	cullin 5	1.5
DENR	density-regulated protein	1.5
DHX40	DEAH (Asp-Glu-Ala-His) box polypeptide 40	1.5
ETAA1	Ewing tumor-associated antigen 1	1.5
EYA3	EYA transcriptional coactivator and phosphatase 3	1.5
FAM13B	family with sequence similarity 13, member B	1.5
GNB2L1	guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1	1.5
GSKIP	GSK3B interacting protein	1.5
HIST1H3E	histone cluster 1, H3e	1.5
HLA-DQB2	major histocompatibility complex, class II, DQ beta 2	1.5
HPGD	hydroxyprostaglandin dehydrogenase 15-(NAD)	1.5
KIF18A	kinesin family member 18A	1.5
KPNA1	karyopherin alpha 1	1.5
KRCC1	lysine-rich coiled-coil 1	1.5
LRIG2	leucine-rich repeats and immunoglobulin-like domains 2	1.5
MBTPS1	membrane bound transcription factor peptidase, site 1	1.5
MGEA5	meningioma expressed antigen 5 (hyaluronidase)	1.5
MRPS31	mitochondrial ribosomal protein S31	1.5
MYSM1	Myb-like, SWIRM and MPN domains 1	1.5
NDUFB6	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6, 17kDa	1.5

Símbolo do Gene	Descrição	Fold Change
NOC4L	nucleolar complex associated 4 homolog	1.5
ORC4	origin recognition complex subunit 4	1.5
PKD2	polycystic kidney disease 2 (autosomal dominant)	1.5
PPP3R1	protein phosphatase 3, regulatory subunit B, alpha	1.5
PUM3	pumilio RNA binding family member 3	1.5
RMRP	RNA component of mitochondrial RNA processing endoribonuclease	1.5
RNU5B-1	RNA, U5B small nuclear 1	1.5
RNVU1-15	RNA, variant U1 small nuclear 15	1.5
SERINC1	serine incorporator 1	1.5
SH3GLB1	SH3-domain GRB2-like endophilin B1	1.5
SLC36A4	solute carrier family 36 (proton/amino acid symporter), member 4	1.5
SNORD76	small nucleolar RNA, C/D box 76	1.5
SNORD80	small nucleolar RNA, C/D box 80	1.5
SNORD96A	small nucleolar RNA, C/D box 96A	1.5
UBXN2B	UBX domain protein 2B	1.5
ZNF623	zinc finger protein 623	1.5
CAP2	CAP, adenylate cyclase-associated protein, 2 (yeast)	1.51
CCDC53	coiled-coil domain containing 53	1.51
CCDC83	coiled-coil domain containing 83	1.51
CPNE2	copine II	1.51
DNA2	DNA replication helicase/nuclease 2	1.51
EHBP1	EH domain binding protein 1	1.51
ENY2	enhancer of yellow 2 homolog (Drosophila)	1.51
HCP5	HLA complex P5 (non-protein coding)	1.51
HELLS	helicase, lymphoid-specific	1.51
HERC4	HECT and RLD domain containing E3 ubiquitin protein ligase 4	1.51
KDM1A	lysine (K)-specific demethylase 1A	1.51
MAT2B	methionine adenosyltransferase II, beta	1.51
NPIPA2	nuclear pore complex interacting protein family, member A2	1.51
NPIPA3	nuclear pore complex interacting protein family, member A3	1.51
Símbolo do Gene	Descrição	Fold Change
-----------------	---	-------------
PANX1	pannexin 1	1.51
PARM1	prostate androgen-regulated mucin-like protein 1	1.51
PRRC2B	proline-rich coiled-coil 2B	1.51
PXYLP1	2-phosphoxylose phosphatase 1	1.51
RBM18	RNA binding motif protein 18	1.51
RNF214	ring finger protein 214	1.51
RNF216P1	ring finger protein 216 pseudogene 1	1.51
RPL13A	ribosomal protein L13a	1.51
RPL39	ribosomal protein L39	1.51
RPL5	ribosomal protein L5	1.51
RPS6KA5	ribosomal protein S6 kinase, 90kDa, polypeptide 5	1.51
SNORA13	small nucleolar RNA, H/ACA box 13	1.51
SNORA69	small nucleolar RNA, H/ACA box 69	1.51
SNORD21	small nucleolar RNA, C/D box 21	1.51
SNORD34	small nucleolar RNA, C/D box 34	1.51
SNW1	SNW domain containing 1	1.51
THUMPD2	THUMP domain containing 2	1.51
TMEM234	transmembrane protein 234	1.51
UBXN8	UBX domain protein 8	1.51
ZCCHC17	zinc finger, CCHC domain containing 17	1.51
ZNF329	zinc finger protein 329	1.51
ZNF555	zinc finger protein 555	1.51
ZNF716	zinc finger protein 716	1.51
BLZF1	basic leucine zipper nuclear factor 1	1.52
C11orf57	chromosome 11 open reading frame 57	1.52
CCDC58	coiled-coil domain containing 58	1.52
CDK1	cyclin-dependent kinase 1	1.52
CHD1L	chromodomain helicase DNA binding protein 1-like	1.52
COMMD10	COMM domain containing 10	1.52
COX6C	cytochrome c oxidase subunit VIc	1.52

Símbolo do Gene	Descrição	Fold Change
CTSV	cathepsin V	1.52
DCLRE1C	DNA cross-link repair 1C	1.52
DNAJC1	DnaJ (Hsp40) homolog, subfamily C, member 1	1.52
DSCR3	Down syndrome critical region 3	1.52
EDIL3	EGF-like repeats and discoidin I-like domains 3	1.52
EXOSC3	exosome component 3	1.52
FTSJ1	FtsJ RNA methyltransferase homolog 1 (E. coli)	1.52
HIST1H2AM	histone cluster 1, H2am	1.52
HIST1H3J	histone cluster 1, H3j	1.52
ITGB1BP2	integrin beta 1 binding protein (melusin) 2	1.52
LSP1P3	lymphocyte-specific protein 1 pseudogene 3	1.52
MIS18BP1	MIS18 binding protein 1	1.52
MRPL39	mitochondrial ribosomal protein L39	1.52
NOP58	NOP58 ribonucleoprotein	1.52
NPIPB5	nuclear pore complex interacting protein family, member B5	1.52
ODC1	ornithine decarboxylase 1	1.52
PANK3	pantothenate kinase 3	1.52
PARP14	poly(ADP-ribose) polymerase family member 14	1.52
PEX2	peroxisomal biogenesis factor 2	1.52
PJA2	praja ring finger 2, E3 ubiquitin protein ligase	1.52
RAD50	RAD50 homolog, double strand break repair protein	1.52
RHBDD1	rhomboid domain containing 1	1.52
RNF130	ring finger protein 130	1.52
RPSAP52	ribosomal protein SA pseudogene 52	1.52
RTF1	RTF1 homolog, Paf1/RNA polymerase II complex component	1.52
SCML2	sex comb on midleg-like 2 (Drosophila)	1.52
SMG1P1	SMG1 pseudogene 1	1.52
SMIM15	small integral membrane protein 15	1.52
SNORD50B	small nucleolar RNA, C/D box 50B	1.52
SNORD59A	small nucleolar RNA, C/D box 59A	1.52

Símbolo do Gene	Descrição	Fold Change
THOC2	THO complex 2	1.52
TM4SF19	transmembrane 4 L six family member 19	1.52
TM4SF19- TCTEX1D2	TM4SF19-TCTEX1D2 readthrough (NMD candidate)	1.52
TRDMT1	tRNA aspartic acid methyltransferase 1	1.52
TRMT10C	tRNA methyltransferase 10C, mitochondrial RNase P subunit	1.52
TYW3	tRNA-yW synthesizing protein 3 homolog (S. cerevisiae)	1.52
ULBP2	UL16 binding protein 2	1.52
ZFAND4	zinc finger, AN1-type domain 4	1.52
ZNF320	zinc finger protein 320	1.52
ZNF442	zinc finger protein 442	1.52
ZNF627	zinc finger protein 627	1.52
ZNF638	zinc finger protein 638	1.52
ATAD2B	ATPase family, AAA domain containing 2B	1.53
BRD9	bromodomain containing 9	1.53
CASK	calcium/calmodulin-dependent serine protein kinase (MAGUK family)	1.53
DDX18P1	DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 pseudogene 1	1.53
FAM63B	family with sequence similarity 63, member B	1.53
GABBR1	gamma-aminobutyric acid (GABA) B receptor, 1	1.53
GTF2A2	general transcription factor IIA 2	1.53
LIN7C	lin-7 homolog C (C. elegans)	1.53
MICA	MHC class I polypeptide-related sequence A	1.53
MRE11A	MRE11 homolog A, double strand break repair nuclease	1.53
MRPL42	mitochondrial ribosomal protein L42	1.53
NADK2	NAD kinase 2, mitochondrial	1.53
NCAPG2	non-SMC condensin II complex subunit G2	1.53
NMRK1	nicotinamide riboside kinase 1	1.53
OSBPL8	oxysterol binding protein-like 8	1.53
PDRG1	p53 and DNA-damage regulated 1	1.53
RNU5F-1	RNA, U5F small nuclear 1	1.53
RP9	retinitis pigmentosa 9 (autosomal dominant)	1.53

Símbolo do Gene	Descrição	Fold Change
RPF2	ribosome production factor 2 homolog	1.53
RPL7P48	ribosomal protein L7 pseudogene 48	1.53
RPS20	ribosomal protein S20	1.53
SMC6	structural maintenance of chromosomes 6	1.53
SNORD54	small nucleolar RNA, C/D box 54	1.53
SNORD75	small nucleolar RNA, C/D box 75	1.53
TCEANC	transcription elongation factor A (SII) N-terminal and central domain containing	1.53
TIMM21	translocase of inner mitochondrial membrane 21 homolog (yeast)	1.53
TIRAP	toll-interleukin 1 receptor (TIR) domain containing adaptor protein	1.53
TTK	TTK protein kinase	1.53
WDR48	WD repeat domain 48	1.53
XCL1	chemokine (C motif) ligand 1	1.53
XCL2	chemokine (C motif) ligand 2	1.53
ZBED4	zinc finger, BED-type containing 4	1.53
ZDHHC11	zinc finger, DHHC-type containing 11	1.53
ZFP3	ZFP3 zinc finger protein	1.53
ZNF701	zinc finger protein 701	1.53
ZNF808	zinc finger protein 808	1.53
AMY2B	amylase, alpha 2B (pancreatic)	1.54
ARGLU1	arginine and glutamate rich 1	1.54
BIVM-ERCC5	BIVM-ERCC5 readthrough	1.54
C5orf34	chromosome 5 open reading frame 34	1.54
C9orf85	chromosome 9 open reading frame 85	1.54
CCDC82	coiled-coil domain containing 82	1.54
CHFR	checkpoint with forkhead and ring finger domains, E3 ubiquitin protein ligase	1.54
CLIC4	chloride intracellular channel 4	1.54
CSTF3	cleavage stimulation factor, 3 pre-RNA, subunit 3	1.54
DYNLT3	dynein, light chain, Tctex-type 3	1.54
EIF4A1	eukaryotic translation initiation factor 4A1	1.54
FRG1	FSHD region gene 1	1.54

Símbolo do Gene	Descrição	Fold Change
HOXA2	homeobox A2	1.54
IGKV1D-8	immunoglobulin kappa variable 1D-8	1.54
LOC100287497	uncharacterized LOC100287497	1.54
LOC100287934	uncharacterized LOC100287934	1.54
LOC646358	DnaJ (Hsp40) homolog, subfamily B, member 14 pseudogene	1.54
MC1R	melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor)	1.54
MTMR6	myotubularin related protein 6	1.54
MUC12	mucin 12, cell surface associated	1.54
PGAP1	post-GPI attachment to proteins 1	1.54
PHF1	PHD finger protein 1	1.54
PHTF2	putative homeodomain transcription factor 2	1.54
PITPNC1	phosphatidylinositol transfer protein, cytoplasmic 1	1.54
POLR3G	polymerase (RNA) III (DNA directed) polypeptide G (32kD)	1.54
RBMY1B	RNA binding motif protein, Y-linked, family 1, member B	1.54
RBMY1D	RNA binding motif protein, Y-linked, family 1, member D	1.54
RBMY1E	RNA binding motif protein, Y-linked, family 1, member E	1.54
RNPC3	RNA binding region (RNP1, RRM) containing 3	1.54
RPSA	ribosomal protein SA	1.54
RSL24D1	ribosomal L24 domain containing 1	1.54
SNORA62	small nucleolar RNA, H/ACA box 62	1.54
SNORA67	small nucleolar RNA, H/ACA box 67	1.54
SP110	SP110 nuclear body protein	1.54
TFPI	tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor)	1.54
TUBB3	tubulin, beta 3 class III	1.54
UQCC1	ubiquinol-cytochrome c reductase complex assembly factor 1	1.54
USP1	ubiquitin specific peptidase 1	1.54
ZNF286A	zinc finger protein 286A	1.54
ZNF304	zinc finger protein 304	1.54
ZNF354A	zinc finger protein 354A	1.54
ZNF432	zinc finger protein 432	1.54

