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The osteogenic differentiation potential of mesenchymal stromal cells (hMSCs) is an essential process for the haemato-
poiesis and the maintenance of haematopoietic stem cells (HSCs). Therefore, the aim of this work was to evaluate 
this potential in hMSCs from AML patients (hMSCs-AML) and whether it is associated with BMP4 expression. The 
results showed that bone formation potential in vivo was reduced in hMSCs-AML compared to hMSCs from healthy 
donors (hMSCs-HD). Moreover, the fact that hMSCs-AML were not able to develop supportive haematopoietic cells 
or to differentiate into osteocytes suggests possible changes in the bone marrow microenvironment. Furthermore, the 
expression of BMP4 was decreased, indicating a lack of gene expression committed to the osteogenic lineage. Overall, 
these alterations could be associated with changes in the maintenance of HSCs, the leukaemic transformation process 
and the development of AML.
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Introduction 

  Although acute myeloid leukaemia (AML) is a heteroge-

neous disease, it is known to have a unique origin from 
the malignant transformation of normal haematopoietic 
stem cells (HSCs) into leukaemic stem cells (LSCs) (1). 
However, what leads to this transformation is still unclear. 
Several studies suggest that HSCs undergo mutation(s), 
which gives rise to LSCs. However, not all LSCs present 
these mutations (2). In this context, changes in signalling 
in the bone marrow (BM) microenvironment, specifically 
in mesenchymal stromal cell (hMSC) signalling, could 
promote malignant transformation (3).
  hMSCs play a key role, as they provide essential signals 
for maintaining and regulating HSCs (3). Various studies, 
including work from our group, have shown that hMSCs 
derived from AML patients (hMSCs-AML) are molecu-
larly and functionally altered and that the in vitro osteo-
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genic differentiation potential is decreased (4-6). The abil-
ity of hMSCs to differentiate into osteoblasts is essential 
for the regulation of HSCs, and genes related to osteogenic 
differentiation are decreased in hMSCs-AML, such as 
BMP4, which is necessary for maintaining functional 
HSCs in vivo (7). However, it is not known if decreased 
BMP4 expression in vitro is associated with alterations in 
osteogenic differentiation potential and if these findings 
are reflected in in vivo assays.
  In this sense, the aim of this study was to evaluate 
whether the osteogenic differentiation potential in vivo is 
reduced in hMSCs-AML and whether it is associated with 
the expression level of BMP4. For this, we performed a 
xenotransplantation assay with MSCs-HD and hMSCs- 
AML to induce in vivo bone formation and compared the 
newly formed tissue, as well as the gene expression of im-
portant markers for osteogenic differentiation. With these 
results, we can improve our knowledge of the mechanisms 
related to the development of AML.

Materials and Methods

Patient and healthy donor samples
  BM-derived samples were collected from adult patients 
with AML at diagnosis (without any treatment) and from 
adult healthy donors (HDs) registered at the National 
Cancer Institute (Rio de Janeiro, Brazil). All samples were 
obtained in accordance with the guidelines of the local 
Ethics Committee and the Declaration of Helsinki. This 
study was approved by the INCA Ethics Committee 
(CAAE 06281419.0.0000.5274), and all participants signed 
informed consent forms.

Isolation, culture and confirmation of hMSCs
  hMSCs at passage 3 derived from BM samples were iso-
lated and cultured as previously described (4) and were 
characterized as defined by the International Society for 
Cellular Therapy (8). 

Real-time quantitative PCR (RT-qPCR)
  mRNA was extracted from hMSCs at the end of the 
process of inducing osteogenic differentiation in vitro, and 
RT-qPCR was performed as previously described in 
Azevedo (9). The expression levels of BMP4 were esti-
mated, and B2M and GAPDH were used as normalization 
genes (Supplementary Table S1).

Subcutaneous xenotransplantation assay
  The subcutaneous xenotransplantation assay with 
AML-hMSCs and HD-hMSCs was performed as pre-

viously reported (10). All animal procedures were per-
formed following the guidelines of the Institutional 
Animal Care and Use Committee (010/2020).

Implant histology and immunohistochemistry
  The implants obtained were processed for histology and 
immunohistochemistry analyses as previously reported 
(10). Rabbit anti-OSX antibody (sc-393325, Santa Cruz 
Biotechnology, USA) diluted 1：100 and goat anti-BMP- 
2/4 antibody (sc-6267, Santa Cruz Biotechnology, USA) 
diluted 1：100 were used.

X-ray microtomography (micro-