Símbolo do Gene	Descrição	Fold Change
ZNF570	zinc finger protein 570	1.54
ZNF605	zinc finger protein 605	1.54
ZNF830	zinc finger protein 830	1.54
ASPHD1	aspartate beta-hydroxylase domain containing 1	1.55
ATP6V1D	ATPase, H+ transporting, lysosomal 34kDa, V1 subunit D	1.55
ATR	ATR serine/threonine kinase	1.55
BMPR1A	bone morphogenetic protein receptor type IA	1.55
BMPR1APS2	bone morphogenetic protein receptor type IA pseudogene 2	1.55
C1S	complement component 1, s subcomponent	1.55
CCPG1	cell cycle progression 1	1.55
CYP27C1	cytochrome P450, family 27, subfamily C, polypeptide 1	1.55
DDX19A	DEAD (Asp-Glu-Ala-Asp) box polypeptide 19A	1.55
DYX1C1-CCPG1	DYX1C1-CCPG1 readthrough (NMD candidate)	1.55
FUNDC2	FUN14 domain containing 2	1.55
GOLGA8IP	golgin A8 family, member I, pseudogene	1.55
HERPUD2	HERPUD family member 2	1.55
KIF11	kinesin family member 11	1.55
LOC400590	uncharacterized LOC400590	1.55
MYNN	myoneurin	1.55
NBEAL1	neurobeachin like 1	1.55
OR4N3P	olfactory receptor, family 4, subfamily N, member 3 pseudogene	1.55
OSGIN2	oxidative stress induced growth inhibitor family member 2	1.55
PARP9	poly(ADP-ribose) polymerase family member 9	1.55
POP1	POP1 homolog, ribonuclease P/MRP subunit	1.55
RAB18	RAB18, member RAS oncogene family	1.55
RAB2A	RAB2A, member RAS oncogene family	1.55
RPS20P27	ribosomal protein S20 pseudogene 27	1.55
SCRN3	secernin 3	1.55
SEC24A	SEC24 homolog A, COPII coat complex component	1.55
SNORD50A	small nucleolar RNA, C/D box 50A	1.55

Símbolo do Gene	Descrição	Fold Change
SRFBP1	serum response factor binding protein 1	1.55
TBCK	TBC1 domain containing kinase	1.55
TRIM59	tripartite motif containing 59	1.55
USP38	ubiquitin specific peptidase 38	1.55
ZNF484	zinc finger protein 484	1.55
ZNF75A	zinc finger protein 75a	1.55
ABT1	activator of basal transcription 1	1.56
ATF2	activating transcription factor 2	1.56
ATP6V1C1	ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C1	1.56
CASP6	caspase 6	1.56
CEP63	centrosomal protein 63kDa	1.56
CHCHD7	coiled-coil-helix-coiled-coil-helix domain containing 7	1.56
CXorf23	chromosome X open reading frame 23	1.56
LRRC40	leucine rich repeat containing 40	1.56
MRPS28	mitochondrial ribosomal protein S28	1.56
MRPS9	mitochondrial ribosomal protein S9	1.56
PGBD2	piggyBac transposable element derived 2	1.56
RIPK1	receptor (TNFRSF)-interacting serine-threonine kinase 1	1.56
SENP5	SUMO1/sentrin specific peptidase 5	1.56
SMAD2	SMAD family member 2	1.56
SNORD38A	small nucleolar RNA, C/D box 38A	1.56
SS18	synovial sarcoma translocation, chromosome 18	1.56
SUPT20HL1	SPT20 homolog, SAGA complex component-like 1	1.56
THAP6	THAP domain containing 6	1.56
TIMM9	translocase of inner mitochondrial membrane 9 homolog (yeast)	1.56
TXNL4B	thioredoxin-like 4B	1.56
UBE2D1	ubiquitin conjugating enzyme E2D 1	1.56
UBR1	ubiquitin protein ligase E3 component n-recognin 1	1.56
WDR36	WD repeat domain 36	1.56
ZNF343	zinc finger protein 343	1.56

Símbolo do Gene	Descrição	Fold Change
ZNF644	zinc finger protein 644	1.56
ZNF8	zinc finger protein 8	1.56
ZNF85	zinc finger protein 85	1.56
AGTPBP1	ATP/GTP binding protein 1	1.57
ANKRD20A12P	ankyrin repeat domain 20 family, member A12, pseudogene	1.57
ANKRD20A8P	ankyrin repeat domain 20 family, member A8, pseudogene	1.57
ANXA10	annexin A10	1.57
ARHGEF26	Rho guanine nucleotide exchange factor 26	1.57
CERS5	ceramide synthase 5	1.57
CETN3	centrin 3	1.57
CYB5R4	cytochrome b5 reductase 4	1.57
LIF	leukemia inhibitory factor	1.57
POGLUT1	protein O-glucosyltransferase 1	1.57
PPIEL	peptidylprolyl isomerase E-like pseudogene	1.57
PXK	PX domain containing serine/threonine kinase	1.57
RNMT	RNA (guanine-7-) methyltransferase	1.57
RPS2P2	ribosomal protein S2 pseudogene 2	1.57
SENP6	SUMO1/sentrin specific peptidase 6	1.57
SNORD116-2	small nucleolar RNA, C/D box 116-2	1.57
SNORD78	small nucleolar RNA, C/D box 78	1.57
SPC25	SPC25, NDC80 kinetochore complex component	1.57
STEAP1	six transmembrane epithelial antigen of the prostate 1	1.57
UBE2Q2P1	ubiquitin-conjugating enzyme E2Q family member 2 pseudogene 1	1.57
UFSP2	UFM1-specific peptidase 2	1.57
VPS8	vacuolar protein sorting 8 homolog (S. cerevisiae)	1.57
ZFYVE16	zinc finger, FYVE domain containing 16	1.57
ZNF252P	zinc finger protein 252, pseudogene	1.57
ZNF28	zinc finger protein 28	1.57
ZNF3	zinc finger protein 3	1.57
ZNF480	zinc finger protein 480	1.57

Símbolo do Gene	Descrição	Fold Change
ZNF850	zinc finger protein 850	1.57
ANKRD49	ankyrin repeat domain 49	1.58
C1orf27	chromosome 1 open reading frame 27	1.58
CCP110	centriolar coiled coil protein 110kDa	1.58
CLK1	CDC like kinase 1	1.58
CSGALNACT1	chondroitin sulfate N-acetylgalactosaminyltransferase 1	1.58
DDHD1	DDHD domain containing 1	1.58
FRG1CP	FSHD region gene 1 family member C, pseudogene	1.58
FRG1DP	FSHD region gene 1 family member D, pseudogene	1.58
FRG1JP	FSHD region gene 1 family member J, pseudogene	1.58
GCH1	GTP cyclohydrolase 1	1.58
HMOX1	heme oxygenase 1	1.58
HSP90AA6P	heat shock protein 90kDa alpha (cytosolic), class A member 6, pseudogene	1.58
ICAM1	intercellular adhesion molecule 1	1.58
KDELC1	KDEL (Lys-Asp-Glu-Leu) containing 1	1.58
KDELC2	KDEL (Lys-Asp-Glu-Leu) containing 2	1.58
LARP7	La ribonucleoprotein domain family, member 7	1.58
LINC01356	long intergenic non-protein coding RNA 1356	1.58
LOC284788	uncharacterized LOC284788	1.58
MKKS	McKusick-Kaufman syndrome	1.58
N4BP2	NEDD4 binding protein 2	1.58
NEMP2	nuclear envelope integral membrane protein 2	1.58
PEX3	peroxisomal biogenesis factor 3	1.58
PPIL3	peptidylprolyl isomerase (cyclophilin)-like 3	1.58
RAVER2	ribonucleoprotein, PTB-binding 2	1.58
SLC15A4	solute carrier family 15 (oligopeptide transporter), member 4	1.58
SNORD45B	small nucleolar RNA, C/D box 45B	1.58
TM2D2	TM2 domain containing 2	1.58
TRIM21	tripartite motif containing 21	1.58
UBXN2A	UBX domain protein 2A	1.58

Símbolo do Gene	Descrição	Fold Change
USP31	ubiquitin specific peptidase 31	1.58
WEE1	WEE1 G2 checkpoint kinase	1.58
YES1	YES proto-oncogene 1, Src family tyrosine kinase	1.58
ZC3H13	zinc finger CCCH-type containing 13	1.58
ZNF189	zinc finger protein 189	1.58
ZNF280D	zinc finger protein 280D	1.58
ZNF675	zinc finger protein 675	1.58
ZNF799	zinc finger protein 799	1.58
ACAT1	acetyl-CoA acetyltransferase 1	1.59
ATG2B	autophagy related 2B	1.59
CLSPN	claspin	1.59
COPS8	COP9 signalosome subunit 8	1.59
CPSF3	cleavage and polyadenylation specific factor 3	1.59
FAM156B	family with sequence similarity 156, member B	1.59
FAM200B	family with sequence similarity 200, member B	1.59
FNDC3A	fibronectin type III domain containing 3A	1.59
GTF2H2	general transcription factor IIH subunit 2	1.59
GTF2H2B	general transcription factor IIH subunit 2B (pseudogene)	1.59
GTF2H2C	GTF2H2 family member C	1.59
GTF2H2C_2	GTF2H2 family member C, copy 2	1.59
IFI44	interferon-induced protein 44	1.59
LOC102724208	uncharacterized LOC102724208	1.59
NUDCD2	NudC domain containing 2	1.59
PIN4	peptidylprolyl cis/trans isomerase, NIMA-interacting 4	1.59
RIOK2	RIO kinase 2	1.59
SHC4	SHC (Src homology 2 domain containing) family, member 4	1.59
SMAD5	SMAD family member 5	1.59
SNHG12	small nucleolar RNA host gene 12	1.59
SNORA44	small nucleolar RNA, H/ACA box 44	1.59
SOCS4	suppressor of cytokine signaling 4	1.59

Símbolo do Gene	Descrição	Fold Change
SPATA7	spermatogenesis associated 7	1.59
SPRR2A	small proline-rich protein 2A	1.59
TRIB2	tribbles pseudokinase 2	1.59
TXNDC9	thioredoxin domain containing 9	1.59
ZNF257	zinc finger protein 257	1.59
ZNF273	zinc finger protein 273	1.59
ZNF490	zinc finger protein 490	1.59
ABCC4	ATP binding cassette subfamily C member 4	1.6
CASP8AP2	caspase 8 associated protein 2	1.6
CENPC	centromere protein C	1.6
DSTNP2	destrin (actin depolymerizing factor) pseudogene 2	1.6
GPR137B	G protein-coupled receptor 137B	1.6
HAUS3	HAUS augmin like complex subunit 3	1.6
LAMP2	lysosomal-associated membrane protein 2	1.6
MDM4	MDM4, p53 regulator	1.6
MICB	MHC class I polypeptide-related sequence B	1.6
MMP12	matrix metallopeptidase 12	1.6
NOC3L	NOC3-like DNA replication regulator	1.6
POLN	polymerase (DNA directed) nu	1.6
PSAT1	phosphoserine aminotransferase 1	1.6
RAB8B	RAB8B, member RAS oncogene family	1.6
SGOL2	shugoshin-like 2 (S. pombe)	1.6
SMARCAD1	SWI/SNF-related, matrix-associated actin-dependent regulator of chromatin, subfamily a, containing DEAD/H box 1	1.6
SP100	SP100 nuclear antigen	1.6
STXBP4	syntaxin binding protein 4	1.6
TIGAR	TP53 induced glycolysis regulatory phosphatase	1.6
TMOD1	tropomodulin 1	1.6
TSTD2	thiosulfate sulfurtransferase (rhodanese)-like domain containing 2	1.6
UBE2F	ubiquitin-conjugating enzyme E2F (putative)	1.6
UBE2F-SCLY	UBE2F-SCLY readthrough (NMD candidate)	1.6

Símbolo do Gene	Descrição	Fold Change
ZFP14	ZFP14 zinc finger protein	1.6
ZNF518A	zinc finger protein 518A	1.6
ZNF566	zinc finger protein 566	1.6
C6orf203	chromosome 6 open reading frame 203	1.61
C8orf44	chromosome 8 open reading frame 44	1.61
C8orf44-SGK3	C8orf44-SGK3 readthrough	1.61
CDKN3	cyclin-dependent kinase inhibitor 3	1.61
CLN5	ceroid-lipofuscinosis, neuronal 5	1.61
GABRE	gamma-aminobutyric acid (GABA) A receptor, epsilon	1.61
GAGE10	G antigen 10	1.61
GEN1	GEN1 Holliday junction 5 flap endonuclease	1.61
GOPC	golgi-associated PDZ and coiled-coil motif containing	1.61
KMO	kynurenine 3-monooxygenase (kynurenine 3-hydroxylase)	1.61
MIR224	microRNA 224	1.61
POLK	polymerase (DNA directed) kappa	1.61
TMEM203	transmembrane protein 203	1.61
TRAPPC8	trafficking protein particle complex 8	1.61
VRK1	vaccinia related kinase 1	1.61
YWHAH	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta	1.61
ZC3H8	zinc finger CCCH-type containing 8	1.61
ZNF416	zinc finger protein 416	1.61
ZNF438	zinc finger protein 438	1.61
ZNF782	zinc finger protein 782	1.61
BRWD3	bromodomain and WD repeat domain containing 3	1.62
CAMLG	calcium modulating ligand	1.62
CHURC1	churchill domain containing 1	1.62
CHURC1-FNTB	CHURC1-FNTB readthrough	1.62
DBN1	drebrin 1	1.62
DSCC1	DNA replication and sister chromatid cohesion 1	1.62
ETFDH	electron-transferring-flavoprotein dehydrogenase	1.62

Símbolo do Gene	Descrição	Fold Change
FAM126A	family with sequence similarity 126, member A	1.62
FBXO48	F-box protein 48	1.62
FSD1L	fibronectin type III and SPRY domain containing 1-like	1.62
GDAP1	ganglioside induced differentiation associated protein 1	1.62
GDF15	growth differentiation factor 15	1.62
GPR89A	G protein-coupled receptor 89A	1.62
ILF3-AS1	ILF3 antisense RNA 1 (head to head)	1.62
KPNA4	karyopherin alpha 4 (importin alpha 3)	1.62
PPAT	phosphoribosyl pyrophosphate amidotransferase	1.62
PPWD1	peptidylprolyl isomerase domain and WD repeat containing 1	1.62
RABGGTB	Rab geranylgeranyltransferase, beta subunit	1.62
RRM2	ribonucleotide reductase M2	1.62
SLCO2A1	solute carrier organic anion transporter family, member 2A1	1.62
SNORD30	small nucleolar RNA, C/D box 30	1.62
TBC1D26	TBC1 domain family, member 26	1.62
UQCRB	ubiquinol-cytochrome c reductase binding protein	1.62
ZNF12	zinc finger protein 12	1.62
ASNS	asparagine synthetase (glutamine-hydrolyzing)	1.63
C12orf75	chromosome 12 open reading frame 75	1.63
C5orf28	chromosome 5 open reading frame 28	1.63
EIF4A2	eukaryotic translation initiation factor 4A2	1.63
KIF3A	kinesin family member 3A	1.63
MINPP1	multiple inositol-polyphosphate phosphatase 1	1.63
MRPL15	mitochondrial ribosomal protein L15	1.63
MTX3	metaxin 3	1.63
OR2M5	olfactory receptor, family 2, subfamily M, member 5	1.63
OSER1	oxidative stress responsive serine-rich 1	1.63
RPL23AP4	ribosomal protein L23a pseudogene 4	1.63
RPL23AP5	ribosomal protein L23a pseudogene 5	1.63
RPS3AP47	ribosomal protein S3a pseudogene 47	1.63

Símbolo do Gene	Descrição	Fold Change
SAMHD1	SAM domain and HD domain 1	1.63
SERPINE2	serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2	1.63
SLC22A4	solute carrier family 22 (organic cation/zwitterion transporter), member 4	1.63
TRAPPC2	trafficking protein particle complex 2	1.63
TRAPPC2B	trafficking protein particle complex 2B	1.63
WRN	Werner syndrome, RecQ helicase-like	1.63
ZNF138	zinc finger protein 138	1.63
ZNF271P	zinc finger protein 271, pseudogene	1.63
ZNF430	zinc finger protein 430	1.63
ZNF547	zinc finger protein 547	1.63
ZNF860	zinc finger protein 860	1.63
CCDC14	coiled-coil domain containing 14	1.64
CENPE	centromere protein E	1.64
CENPW	centromere protein W	1.64
COX6B2	cytochrome c oxidase subunit VIb polypeptide 2 (testis)	1.64
EMC3-AS1	EMC3 antisense RNA 1	1.64
FAM126B	family with sequence similarity 126, member B	1.64
MND1	meiotic nuclear divisions 1	1.64
PAFAH1B2	platelet-activating factor acetylhydrolase 1b, catalytic subunit 2 (30kDa)	1.64
PIGA	phosphatidylinositol glycan anchor biosynthesis class A	1.64
PIK3CA	phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha	1.64
POPDC3	popeye domain containing 3	1.64
SCARNA17	small Cajal body-specific RNA 17	1.64
STXBP3	syntaxin binding protein 3	1.64
USPL1	ubiquitin specific peptidase like 1	1.64
WHAMMP3	WAS protein homolog associated with actin, golgi membranes and microtubules pseudogene 3	1.64
ZNF175	zinc finger protein 175	1.64
ZNF235	zinc finger protein 235	1.64
CD274	CD274 molecule	1.65
CFAP97	cilia and flagella associated protein 97	1.65

Símbolo do Gene	Descrição	Fold Change
FAM102B	family with sequence similarity 102, member B	1.65
FAM185A	family with sequence similarity 185, member A	1.65
IPO8	importin 8	1.65
KATNAL1	katanin p60 subunit A-like 1	1.65
LOC728715	ovostatin homolog 2	1.65
MAGED2	MAGE family member D2	1.65
MIB1	mindbomb E3 ubiquitin protein ligase 1	1.65
MICU2	mitochondrial calcium uptake 2	1.65
OVOS	ovostatin	1.65
PARP8	poly(ADP-ribose) polymerase family member 8	1.65
PDE5A	phosphodiesterase 5A, cGMP-specific	1.65
RFTN1	raftlin, lipid raft linker 1	1.65
SNORD49B	small nucleolar RNA, C/D box 49B	1.65
TXNDC17	thioredoxin domain containing 17	1.65
UBE2Q2	ubiquitin-conjugating enzyme E2Q family member 2	1.65
ANKRD36C	ankyrin repeat domain 36C	1.66
CDC26	cell division cycle 26	1.66
CLK4	CDC like kinase 4	1.66
DNAH14	dynein, axonemal, heavy chain 14	1.66
EMP2	epithelial membrane protein 2	1.66
GBAS	glioblastoma amplified sequence	1.66
HIST1H2AH	histone cluster 1, H2ah	1.66
IFI44L	interferon-induced protein 44-like	1.66
MRPS17	mitochondrial ribosomal protein S17	1.66
NUDCD1	NudC domain containing 1	1.66
OR7E162P	olfactory receptor, family 7, subfamily E, member 162 pseudogene	1.66
POLA1	polymerase (DNA directed), alpha 1, catalytic subunit	1.66
SNRPG	small nuclear ribonucleoprotein polypeptide G	1.66
UGP2	UDP-glucose pyrophosphorylase 2	1.66
WDR3	WD repeat domain 3	1.66

Símbolo do Gene	Descrição	Fold Change
ZNF140	zinc finger protein 140	1.66
ZNF2	zinc finger protein 2	1.66
ZNF486	zinc finger protein 486	1.66
ZNF519	zinc finger protein 519	1.66
ZNF91	zinc finger protein 91	1.66
C3orf33	chromosome 3 open reading frame 33	1.67
CAPRIN2	caprin family member 2	1.67
CDH5	cadherin 5, type 2 (vascular endothelium)	1.67
COX7B	cytochrome c oxidase subunit VIIb	1.67
CRIPT	cysteine-rich PDZ-binding protein	1.67
CRISPLD2	cysteine-rich secretory protein LCCL domain containing 2	1.67
FAM105A	family with sequence similarity 105, member A	1.67
FOXN2	forkhead box N2	1.67
LAMTOR3	late endosomal/lysosomal adaptor, MAPK and MTOR activator 3	1.67
LMBRD2	LMBR1 domain containing 2	1.67
LRRC37B	leucine rich repeat containing 37B	1.67
LRRC8B	leucine rich repeat containing 8 family, member B	1.67
NDUFAF5	NADH dehydrogenase (ubiquinone) complex I, assembly factor 5	1.67
POLG2	polymerase (DNA directed), gamma 2, accessory subunit	1.67
UBLCP1	ubiquitin-like domain containing CTD phosphatase 1	1.67
ZGRF1	zinc finger, GRF-type containing 1	1.67
ZNF280C	zinc finger protein 280C	1.67
ZNF507	zinc finger protein 507	1.67
ADAM21P1	ADAM metallopeptidase domain 21 pseudogene 1	1.68
ALCAM	activated leukocyte cell adhesion molecule	1.68
CATSPERB	catsper channel auxiliary subunit beta	1.68
EEA1	early endosome antigen 1	1.68
FAM177A1	family with sequence similarity 177, member A1	1.68
GLIPR1	GLI pathogenesis-related 1	1.68
HERC6	HECT and RLD domain containing E3 ubiquitin protein ligase family member 6	1.68

Símbolo do Gene	Descrição	Fold Change
KLHL9	kelch-like family member 9	1.68
MICAL1	microtubule associated monooxygenase, calponin and LIM domain containing 1	1.68
OR7E37P	olfactory receptor, family 7, subfamily E, member 37 pseudogene	1.68
RPL21	ribosomal protein L21	1.68
RPS3A	ribosomal protein S3A	1.68
SNORD102	small nucleolar RNA, C/D box 102	1.68
SNORD73A	small nucleolar RNA, C/D box 73A	1.68
TMEM209	transmembrane protein 209	1.68
TNFRSF9	tumor necrosis factor receptor superfamily, member 9	1.68
ZBTB24	zinc finger and BTB domain containing 24	1.68
ZNF585A	zinc finger protein 585A	1.68
ZNF780A	zinc finger protein 780A	1.68
CEBPZ	CCAAT/enhancer binding protein (C/EBP), zeta	1.69
CRBN	cereblon	1.69
CX3CL1	chemokine (C-X3-C motif) ligand 1	1.69
DEPDC1	DEP domain containing 1	1.69
DNAJB14	DnaJ (Hsp40) homolog, subfamily B, member 14	1.69
ELOVL7	ELOVL fatty acid elongase 7	1.69
FAM156A	family with sequence similarity 156, member A	1.69
FAM188A	family with sequence similarity 188, member A	1.69
GUF1	GUF1 homolog, GTPase	1.69
LOC100419773	zinc finger protein 33B pseudogene	1.69
MGAM	maltase-glucoamylase	1.69
SNORD12C	small nucleolar RNA, C/D box 12C	1.69
SNORD77	small nucleolar RNA, C/D box 77	1.69
SNORD81	small nucleolar RNA, C/D box 81	1.69
AHNAK2	AHNAK nucleoprotein 2	1.7
GORAB	golgin, RAB6-interacting	1.7
MED6	mediator complex subunit 6	1.7
MLF1	myeloid leukemia factor 1	1.7

Símbolo do Gene	Descrição	Fold Change
OR7E31P	olfactory receptor, family 7, subfamily E, member 31 pseudogene	1.7
SPTLC1	serine palmitoyltransferase, long chain base subunit 1	1.7
TPRKB	TP53RK binding protein	1.7
TRNT1	tRNA nucleotidyl transferase, CCA-adding, 1	1.7
ZNF844	zinc finger protein 844	1.7
ATE1	arginyltransferase 1	1.71
ATRX	alpha thalassemia/mental retardation syndrome X-linked	1.71
C18orf54	chromosome 18 open reading frame 54	1.71
HIST1H2AJ	histone cluster 1, H2aj	1.71
HMGA2	high mobility group AT-hook 2	1.71
PGBD5	piggyBac transposable element derived 5	1.71
SERPINB4	serpin peptidase inhibitor, clade B (ovalbumin), member 4	1.71
SNORD14E	small nucleolar RNA, C/D box 14E	1.71
SNORD1B	small nucleolar RNA, C/D box 1B	1.71
SNORD63	small nucleolar RNA, C/D box 63	1.71
TMEM106B	transmembrane protein 106B	1.71
ZFP1	ZFP1 zinc finger protein	1.71
ZNF32	zinc finger protein 32	1.71
C20orf96	chromosome 20 open reading frame 96	1.72
IPO11	importin 11	1.72
KIF2A	kinesin heavy chain member 2A	1.72
LOC100134868	uncharacterized LOC100134868	1.72
RNU5A-1	RNA, U5A small nuclear 1	1.72
SCAMP1	secretory carrier membrane protein 1	1.72
TLN1	talin 1	1.72
TOPORS	topoisomerase I binding, arginine/serine-rich, E3 ubiquitin protein ligase	1.72
ZNF382	zinc finger protein 382	1.72
ALG13	ALG13, UDP-N-acetylglucosaminyltransferase subunit	1.73
C9orf3	chromosome 9 open reading frame 3	1.73
ELP2	elongator acetyltransferase complex subunit 2	1.73

Símbolo do Gene	Descrição	Fold Change
FAM219B	family with sequence similarity 219, member B	1.73
FASTKD2	FAST kinase domains 2	1.73
IL6	interleukin 6	1.73
JUN	jun proto-oncogene	1.73
MIER3	mesoderm induction early response 1, family member 3	1.73
MIR23B	microRNA 23b	1.73
MIR27B	microRNA 27b	1.73
MTERF3	mitochondrial transcription termination factor 3	1.73
PCCA	propionyl-CoA carboxylase alpha subunit	1.73
RAP1GDS1	RAP1, GTP-GDP dissociation stimulator 1	1.73
SCARNA1	small Cajal body-specific RNA 1	1.73
TTC14	tetratricopeptide repeat domain 14	1.73
ZNF223	zinc finger protein 223	1.73
ZNF284	zinc finger protein 284	1.73
AKTIP	AKT interacting protein	1.74
DPY19L3	dpy-19-like 3 (C. elegans)	1.74
FANCL	Fanconi anemia complementation group L	1.74
HYLS1	hydrolethalus syndrome 1	1.74
MAD2L1	MAD2 mitotic arrest deficient-like 1 (yeast)	1.74
RUFY2	RUN and FYVE domain containing 2	1.74
TGFB1	transforming growth factor beta 1	1.74
ZNF558	zinc finger protein 558	1.74
ACAD8	acyl-CoA dehydrogenase family, member 8	1.75
ARL6	ADP-ribosylation factor like GTPase 6	1.75
DAP3	death associated protein 3	1.75
EPHA6	EPH receptor A6	1.75
HNRNPLL	heterogeneous nuclear ribonucleoprotein L-like	1.75
LIG4	ligase IV, DNA, ATP-dependent	1.75
NSA2	NSA2 ribosome biogenesis homolog	1.75
OR7E12P	olfactory receptor, family 7, subfamily E, member 12 pseudogene	1.75

Símbolo do Gene	Descrição	Fold Change
PTPN9	protein tyrosine phosphatase, non-receptor type 9	1.75
RPF1	ribosome production factor 1 homolog	1.75
SLC35D1	solute carrier family 35 (UDP-GlcA/UDP-GalNAc transporter), member D1	1.75
ARHGAP11B	Rho GTPase activating protein 11B	1.76
C2orf49	chromosome 2 open reading frame 49	1.76
COA7	cytochrome c oxidase assembly factor 7 (putative)	1.76
GLMN	glomulin, FKBP associated protein	1.76
IFI27	interferon, alpha-inducible protein 27	1.76
LOC728323	uncharacterized LOC728323	1.76
NDUFAF4	NADH dehydrogenase (ubiquinone) complex I, assembly factor 4	1.76
RAD17	RAD17 checkpoint clamp loader component	1.76
RPS8	ribosomal protein S8	1.76
SNORA1	small nucleolar RNA, H/ACA box 1	1.76
SNORA8	small nucleolar RNA, H/ACA box 8	1.76
SNORD38B	small nucleolar RNA, C/D box 38B	1.76
TAF1D	TATA box binding protein associated factor 1D	1.76
TCEB1P2	transcription elongation factor B (SIII), polypeptide 1 pseudogene 2	1.76
ZNF525	zinc finger protein 525	1.76
ZNF836	zinc finger protein 836	1.76
ALDH9A1	aldehyde dehydrogenase 9 family, member A1	1.77
C1DP2	C1D nuclear receptor corepressor pseudogene 2	1.77
C1DP3	C1D nuclear receptor corepressor pseudogene 3	1.77
FANCB	Fanconi anemia complementation group B	1.77
LAMC2	laminin, gamma 2	1.77
LYAR	Ly1 antibody reactive	1.77
OR7E39P	olfactory receptor, family 7, subfamily E, member 39 pseudogene	1.77
PHF11	PHD finger protein 11	1.77
RANBP2	RAN binding protein 2	1.77
RPP14	ribonuclease P/MRP 14kDa subunit	1.77
SLC41A1	solute carrier family 41 (magnesium transporter), member 1	1.77

Símbolo do Gene	Descrição	Fold Change
TP63	tumor protein p63	1.77
ZNF527	zinc finger protein 527	1.77
ZNF681	zinc finger protein 681	1.77
ZNF841	zinc finger protein 841	1.77
ANKRD36	ankyrin repeat domain 36	1.78
ATG4C	autophagy related 4C, cysteine peptidase	1.78
RPL7L1P5	ribosomal protein L7-like 1 pseudogene 5	1.78
SGTB	small glutamine-rich tetratricopeptide repeat (TPR)-containing, beta	1.78
TNFAIP3	tumor necrosis factor, alpha-induced protein 3	1.78
VBP1	von Hippel-Lindau binding protein 1	1.78
IFIH1	interferon induced, with helicase C domain 1	1.79
MIR221	microRNA 221	1.79
NAIP	NLR family, apoptosis inhibitory protein	1.79
SBNO1	strawberry notch homolog 1 (Drosophila)	1.79
SNHG16	small nucleolar RNA host gene 16	1.79
SNORD1A	small nucleolar RNA, C/D box 1A	1.79
SP140	SP140 nuclear body protein	1.79
SP140L	SP140 nuclear body protein-like	1.79
TAF1A	TATA box binding protein (TBP)-associated factor, RNA polymerase I, A, 48kDa	1.79
TAOK1	TAO kinase 1	1.79
WDR27	WD repeat domain 27	1.79
ZAK	sterile alpha motif and leucine zipper containing kinase AZK	1.79
ZNF253	zinc finger protein 253	1.79
ZNF562	zinc finger protein 562	1.79
ZNF654	zinc finger protein 654	1.79
AIM2	absent in melanoma 2	1.8
ANKRD46	ankyrin repeat domain 46	1.8
API5	apoptosis inhibitor 5	1.8
CDC14A	cell division cycle 14A	1.8
SNORD31	small nucleolar RNA, C/D box 31	1.8

Símbolo do Gene	Descrição	Fold Change
WDR47	WD repeat domain 47	1.8
ZFYVE9	zinc finger, FYVE domain containing 9	1.8
ATP11C	ATPase, class VI, type 11C	1.81
CCDC88C	coiled-coil domain containing 88C	1.81
IFI6	interferon, alpha-inducible protein 6	1.81
RPGRIP1L	RPGRIP1-like	1.81
SNORD44	small nucleolar RNA, C/D box 44	1.81
SNX16	sorting nexin 16	1.81
ZNF204P	zinc finger protein 204, pseudogene	1.81
ACAD11	acyl-CoA dehydrogenase family, member 11	1.82
NPHP3-ACAD11	NPHP3-ACAD11 readthrough (NMD candidate)	1.82
KTI12	KTI12 chromatin associated homolog	1.83
MIR21	microRNA 21	1.83
ROCK1P1	Rho-associated, coiled-coil containing protein kinase 1 pseudogene 1	1.83
TXNDC12	thioredoxin domain containing 12 (endoplasmic reticulum)	1.83
VMP1	vacuole membrane protein 1	1.83
ZFAND6	zinc finger, AN1-type domain 6	1.83
MT1X	metallothionein 1X	1.84
SNRPD1	small nuclear ribonucleoprotein D1 polypeptide	1.84
TRMT11	tRNA methyltransferase 11 homolog	1.84
IDO1	indoleamine 2,3-dioxygenase 1	1.85
PRKRIR	protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor)	1.85
ZKSCAN8	zinc finger with KRAB and SCAN domains 8	1.85
PIGW	phosphatidylinositol glycan anchor biosynthesis class W	1.86
PTGR2	prostaglandin reductase 2	1.86
ANKRD18B	ankyrin repeat domain 18B	1.87
GPR89B	G protein-coupled receptor 89B	1.87
MIR17	microRNA 17	1.87
MIR17HG	miR-17-92 cluster host gene	1.87
MIR18A	microRNA 18a	1.87

Símbolo do Gene	Descrição	Fold Change
MIR19A	microRNA 19a	1.87
MIR19B1	microRNA 19b-1	1.87
MIR20A	microRNA 20a	1.87
MIR92A1	microRNA 92a-1	1.87
RPL17	ribosomal protein L17	1.87
SNORA75	small nucleolar RNA, H/ACA box 75	1.87
SNORD58A	small nucleolar RNA, C/D box 58A	1.87
STRIP2	striatin interacting protein 2	1.87
TAF5	TAF5 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 100kDa	1.87
TMA16	translation machinery associated 16 homolog	1.87
ZNF600	zinc finger protein 600	1.87
ZNF845	zinc finger protein 845	1.87
ABCA11P	ATP binding cassette subfamily A member 11, pseudogene	1.88
FAM210A	family with sequence similarity 210, member A	1.88
HAUS2	HAUS augmin like complex subunit 2	1.88
OR7E5P	olfactory receptor, family 7, subfamily E, member 5 pseudogene	1.88
ZNF721	zinc finger protein 721	1.88
ZNF816	zinc finger protein 816	1.88
ZNF816-ZNF321P	ZNF816-ZNF321P readthrough	1.88
GBP3	guanylate binding protein 3	1.89
HIPK3	homeodomain interacting protein kinase 3	1.89
LIMD1-AS1	LIMD1 antisense RNA 1	1.89
OR7E14P	olfactory receptor, family 7, subfamily E, member 14 pseudogene	1.89
PRKD3	protein kinase D3	1.89
RAB23	RAB23, member RAS oncogene family	1.89
TGFBR1	transforming growth factor, beta receptor 1	1.89
ZNF33A	zinc finger protein 33A	1.89
ZNF443	zinc finger protein 443	1.89
ZNF761	zinc finger protein 761	1.89
ZNF780B	zinc finger protein 780B	1.89

Símbolo do Gene	Descrição	Fold Change
MOSPD1	motile sperm domain containing 1	1.9
GAS5	growth arrest-specific 5 (non-protein coding)	1.91
L1CAM	L1 cell adhesion molecule	1.91
OR7E26P	olfactory receptor, family 7, subfamily E, member 26 pseudogene	1.91
SERPINB3	serpin peptidase inhibitor, clade B (ovalbumin), member 3	1.91
SNORD79	small nucleolar RNA, C/D box 79	1.91
XRN2	5-3 exoribonuclease 2	1.91
C1GALT1C1	C1GALT1 specific chaperone 1	1.92
GOLGA4	golgin A4	1.92
IMPA1P	inositol(myo)-1(or 4)-monophosphatase 1 pseudogene	1.92
RPL7A	ribosomal protein L7a	1.92
RSF1	remodeling and spacing factor 1	1.92
SNORD36A	small nucleolar RNA, C/D box 36A	1.92
SNORD36C	small nucleolar RNA, C/D box 36C	1.92
TMLHE	trimethyllysine hydroxylase, epsilon	1.92
ZNF208	zinc finger protein 208	1.92
CCDC59	coiled-coil domain containing 59	1.93
SETD4	SET domain containing 4	1.93
SNORA3B	small nucleolar RNA, H/ACA box 3B	1.93
SNORD36B	small nucleolar RNA, C/D box 36B	1.93
ZNF92	zinc finger protein 92	1.93
KRT6B	keratin 6B, type II	1.94
SNORD42A	small nucleolar RNA, C/D box 42A	1.94
RPL37P2	ribosomal protein L37 pseudogene 2	1.95
SNORD47	small nucleolar RNA, C/D box 47	1.95
TNRC6A	trinucleotide repeat containing 6A	1.95
ZNF616	zinc finger protein 616	1.95
THG1L	tRNA-histidine guanylyltransferase 1-like	1.96
UGGT2	UDP-glucose glycoprotein glucosyltransferase 2	1.96
ZNF670	zinc finger protein 670	1.96

Símbolo do Gene	Descrição	Fold Change
ZNF670-ZNF695	ZNF670-ZNF695 readthrough (NMD candidate)	1.96
CSGALNACT2	chondroitin sulfate N-acetylgalactosaminyltransferase 2	1.97
ZNF564	zinc finger protein 564	1.97
IFIT5	interferon-induced protein with tetratricopeptide repeats 5	1.98
PIGF	phosphatidylinositol glycan anchor biosynthesis class F	1.98
DCUN1D1	DCN1, defective in cullin neddylation 1, domain containing 1	1.99
FAM216A	family with sequence similarity 216, member A	1.99
FGB	fibrinogen beta chain	1.99
MXD1	MAX dimerization protein 1	1.99
RASA4	RAS p21 protein activator 4	1.99
SNRNP27	small nuclear ribonucleoprotein, U4/U6.U5 27kDa subunit	1.99
SWT1	SWT1 RNA endoribonuclease homolog	2
PLEKHH2	pleckstrin homology domain containing, family H (with MyTH4 domain) member 2	2.01
RAP1B	RAP1B, member of RAS oncogene family	2.01
SNORD4A	small nucleolar RNA, C/D box 4A	2.02
HOMER1	homer scaffolding protein 1	2.03
LOC285097	uncharacterized FLJ38379	2.03
IQCA1L	IQ motif containing with AAA domain 1 like	2.05
RPL31	ribosomal protein L31	2.06
SAT1	spermidine/spermine N1-acetyltransferase 1	2.06
ZNF611	zinc finger protein 611	2.06
CSF2	colony stimulating factor 2 (granulocyte-macrophage)	2.07
OR7E109P	olfactory receptor, family 7, subfamily E, member 109 pseudogene	2.07
SCARNA9L	small Cajal body-specific RNA 9-like	2.07
CC2D2B	coiled-coil and C2 domain containing 2B	2.08
COQ3	coenzyme Q3 methyltransferase	2.08
RDX	radixin	2.08
ANO10	anoctamin 10	2.09
CCDC112	coiled-coil domain containing 112	2.09
EFTUD1P1	elongation factor Tu GTP binding domain containing 1 pseudogene 1	2.09

Símbolo do Gene	Descrição	Fold Change
RNGTT	RNA guanylyltransferase and 5-phosphatase	2.09
ZNF124	zinc finger protein 124	2.09
SPOPL	speckle-type POZ protein-like	2.1
ND6	NADH dehydrogenase, subunit 6 (complex I)	2.11
ANKRD36B	ankyrin repeat domain 36B	2.12
ZNF224	zinc finger protein 224	2.12
IGBP1P1	immunoglobulin (CD79A) binding protein 1 pseudogene 1	2.14
MED4	mediator complex subunit 4	2.14
B4GALT6	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 6	2.15
NDUFA5	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5	2.15
FAHD1	fumarylacetoacetate hydrolase domain containing 1	2.18
USP15	ubiquitin specific peptidase 15	2.18
PUS7	pseudouridylate synthase 7 (putative)	2.19
SCARNA9	small Cajal body-specific RNA 9	2.19
CTAGE9	CTAGE family, member 9	2.21
RPP40	ribonuclease P/MRP 40kDa subunit	2.21
GNPDA2	glucosamine-6-phosphate deaminase 2	2.22
SNORD22	small nucleolar RNA, C/D box 22	2.22
SYT14	synaptotagmin XIV	2.23
VCPKMT	valosin containing protein lysine (K) methyltransferase	2.23
CXCL11	chemokine (C-X-C motif) ligand 11	2.25
RPEL1	ribulose-5-phosphate-3-epimerase-like 1	2.25
RNU4-2	RNA, U4 small nuclear 2	2.26
CXCL8	chemokine (C-X-C motif) ligand 8	2.27
RNU5D-1	RNA, U5D small nuclear 1	2.27
SNORD28	small nucleolar RNA, C/D box 28	2.29
PTBP2	polypyrimidine tract binding protein 2	2.3
SNORD25	small nucleolar RNA, C/D box 25	2.3
ZNF680	zinc finger protein 680	2.32
LRRC75A-AS1	LRRC75A antisense RNA 1	2.33

Símbolo do Gene	Descrição	Fold Change
SNORD49A	small nucleolar RNA, C/D box 49A	2.33
TOM1L1	target of myb1 like 1 membrane trafficking protein	2.34
SNORA5A	small nucleolar RNA, H/ACA box 5A	2.35
IL24	interleukin 24	2.38
FBXO9	F-box protein 9	2.46
C2orf76	chromosome 2 open reading frame 76	2.48
RPL23A	ribosomal protein L23a	2.48
SNORD42B	small nucleolar RNA, C/D box 42B	2.48
ZNF615	zinc finger protein 615	2.5
RNVU1-19	RNA, variant U1 small nuclear 19	2.53
ACTG2	actin, gamma 2, smooth muscle, enteric	2.54
MSL3P1	male-specific lethal 3 homolog (Drosophila) pseudogene 1	2.55
SAR1B	secretion associated, Ras related GTPase 1B	2.57
VPS29	VPS29 retromer complex component	2.57
SNORD27	small nucleolar RNA, C/D box 27	2.59
DEFB109P1B	defensin, beta 109, pseudogene 1B	2.72
IL6ST	interleukin 6 signal transducer	2.83
KRT75	keratin 75, type II	2.86
IL1RL1	interleukin 1 receptor-like 1	2.91
BIVM	basic, immunoglobulin-like variable motif containing	3.13
CXCL10	chemokine (C-X-C motif) ligand 10	3.66
PYROXD1	pyridine nucleotide-disulphide oxidoreductase domain 1	4.41

ANEXO B - Tabela dos genes diferencialmente expressos após silenciamento da calpaína 10 na linhagem MDA-MB-231 si CAPN10 (fold change 1.5)

Símbolo do Gene	Descrição	Fold Change
F2RL2	coagulation factor II (thrombin) receptor-like 2	-3.2
CD22	CD22 molecule	-3.14
PLEK2	pleckstrin 2	-2.95
IFT46	intraflagellar transport 46	-2.75
INVS	inversin	-2.71
LOC344887	NmrA-like family domain containing 1 pseudogene	-2.68
VIPAS39	VPS33B interacting protein, apical-basolateral polarity regulator, spe-39 homolog	-2.68
SLC7A11	solute carrier family 7 (anionic amino acid transporter light chain, xc- system), member 11	-2.65
PCMTD1	protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 1	-2.53
POMGNT1	protein O-linked mannose N-acetylglucosaminyltransferase 1 (beta 1,2-)	-2.48
SLC39A11	solute carrier family 39, member 11	-2.48
SYT1	synaptotagmin I	-2.45
PLSCR4	phospholipid scramblase 4	-2.43
YAF2	YY1 associated factor 2	-2.42
NFIA	nuclear factor I/A	-2.38
DYNAP	dynactin associated protein	-2.37
FYTTD1	forty-two-three domain containing 1	-2.31
MTMR14	myotubularin related protein 14	-2.31
CDK6	cyclin-dependent kinase 6	-2.29
SREK1IP1	SREK1-interacting protein 1	-2.29
CC2D2B	coiled-coil and C2 domain containing 2B	-2.27
VPS36	vacuolar protein sorting 36 homolog (S. cerevisiae)	-2.27
ADH1C	alcohol dehydrogenase 1C (class I), gamma polypeptide	-2.2
DDX21	DEAD (Asp-Glu-Ala-Asp) box helicase 21	-2.17
IL1A	interleukin 1 alpha	-2.16
SAMD12	sterile alpha motif domain containing 12	-2.14
STOX1	storkhead box 1	-2.14
ATMIN	ATM interactor	-2.1
BTN3A2	butyrophilin, subfamily 3, member A2	-2.09
CIZ1	CDKN1A interacting zinc finger protein 1	-2.09

Símbolo do Gene	Descrição	Fold Change
EXOC5	exocyst complex component 5	-2.07
IGF2BP3	insulin-like growth factor 2 mRNA binding protein 3	-2.07
SLC47A1	solute carrier family 47 (multidrug and toxin extrusion), member 1	-2.07
CAPS2	calcyphosine 2	-2.06
FAM32A	family with sequence similarity 32, member A	-2.06
TCEB3	transcription elongation factor B (SIII), polypeptide 3 (110kDa, elongin A)	-2.04
EREG	epiregulin	-2.03
LINC01116	long intergenic non-protein coding RNA 1116	-2.02
PAG1	phosphoprotein membrane anchor with glycosphingolipid microdomains 1	-2.02
MPP4	membrane protein, palmitoylated 4	-2.01
CHMP2B	charged multivesicular body protein 2B	-2
GJA1	gap junction protein alpha 1	-2
PDE6D	phosphodiesterase 6D, cGMP-specific, rod, delta	-2
STX17	syntaxin 17	-2
GNAQ	guanine nucleotide binding protein (G protein), q polypeptide	-1.99
TMEM45A	transmembrane protein 45A	-1.99
RNF141	ring finger protein 141	-1.98
LRRC59	leucine rich repeat containing 59	-1.97
ZNF25	zinc finger protein 25	-1.97
CRACR2A	calcium release activated channel regulator 2A	-1.95
DCAF8L2	DDB1 and CUL4 associated factor 8-like 2	-1.94
BMP2K	BMP2 inducible kinase	-1.93
CCDC127	coiled-coil domain containing 127	-1.93
COMMD7	COMM domain containing 7	-1.93
SERPINB10	serpin peptidase inhibitor, clade B (ovalbumin), member 10	-1.93
SERPINB2	serpin peptidase inhibitor, clade B (ovalbumin), member 2	-1.93
SNHG1	small nucleolar RNA host gene 1	-1.93
SNORD25	small nucleolar RNA, C/D box 25	-1.93
BCAT1	branched chain amino-acid transaminase 1, cytosolic	-1.92
R3HDM2	R3H domain containing 2	-1.92
BRCA1	breast cancer 1, early onset	-1.91
C15orf54	chromosome 15 open reading frame 54	-1.91
MTOR	mechanistic target of rapamycin (serine/threonine kinase)	-1.91

Símbolo do Gene	Descrição	Fold Change
PSG10P	pregnancy specific beta-1-glycoprotein 10, pseudogene	-1.91
PSG8	pregnancy specific beta-1-glycoprotein 8	-1.91
TUFT1	tuftelin 1	-1.91
ZMYND11	zinc finger, MYND-type containing 11	-1.91
ZNF587B	zinc finger protein 587B	-1.91
CLOCK	clock circadian regulator	-1.9
MMP1	matrix metallopeptidase 1	-1.9
RFESD	Rieske (Fe-S) domain containing	-1.9
TTC8	tetratricopeptide repeat domain 8	-1.9
FAM222B	family with sequence similarity 222, member B	-1.87
PIR	pirin	-1.87
XIRP2	xin actin binding repeat containing 2	-1.87
CARF	calcium responsive transcription factor	-1.86
TMEM214	transmembrane protein 214	-1.86
CYTH3	cytohesin 3	-1.85
PSG2	pregnancy specific beta-1-glycoprotein 2	-1.85
PSG7	pregnancy specific beta-1-glycoprotein 7 (gene/pseudogene)	-1.85
SPNS1	spinster homolog 1 (Drosophila)	-1.85
GPR1	G protein-coupled receptor 1	-1.84
IL24	interleukin 24	-1.84
ATP10D	ATPase, class V, type 10D	-1.83
FLRT2	fibronectin leucine rich transmembrane protein 2	-1.83
TMEM189	transmembrane protein 189	-1.83
TMEM189-UBE2V1	TMEM189-UBE2V1 readthrough	-1.83
UBE2V1	ubiquitin conjugating enzyme E2 variant 1	-1.83
BTF3L4	basic transcription factor 3-like 4	-1.82
CHIC1	cysteine rich hydrophobic domain 1	-1.82
SCARNA1	small Cajal body-specific RNA 1	-1.82
COBLL1	cordon-bleu WH2 repeat protein like 1	-1.81
LIMD1-AS1	LIMD1 antisense RNA 1	-1.81
ND6	NADH dehydrogenase, subunit 6 (complex I)	-1.81
IL7R	interleukin 7 receptor	-1.8
MRRF	mitochondrial ribosome recycling factor	-1.8

Símbolo do Gene	Descrição	Fold Change
PCDHB13	protocadherin beta 13	-1.8
ST3GAL6	ST3 beta-galactoside alpha-2,3-sialyltransferase 6	-1.8
FBXL13	F-box and leucine-rich repeat protein 13	-1.79
FMN1	formin 1	-1.79
SVIP	small VCP/p97-interacting protein	-1.79
KDM7A	lysine (K)-specific demethylase 7A	-1.78
IFRD1	interferon-related developmental regulator 1	-1.77
RMND5A	required for meiotic nuclear division 5 homolog A	-1.77
SHCBP1	SHC SH2-domain binding protein 1	-1.77
FRS2	fibroblast growth factor receptor substrate 2	-1.76
PACRGL	PARK2 co-regulated like	-1.76
ZNF362	zinc finger protein 362	-1.76
CLASP2	cytoplasmic linker associated protein 2	-1.75
LINC00518	long intergenic non-protein coding RNA 518	-1.75
RNF185-AS1	RNF185 antisense RNA 1	-1.75
SNORA23	small nucleolar RNA, H/ACA box 23	-1.75
IWS1	IWS1 homolog (S. cerevisiae)	-1.74
LRRC34	leucine rich repeat containing 34	-1.74
C5orf24	chromosome 5 open reading frame 24	-1.73
DDX46	DEAD (Asp-Glu-Ala-Asp) box polypeptide 46	-1.73
SF3A3	splicing factor 3a subunit 3	-1.73
TMEM236	transmembrane protein 236	-1.73
CYP1A1	cytochrome P450, family 1, subfamily A, polypeptide 1	-1.72
ENTPD5	ectonucleoside triphosphate diphosphohydrolase 5	-1.72
KIR2DS3	killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 3	-1.72
KIR2DS5	killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 5	-1.72
PLOD2	procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2	-1.72
EXD2	exonuclease 3-5 domain containing 2	-1.71
ILF3-AS1	ILF3 antisense RNA 1 (head to head)	-1.71
LDAH	lipid droplet associated hydrolase	-1.71
MIR30A	microRNA 30a	-1.71
NRIP1	nuclear receptor interacting protein 1	-1.71
PSG1	pregnancy specific beta-1-glycoprotein 1	-1.71

Símbolo do Gene	Descrição	Fold Change
ANKRD18B	ankyrin repeat domain 18B	-1.7
CLDN1	claudin 1	-1.7
KIAA1324	KIAA1324	-1.7
MKX	mohawk homeobox	-1.7
SHMT2	serine hydroxymethyltransferase 2 (mitochondrial)	-1.7
ABCG2	ATP binding cassette subfamily G member 2 (Junior blood group)	-1.69
FKTN	fukutin	-1.69
KITLG	KIT ligand	-1.69
LINC00998	long intergenic non-protein coding RNA 998	-1.69
MR1	major histocompatibility complex, class I-related	-1.69
TTC39C	tetratricopeptide repeat domain 39C	-1.69
ZNF503-AS2	ZNF503 antisense RNA 2	-1.69
DENND4A	DENN/MADD domain containing 4A	-1.68
LZTFL1	leucine zipper transcription factor like 1	-1.68
PRLR	prolactin receptor	-1.68
S100A2	S100 calcium binding protein A2	-1.68
TESK1	testis-specific kinase 1	-1.68
THSD4	thrombospondin type 1 domain containing 4	-1.68
ARAP2	ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 2	-1.67
HSD17B12	hydroxysteroid (17-beta) dehydrogenase 12	-1.67
ZNF678	zinc finger protein 678	-1.67
AK3	adenylate kinase 3	-1.66
C17orf51	chromosome 17 open reading frame 51	-1.66
MAP2	microtubule associated protein 2	-1.66
MLH3	mutL homolog 3	-1.66
MPZL3	myelin protein zero-like 3	-1.66
MRRFP1	mitochondrial ribosome recycling factor pseudogene 1	-1.66
NKIRAS2	NFKB inhibitor interacting Ras-like 2	-1.66
OR2M7	olfactory receptor, family 2, subfamily M, member 7	-1.66
TBC1D20	TBC1 domain family, member 20	-1.66
BBS9	Bardet-Biedl syndrome 9	-1.65
BCKDHB	branched chain keto acid dehydrogenase E1, beta polypeptide	-1.65
C2CD2	C2 calcium-dependent domain containing 2	-1.65

Símbolo do Gene	Descrição	Fold Change
COPS7A	COP9 signalosome subunit 7A	-1.65
ERRFI1	ERBB receptor feedback inhibitor 1	-1.65
FOXRED2	FAD-dependent oxidoreductase domain containing 2	-1.65
PKI55	DKFZp434H1419	-1.65
SEMA3D	sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3D	-1.65
XRCC4	X-ray repair complementing defective repair in Chinese hamster cells 4	-1.65
MIEF1	mitochondrial elongation factor 1	-1.64
REXO1	REX1, RNA exonuclease 1 homolog	-1.64
TET1	tet methylcytosine dioxygenase 1	-1.64
WWC2	WW and C2 domain containing 2	-1.64
AGPAT5	1-acylglycerol-3-phosphate O-acyltransferase 5	-1.63
ALDH4A1	aldehyde dehydrogenase 4 family, member A1	-1.63
C1orf140	uncharacterized LOC400804	-1.63
CCDC129	coiled-coil domain containing 129	-1.63
HSPB8	heat shock 22kDa protein 8	-1.63
LOC100133106	VCEW9374	-1.63
MDC1	mediator of DNA-damage checkpoint 1	-1.63
MSANTD4	Myb/SANT-like DNA-binding domain containing 4 with coiled-coils	-1.63
NLGN1	neuroligin 1	-1.63
OR5K2	olfactory receptor, family 5, subfamily K, member 2	-1.63
SEL1L3	sel-1 suppressor of lin-12-like 3 (C. elegans)	-1.63
ARL2BP	ADP-ribosylation factor like GTPase 2 binding protein	-1.62
PARP2	poly(ADP-ribose) polymerase 2	-1.62
PEX10	peroxisomal biogenesis factor 10	-1.62
PPME1	protein phosphatase methylesterase 1	-1.62
RBBP9	retinoblastoma binding protein 9	-1.62
SEMA3E	sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3E	-1.62
TCF19	transcription factor 19	-1.62
DUX4L10	double homeobox 4 like 10	-1.61
DUX4L11	double homeobox 4 like 11	-1.61
DUX4L14	double homeobox 4 like 14	-1.61
DUX4L15	double homeobox 4 like 15	-1.61
DUX4L20	double homeobox 4 like 20	-1.61

Símbolo do Gene	Descrição	Fold Change
DUX4L22	double homeobox 4 like 22	-1.61
DUX4L23	double homeobox 4 like 23	-1.61
DUX4L24	double homeobox 4 like 24	-1.61
EML1	echinoderm microtubule associated protein like 1	-1.61
FHIT	fragile histidine triad	-1.61
GTF2E1	general transcription factor IIE subunit 1	-1.61
GUCD1	guanylyl cyclase domain containing 1	-1.61
HKR1	HKR1, GLI-Kruppel zinc finger family member	-1.61
IL1F10	interleukin 1 family, member 10 (theta)	-1.61
IL1RAP	interleukin 1 receptor accessory protein	-1.61
IMPAD1	inositol monophosphatase domain containing 1	-1.61
LMNB1	lamin B1	-1.61
METTL10	methyltransferase like 10	-1.61
RMI2	RecQ mediated genome instability 2	-1.61
SLC37A1	solute carrier family 37 (glucose-6-phosphate transporter), member 1	-1.61
DCAF10	DDB1 and CUL4 associated factor 10	-1.6
DCLRE1A	DNA cross-link repair 1A	-1.6
DPH6	diphthamine biosynthesis 6	-1.6
KCTD18	potassium channel tetramerization domain containing 18	-1.6
MARCH8	membrane associated ring finger 8	-1.6
MYPN	myopalladin	-1.6
PRKAA2	protein kinase, AMP-activated, alpha 2 catalytic subunit	-1.6
SLC25A19	solute carrier family 25 (mitochondrial thiamine pyrophosphate carrier), member 19	-1.6
USP32P1	ubiquitin specific peptidase 32 pseudogene 1	-1.6
WDR11	WD repeat domain 11	-1.6
ASTE1	asteroid homolog 1 (Drosophila)	-1.59
C5orf22	chromosome 5 open reading frame 22	-1.59
FADS1	fatty acid desaturase 1	-1.59
GTPBP4	GTP binding protein 4	-1.59
LIPC	lipase, hepatic	-1.59
NCS1	neuronal calcium sensor 1	-1.59
RAD51B	RAD51 paralog B	-1.59
RGS5	regulator of G-protein signaling 5	-1.59

Símbolo do Gene	Descrição	Fold Change
SIGMAR1	sigma non-opioid intracellular receptor 1	-1.59
SNX29	sorting nexin 29	-1.59
SRL	sarcalumenin	-1.59
STRIP1	striatin interacting protein 1	-1.59
TMED2	transmembrane p24 trafficking protein 2	-1.59
ALG10	ALG10, alpha-1,2-glucosyltransferase	-1.58
ALG10B	ALG10B, alpha-1,2-glucosyltransferase	-1.58
BFSP1	beaded filament structural protein 1, filensin	-1.58
CEP126	centrosomal protein 126kDa	-1.58
MSL2	male-specific lethal 2 homolog (Drosophila)	-1.58
OR10J6P	olfactory receptor, family 10, subfamily J, member 6 pseudogene	-1.58
PDE7B	phosphodiesterase 7B	-1.58
SLC25A12	solute carrier family 25 (aspartate/glutamate carrier), member 12	-1.58
THNSL1	threonine synthase-like 1	-1.58
TMEM35	transmembrane protein 35	-1.58
TRIM5	tripartite motif containing 5	-1.58
TUBE1	tubulin, epsilon 1	-1.58
WDR17	WD repeat domain 17	-1.58
ART3	ADP-ribosyltransferase 3	-1.57
C1QTNF9	C1q and tumor necrosis factor related protein 9	-1.57
CES1	carboxylesterase 1	-1.57
CES1P1	carboxylesterase 1 pseudogene 1	-1.57
CSNK2A2	casein kinase 2, alpha prime polypeptide	-1.57
DEFB131	defensin, beta 131	-1.57
FAT4	FAT atypical cadherin 4	-1.57
KCTD2	potassium channel tetramerization domain containing 2	-1.57
MIR32	microRNA 32	-1.57
MON1B	MON1 secretory trafficking family member B	-1.57
NFE2L2	nuclear factor, erythroid 2-like 2	-1.57
NFE4	nuclear factor, erythroid 4	-1.57
OR6C72P	olfactory receptor, family 6, subfamily C, member 72 pseudogene	-1.57
PIH1D2	PIH1 domain containing 2	-1.57
PPP1R1C	protein phosphatase 1, regulatory (inhibitor) subunit 1C	-1.57

Símbolo do Gene	Descrição	Fold Change
SPTLC3	serine palmitoyltransferase, long chain base subunit 3	-1.57
SYCE1L	synaptonemal complex central element protein 1-like	-1.57
TCEA2	transcription elongation factor A (SII), 2	-1.57
TMEM63B	transmembrane protein 63B	-1.57
TPK1	thiamin pyrophosphokinase 1	-1.57
WDR74	WD repeat domain 74	-1.57
ABI3BP	ABI family, member 3 (NESH) binding protein	-1.56
AREG	amphiregulin	-1.56
ARL6IP4	ADP-ribosylation factor like GTPase 6 interacting protein 4	-1.56
CCDC86	coiled-coil domain containing 86	-1.56
CYP4V2	cytochrome P450, family 4, subfamily V, polypeptide 2	-1.56
KLKB1	kallikrein B1	-1.56
NIPAL2	NIPA-like domain containing 2	-1.56
PCDHB14	protocadherin beta 14	-1.56
RFX3	regulatory factor X, 3 (influences HLA class II expression)	-1.56
SLFN5	schlafen family member 5	-1.56
SLX4IP	SLX4 interacting protein	-1.56
SPATA31A1	SPATA31 subfamily A, member 1	-1.56
SPATA31C1	SPATA31 subfamily C, member 1	-1.56
XPO7	exportin 7	-1.56
ASNS	asparagine synthetase (glutamine-hydrolyzing)	-1.55
FAM200B	family with sequence similarity 200, member B	-1.55
FGFRL1	fibroblast growth factor receptor-like 1	-1.55
FIGNL1	fidgetin-like 1	-1.55
FOXP2	forkhead box P2	-1.55
GAS8-AS1	GAS8 antisense RNA 1	-1.55
GPD2	glycerol-3-phosphate dehydrogenase 2	-1.55
ICE1	interactor of little elongation complex ELL subunit 1	-1.55
IRAK4	interleukin 1 receptor associated kinase 4	-1.55
MAPKAPK5-AS1	MAPKAPK5 antisense RNA 1	-1.55
NPR2	natriuretic peptide receptor 2	-1.55
RTN4IP1	reticulon 4 interacting protein 1	-1.55
TBC1D13	TBC1 domain family, member 13	-1.55
Símbolo do Gene	Descrição	Fold Change
-----------------	---	-------------
AK2	adenylate kinase 2	-1.54
ANK3	ankyrin 3, node of Ranvier (ankyrin G)	-1.54
C7orf60	chromosome 7 open reading frame 60	-1.54
DCAF17	DDB1 and CUL4 associated factor 17	-1.54
FRRS1	ferric-chelate reductase 1	-1.54
HSD17B7P2	hydroxysteroid (17-beta) dehydrogenase 7 pseudogene 2	-1.54
LINC00299	long intergenic non-protein coding RNA 299	-1.54
NDUFAB1	NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1, 8kDa	-1.54
NSAP11	nervous system abundant protein 11	-1.54
NUBPL	nucleotide binding protein-like	-1.54
SMAD1	SMAD family member 1	-1.54
SURF4	surfeit 4	-1.54
TLR3	toll-like receptor 3	-1.54
TMEM2	transmembrane protein 2	-1.54
ANKRD1	ankyrin repeat domain 1 (cardiac muscle)	-1.53
ARFIP1	ADP-ribosylation factor interacting protein 1	-1.53
ATP5SL	ATP5S-like	-1.53
CCND2	cyclin D2	-1.53
CTC-338M12.4	uncharacterized LOC101928649	-1.53
KCNIP2	Kv channel interacting protein 2	-1.53
KIF21A	kinesin family member 21A	-1.53
LONP2	lon peptidase 2, peroxisomal	-1.53
NREP	neuronal regeneration related protein	-1.53
PCDH15	protocadherin-related 15	-1.53
PODXL	podocalyxin-like	-1.53
POLR3H	polymerase (RNA) III (DNA directed) polypeptide H (22.9kD)	-1.53
RAPGEF2	Rap guanine nucleotide exchange factor 2	-1.53
STEAP2	STEAP family member 2, metalloreductase	-1.53
TEK	TEK tyrosine kinase, endothelial	-1.53
ZNF138	zinc finger protein 138	-1.53
ZNF833P	zinc finger protein 833, pseudogene	-1.53
ANKRD20A11P	ankyrin repeat domain 20 family, member A11, pseudogene	-1.52
CEP85L	centrosomal protein 85kDa-like	-1.52

Símbolo do Gene	Descrição	Fold Change
DAW1	dynein assembly factor with WDR repeat domains 1	-1.52
ELP4	elongator acetyltransferase complex subunit 4	-1.52
EPB41L2	erythrocyte membrane protein band 4.1-like 2	-1.52
GGCT	gamma-glutamylcyclotransferase	-1.52
HPD	4-hydroxyphenylpyruvate dioxygenase	-1.52
IFT80	intraflagellar transport 80	-1.52
KIAA1586	KIAA1586	-1.52
LINC00999	long intergenic non-protein coding RNA 999	-1.52
LRRCC1	leucine rich repeat and coiled-coil centrosomal protein 1	-1.52
MOB1A	MOB kinase activator 1A	-1.52
PFKFB2	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2	-1.52
RGL1	ral guanine nucleotide dissociation stimulator-like 1	-1.52
SLF1	SMC5-SMC6 complex localization factor 1	-1.52
TMED8	transmembrane p24 trafficking protein family member 8	-1.52
TRAPPC3	trafficking protein particle complex 3	-1.52
WDR55	WD repeat domain 55	-1.52
ZSWIM6	zinc finger, SWIM-type containing 6	-1.52
AFF3	AF4/FMR2 family, member 3	-1.51
AHNAK2	AHNAK nucleoprotein 2	-1.51
ATG10	autophagy related 10	-1.51
BCL2L13	BCL2-like 13 (apoptosis facilitator)	-1.51
BCL7B	B-cell CLL/lymphoma 7B	-1.51
CDH4	cadherin 4, type 1, R-cadherin (retinal)	-1.51
EIF2S2	eukaryotic translation initiation factor 2, subunit 2 beta, 38kDa	-1.51
FAM60A	family with sequence similarity 60, member A	-1.51
HOXC5	homeobox C5	-1.51
HS3ST3B1	heparan sulfate (glucosamine) 3-O-sulfotransferase 3B1	-1.51
LINC01560	long intergenic non-protein coding RNA 1560	-1.51
LMLN	leishmanolysin-like (metallopeptidase M8 family)	-1.51
NAA60	N(alpha)-acetyltransferase 60, NatF catalytic subunit	-1.51
NNMT	nicotinamide N-methyltransferase	-1.51
PREB	prolactin regulatory element binding	-1.51
RNU6-83P	RNA, U6 small nuclear 83, pseudogene	-1.51

Símbolo do Gene	Descrição	Fold Change
SLC17A5	solute carrier family 17 (acidic sugar transporter), member 5	-1.51
STARD7-AS1	STARD7 antisense RNA 1	-1.51
TEAD3	TEA domain family member 3	-1.51
TNR	tenascin R	-1.51
VWC2L	von Willebrand factor C domain containing protein 2-like	-1.51
ZNF586	zinc finger protein 586	-1.51
CLIP1	CAP-GLY domain containing linker protein 1	-1.5
FAM208A	family with sequence similarity 208, member A	-1.5
FLVCR1	feline leukemia virus subgroup C cellular receptor 1	-1.5
LYRM1	LYR motif containing 1	-1.5
PIGL	phosphatidylinositol glycan anchor biosynthesis class L	-1.5
PRR34	proline rich 34	-1.5
RNU5A-1	RNA, U5A small nuclear 1	-1.5
ROPN1L	rhophilin associated tail protein 1-like	-1.5
SYTL3	synaptotagmin-like 3	-1.5
TCL1A	T-cell leukemia/lymphoma 1A	-1.5
TRUB1	TruB pseudouridine (psi) synthase family member 1	-1.5
TXNDC12	thioredoxin domain containing 12 (endoplasmic reticulum)	-1.5
ASB8	ankyrin repeat and SOCS box containing 8	1.5
GPSM3	G-protein signaling modulator 3	1.5
HDAC5	histone deacetylase 5	1.5
KIF11	kinesin family member 11	1.5
KPRP	keratinocyte proline-rich protein	1.5
LOC100129395	NS5ATP13TP1	1.5
LTBP3	latent transforming growth factor beta binding protein 3	1.5
MIR221	microRNA 221	1.5
NANP	N-acetylneuraminic acid phosphatase	1.5
OR2T27	olfactory receptor, family 2, subfamily T, member 27	1.5
OR5AQ1P	olfactory receptor, family 5, subfamily AQ, member 1 pseudogene	1.5
OR5P3	olfactory receptor, family 5, subfamily P, member 3	1.5
PFKFB4	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4	1.5
RUNX2	runt-related transcription factor 2	1.5
SH3BP1	SH3-domain binding protein 1	1.5

Símbolo do Gene	Descrição	Fold Change
SLC2A3	solute carrier family 2 (facilitated glucose transporter), member 3	1.5
TREML3P	triggering receptor expressed on myeloid cells-like 3, pseudogene	1.5
UBL7	ubiquitin-like 7	1.5
ZNF189	zinc finger protein 189	1.5
ABCC4	ATP binding cassette subfamily C member 4	1.51
BASP1	brain abundant, membrane attached signal protein 1	1.51
C8orf86	chromosome 8 open reading frame 86	1.51
CASK	calcium/calmodulin-dependent serine protein kinase (MAGUK family)	1.51
CYP26B1	cytochrome P450, family 26, subfamily B, polypeptide 1	1.51
DEFT1P	defensin, theta 1 pseudogene	1.51
DEFT1P2	defensin, theta 1 pseudogene 2	1.51
DUSP4	dual specificity phosphatase 4	1.51
IFITM10	interferon induced transmembrane protein 10	1.51
JUNB	jun B proto-oncogene	1.51
KRTAP19-1	keratin associated protein 19-1	1.51
KRTAP19-3	keratin associated protein 19-3	1.51
LINC00643	long intergenic non-protein coding RNA 643	1.51
MUC1	mucin 1, cell surface associated	1.51
PRR23A	proline rich 23A	1.51
THUMPD1	THUMP domain containing 1	1.51
APOBEC3G	apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G	1.52
BLZF1	basic leucine zipper nuclear factor 1	1.52
CAPN5	calpain 5	1.52
CD226	CD226 molecule	1.52
CTXN1	cortexin 1	1.52
DKFZp434E1119	uncharacterized DKFZp434E1119	1.52
DLG4	discs, large homolog 4 (Drosophila)	1.52
ENG	endoglin	1.52
GPR137C	G protein-coupled receptor 137C	1.52
GPR156	G protein-coupled receptor 156	1.52
HNRNPUL1	heterogeneous nuclear ribonucleoprotein U-like 1	1.52
IFNGR1	interferon gamma receptor 1	1.52
INHBC	inhibin beta C	1.52

Símbolo do Gene	Descrição	Fold Change
OPN1LW	opsin 1 (cone pigments), long-wave-sensitive	1.52
QKI	QKI, KH domain containing, RNA binding	1.52
SALL2	spalt-like transcription factor 2	1.52
SERPIND1	serpin peptidase inhibitor, clade D (heparin cofactor), member 1	1.52
TFPI2	tissue factor pathway inhibitor 2	1.52
ATP4B	ATPase, H+/K+ exchanging, beta polypeptide	1.53
CPXCR1	CPX chromosome region, candidate 1	1.53
CYP4Z2P	cytochrome P450, family 4, subfamily Z, polypeptide 2, pseudogene	1.53
IL11	interleukin 11	1.53
INCA1	inhibitor of CDK, cyclin A1 interacting protein 1	1.53
LOC442028	uncharacterized LOC442028	1.53
OR2V2	olfactory receptor, family 2, subfamily V, member 2	1.53
OR4N3P	olfactory receptor, family 4, subfamily N, member 3 pseudogene	1.53
RAB41	RAB41, member RAS oncogene family	1.53
C10orf10	chromosome 10 open reading frame 10	1.54
CCDC170	coiled-coil domain containing 170	1.54
DOCK9	dedicator of cytokinesis 9	1.54
GRAMD1C	GRAM domain containing 1C	1.54
IFI30	interferon, gamma-inducible protein 30	1.54
JUP	junction plakoglobin	1.54
PROM2	prominin 2	1.54
PTBP2	polypyrimidine tract binding protein 2	1.54
PTPN3	protein tyrosine phosphatase, non-receptor type 3	1.54
TAAR3	trace amine associated receptor 3 (gene/pseudogene)	1.54
TBC1D26	TBC1 domain family, member 26	1.54
YES1	YES proto-oncogene 1, Src family tyrosine kinase	1.54
DAGLA	diacylglycerol lipase, alpha	1.55
DCAF12L1	DDB1 and CUL4 associated factor 12-like 1	1.55
DNMT1	DNA (cytosine-5-)-methyltransferase 1	1.55
DUSP10	dual specificity phosphatase 10	1.55
FNDC3A	fibronectin type III domain containing 3A	1.55
GIPC3	GIPC PDZ domain containing family, member 3	1.55
HSPA2	heat shock 70kDa protein 2	1.55

Símbolo do Gene	Descrição	Fold Change
KDM1A	lysine (K)-specific demethylase 1A	1.55
KIR2DL2	killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 2	1.55
KIR3DL3	killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 3	1.55
KRT87P	keratin 87 pseudogene	1.55
NCOA2	nuclear receptor coactivator 2	1.55
NDC1	NDC1 transmembrane nucleoporin	1.55
PLEKHM1P	pleckstrin homology domain containing, family M (with RUN domain) member 1 pseudogene	1.55
PTGES	prostaglandin E synthase	1.55
RP2	retinitis pigmentosa 2 (X-linked recessive)	1.55
SEMA4F	sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 4F	1.55
SEZ6L2	seizure related 6 homolog (mouse)-like 2	1.55
TAS2R46	taste receptor, type 2, member 46	1.55
WDR48	WD repeat domain 48	1.55
AKTIP	AKT interacting protein	1.56
ATF2	activating transcription factor 2	1.56
COQ4	coenzyme Q4	1.56
DBX1	developing brain homeobox 1	1.56
FAR1	fatty acyl CoA reductase 1	1.56
GFRA2	GDNF family receptor alpha 2	1.56
HLA-DQB2	major histocompatibility complex, class II, DQ beta 2	1.56
HMGN4	high mobility group nucleosomal binding domain 4	1.56
ITGB3	integrin beta 3	1.56
NKAIN1	Na+/K+ transporting ATPase interacting 1	1.56
NLRP4	NLR family, pyrin domain containing 4	1.56
OR1D4	olfactory receptor, family 1, subfamily D, member 4 (gene/pseudogene)	1.56
SLC16A2	solute carrier family 16, member 2 (thyroid hormone transporter)	1.56
SLC41A1	solute carrier family 41 (magnesium transporter), member 1	1.56
SNORD41	small nucleolar RNA, C/D box 41	1.56
SS18	synovial sarcoma translocation, chromosome 18	1.56
WFIKKN2	WAP, follistatin/kazal, immunoglobulin, kunitz and netrin domain containing 2	1.56
ANGPTL2	angiopoietin like 2	1.57
C12orf57	chromosome 12 open reading frame 57	1.57

Símbolo do Gene	Descrição	Fold Change
CSGALNACT2	chondroitin sulfate N-acetylgalactosaminyltransferase 2	1.57
DCP2	decapping mRNA 2	1.57
ESAM	endothelial cell adhesion molecule	1.57
KIAA1161	KIAA1161	1.57
LOC401191	uncharacterized LOC401191	1.57
OR2B6	olfactory receptor, family 2, subfamily B, member 6	1.57
PDGFC	platelet derived growth factor C	1.57
PLA2G2E	phospholipase A2, group IIE	1.57
PRRG1	proline rich Gla (G-carboxyglutamic acid) 1	1.57
SEZ6L	seizure related 6 homolog (mouse)-like	1.57
UCN2	urocortin 2	1.57
ANKRD24	ankyrin repeat domain 24	1.58
DAP3	death associated protein 3	1.58
IRF9	interferon regulatory factor 9	1.58
RNF31	ring finger protein 31	1.58
SEPT5-GP1BB	SEPT5-GP1BB readthrough	1.58
SWT1	SWT1 RNA endoribonuclease homolog	1.58
ATE1	arginyltransferase 1	1.59
ATP11C	ATPase, class VI, type 11C	1.59
ATP2B4	ATPase, Ca++ transporting, plasma membrane 4	1.59
CHMP3	charged multivesicular body protein 3	1.59
FAM209A	family with sequence similarity 209, member A	1.59
LSR	lipolysis stimulated lipoprotein receptor	1.59
RNF103	ring finger protein 103	1.59
RNF103-CHMP3	RNF103-CHMP3 readthrough	1.59
STH	saitohin	1.59
USP38	ubiquitin specific peptidase 38	1.59
CNIH4	cornichon family AMPA receptor auxiliary protein 4	1.6
DGKG	diacylglycerol kinase gamma	1.6
FAM171A2	family with sequence similarity 171, member A2	1.6
OSGIN2	oxidative stress induced growth inhibitor family member 2	1.6
PELI1	pellino E3 ubiquitin protein ligase 1	1.6
SMAD2	SMAD family member 2	1.6

Símbolo do Gene	Descrição	Fold Change
BDKRB1	bradykinin receptor B1	1.61
BDKRB2	bradykinin receptor B2	1.61
CLIC4	chloride intracellular channel 4	1.61
FAM102B	family with sequence similarity 102, member B	1.61
FAM135A	family with sequence similarity 135, member A	1.61
GAFA2	FGF-2 activity-associated protein 2	1.61
GDAP1L1	ganglioside induced differentiation associated protein 1-like 1	1.61
HIPK3	homeodomain interacting protein kinase 3	1.61
SBNO1	strawberry notch homolog 1 (Drosophila)	1.61
SGTA	small glutamine-rich tetratricopeptide repeat (TPR)-containing, alpha	1.61
SP110	SP110 nuclear body protein	1.61
SRPK2	SRSF protein kinase 2	1.61
FAM230A	family with sequence similarity 230, member A	1.62
HSD3BP4	hydroxy-delta-5-steroid dehydrogenase, 3 beta, pseudogene 4	1.62
NMNAT3	nicotinamide nucleotide adenylyltransferase 3	1.62
PNRC1	proline-rich nuclear receptor coactivator 1	1.62
TOB1	transducer of ERBB2, 1	1.62
BIRC2	baculoviral IAP repeat containing 2	1.63
HSP90AB6P	heat shock protein 90kDa alpha (cytosolic), class B member 6, pseudogene	1.63
ITGB4	integrin beta 4	1.63
LINC00994	long intergenic non-protein coding RNA 994	1.63
SEC24A	SEC24 homolog A, COPII coat complex component	1.63
SHISA5	shisa family member 5	1.63
TMEM184B	transmembrane protein 184B	1.63
TUBA3E	tubulin, alpha 3e	1.63
UG0898H09	uncharacterized LOC643763	1.63
ALG13	ALG13, UDP-N-acetylglucosaminyltransferase subunit	1.64
FAM171B	family with sequence similarity 171, member B	1.64
GAGE2A	G antigen 2A	1.64
GAGE2C	G antigen 2C	1.64
GAGE2D	G antigen 2D	1.64
GAGE8	G antigen 8	1.64
MUC6	mucin 6, oligomeric mucus/gel-forming	1.64

Símbolo do Gene	Descrição	Fold Change
NDUFA5	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5	1.64
THG1L	tRNA-histidine guanylyltransferase 1-like	1.64
TOP1MT	topoisomerase (DNA) I, mitochondrial	1.64
DSP	desmoplakin	1.65
FGFR4	fibroblast growth factor receptor 4	1.65
MMP14	matrix metallopeptidase 14 (membrane-inserted)	1.65
MUC12	mucin 12, cell surface associated	1.65
OR1A2	olfactory receptor, family 1, subfamily A, member 2	1.65
SLC22A4	solute carrier family 22 (organic cation/zwitterion transporter), member 4	1.65
ZDBF2	zinc finger, DBF-type containing 2	1.65
CEL	carboxyl ester lipase	1.66
CNNM4	cyclin and CBS domain divalent metal cation transport mediator 4	1.66
GPR32P1	G protein-coupled receptor 32, pseudogene 1	1.66
UGP2	UDP-glucose pyrophosphorylase 2	1.66
CCDC88C	coiled-coil domain containing 88C	1.67
HMOX1	heme oxygenase 1	1.68
OR1D5	olfactory receptor, family 1, subfamily D, member 5	1.68
POM121L8P	POM121 transmembrane nucleoporin-like 8 pseudogene	1.68
SLC26A6	solute carrier family 26 (anion exchanger), member 6	1.68
STARD4	StAR-related lipid transfer domain containing 4	1.68
LOC646743	uncharacterized LOC646743	1.69
SEC63	SEC63 homolog, protein translocation regulator	1.69
TISP43	uncharacterized LOC150527	1.69
MOGS	mannosyl-oligosaccharide glucosidase	1.7
PRC1	protein regulator of cytokinesis 1	1.7
TBX5	T-box 5	1.7
TMEM40	transmembrane protein 40	1.7
CT47B1	cancer/testis antigen family 47, member B1	1.71
PLXNB2	plexin B2	1.71
UGT2B15	UDP glucuronosyltransferase 2 family, polypeptide B15	1.71
ALDH9A1	aldehyde dehydrogenase 9 family, member A1	1.72
ATP1B1	ATPase, Na+/K+ transporting, beta 1 polypeptide	1.72
IGSF3	immunoglobulin superfamily, member 3	1.72

Símbolo do Gene	Descrição	Fold Change
L1CAM	L1 cell adhesion molecule	1.72
LOC100287728	uncharacterized LOC100287728	1.72
OR5B2	olfactory receptor, family 5, subfamily B, member 2	1.72
ORM1	orosomucoid 1	1.72
ORM2	orosomucoid 2	1.72
ACBD3	acyl-CoA binding domain containing 3	1.73
FAM230B	family with sequence similarity 230, member B (non-protein coding)	1.73
FBXO32	F-box protein 32	1.73
CPNE2	copine II	1.75
F2R	coagulation factor II (thrombin) receptor	1.75
FLVCR2	feline leukemia virus subgroup C cellular receptor family, member 2	1.75
OR5W2	olfactory receptor, family 5, subfamily W, member 2	1.75
SLCO1B7	solute carrier organic anion transporter family, member 1B7 (non-functional)	1.75
TTLL5	tubulin tyrosine ligase-like family member 5	1.75
GMFG	glia maturation factor, gamma	1.76
PAFAH1B2	platelet-activating factor acetylhydrolase 1b, catalytic subunit 2 (30kDa)	1.76
PROKR2	prokineticin receptor 2	1.76
RASSF2	Ras association (RalGDS/AF-6) domain family member 2	1.76
ADRA1B	adrenoceptor alpha 1B	1.77
TNRC6A	trinucleotide repeat containing 6A	1.77
MAPK3	mitogen-activated protein kinase 3	1.78
RNVU1-19	RNA, variant U1 small nuclear 19	1.78
ADCY10P1	adenylate cyclase 10 (soluble) pseudogene 1	1.79
CCNA1	cyclin A1	1.79
PHF1	PHD finger protein 1	1.79
SIGIRR	single immunoglobulin and toll-interleukin 1 receptor (TIR) domain	1.79
TGFB2	transforming growth factor beta 2	1.79
EGR1	early growth response 1	1.8
LOC105377774	uncharacterized LOC105377774	1.8
OR5M3	olfactory receptor, family 5, subfamily M, member 3	1.8
PRRC2B	proline-rich coiled-coil 2B	1.8
AGPAT4-IT1	AGPAT4 intronic transcript 1	1.81
IFITM1	interferon induced transmembrane protein 1	1.82

Símbolo do Gene	Descrição	Fold Change
IFITM2	interferon induced transmembrane protein 2	1.82
PANK3	pantothenate kinase 3	1.83
PLEKHM1	pleckstrin homology domain containing, family M (with RUN domain) member 1	1.83
RCN3	reticulocalbin 3, EF-hand calcium binding domain	1.84
SCARNA9	small Cajal body-specific RNA 9	1.84
GOLGA4	golgin A4	1.85
LAMTOR3	late endosomal/lysosomal adaptor, MAPK and MTOR activator 3	1.85
RBMY1B	RNA binding motif protein, Y-linked, family 1, member B	1.85
RBMY1D	RNA binding motif protein, Y-linked, family 1, member D	1.85
RBMY1E	RNA binding motif protein, Y-linked, family 1, member E	1.85
RBMY2AP	RNA binding motif protein, Y-linked, family 2, member A pseudogene	1.85
RBMY2BP	RNA binding motif protein, Y-linked, family 2, member B pseudogene	1.85
SNRNP27	small nuclear ribonucleoprotein, U4/U6.U5 27kDa subunit	1.86
ALCAM	activated leukocyte cell adhesion molecule	1.87
ELFN1	extracellular leucine-rich repeat and fibronectin type III domain containing 1	1.87
HBP1	HMG-box transcription factor 1	1.88
LINC00268	long intergenic non-protein coding RNA 268	1.88
IL10RB	interleukin 10 receptor, beta	1.89
IL6ST	interleukin 6 signal transducer	1.89
CHPF	chondroitin polymerizing factor	1.9
HMHA1	histocompatibility (minor) HA-1	1.92
TGFBR1	transforming growth factor, beta receptor 1	1.92
IGKV2D-24	immunoglobulin kappa variable 2D-24 (non-functional)	1.94
IGKV2D-29	immunoglobulin kappa variable 2D-29	1.94
IGKV2D-30	immunoglobulin kappa variable 2D-30	1.94
LSM14A	LSM14A mRNA processing body assembly factor	1.94
TGFB1	transforming growth factor beta 1	1.95
YWHAH	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta	1.95
SNORD105	small nucleolar RNA, C/D box 105	1.97
PJA2	praja ring finger 2, E3 ubiquitin protein ligase	1.98
ERMP1	endoplasmic reticulum metallopeptidase 1	1.99
HERPUD2	HERPUD family member 2	2
MFAP2	microfibrillar associated protein 2	2

Símbolo do Gene	Descrição	Fold Change
FIGF	c-fos induced growth factor (vascular endothelial growth factor D)	2.03
PMEPA1	prostate transmembrane protein, androgen induced 1	2.03
LOC100419773	zinc finger protein 33B pseudogene	2.04
TRIB2	tribbles pseudokinase 2	2.08
PTBP3	polypyrimidine tract binding protein 3	2.12
PSG3	pregnancy specific beta-1-glycoprotein 3	2.13
FAM86B3P	family with sequence similarity 86, member A pseudogene	2.19
LOC101928673	uncharacterized LOC101928673	2.21
EMP2	epithelial membrane protein 2	2.26
TP53INP1	tumor protein p53 inducible nuclear protein 1	2.27
STEAP3	STEAP family member 3, metalloreductase	2.3
EDIL3	EGF-like repeats and discoidin I-like domains 3	2.31
SPOPL	speckle-type POZ protein-like	2.32
SCAMP1	secretory carrier membrane protein 1	2.38
TLN1	talin 1	2.44
RNY4P13	RNA, Ro-associated Y4 pseudogene 13	2.47
ANO10	anoctamin 10	2.48
RAB15	RAB15, member RAS oncogene family	2.51
SAR1B	secretion associated, Ras related GTPase 1B	2.87
DHX40	DEAH (Asp-Glu-Ala-His) box polypeptide 40	2.88
BIVM	basic, immunoglobulin-like variable motif containing	2.91

ANEXO C – Legendas dos símbolos apresentados nas análises *in sílico* dos *networks* dispostos pelo *software* Metacore[™]

ANEXO D – Lista dos 42 miRNAs DE adicionais com expressões no intervalo de *fold-change* $1.49 \leq 1.3$ na linhagem HCC-1954 si*CAPN10* após comparação com o perfil de expressão gênica global das amostras controle

miRNA	Fold
	Change
hsa-miR-222_st	1.44
hsa-miR-186_st	1.41
hsa-miR-205_st	1.4
hsa-miR-2110_st	1.37
hsa-let-7e_st	1.34
hsa-miR-6516_st	1.33
hsa-miR-15b_st	1.32
hsa-miR-555_st	1.31
hsa-miR-24_st	1.3
hsa-miR-184_st	-1.31
hsa-miR-516b_st	-1.32
hsa-miR-214_st	-1.33
hsa-miR-152_st	-1.34
hsa-miR-320a_st	-1.34
hsa-miR-127_st	-1.36
hsa-miR-134_st	-1.36
hsa-miR-211_st	-1.36
hsa-miR-107_st	-1.37
hsa-miR-377_st	-1.37
hsa-miR-425_st	-1.39
hsa-miR-7847_st	-1.39
hsa-miR-106b_st	-1.41
hsa-miR-124_st	-1.41
hsa-miR-196a_st	-1.41
hsa-miR-7-3_st	-1.41
hsa-miR-935_st	-1.41
hsa-miR-181a-2	-1.42
hsa-miR-219-2-3p_st	-1.43
hsa-miR-181c_st	-1.44
hsa-miR-212_st	-1.44
hsa-miR-331_st	-1.44
hsa-miR-34a st	-1.44
hsa-miR-5195 st	-1.44
hsa-miR-185 st	-1.45
hsa-miR-128 st	-1.46
hsa-miR-135a st	-1.46
hsa-miR-195 st	-1.46
hsa-miR-323b st	-1.46
hsa-miR-497 st	-1.46
hsa-miR-197 st	-1.47
hsa-miR-229 st	-1.47
hsa-miR-147a st	-1.48

ANEXO E – Lista dos 18 miRNAs DE adicionais com expressões no intervalo de *fold-change* 1.49 ≤ 1.3 na linhagem MDA-MB-231 si*CAPN10* após comparação com o perfil de expressão gênica global das amostras controle

miRNA	Fold Change
hsa-miR-192_st	1.45
hsa-miR-21_st	1.45
hsa-miR-198_st	1.44
hsa-miR-2110_st	1.44
hsa-miR-26a-1_st	1.44
hsa-miR-205_st	1.43
hsa-miR-101-1_st	1.4
hsa-miR-153-2_st	1.36
hsa-miR-711_st	1.35
hsa-miR-509-1_st	1.34
hsa-miR-509-2_st	1.34
hsa-miR-455-5p_st	1.31
hsa-miR-600_st	-1.3
hsa-miR-429_st	-1.32
hsa-miR-516b_st	-1.32
hsa-miR-124_st	-1.33
hsa-miR-130a-3p_st	-1.33
hsa-miR-147b_st	-1.41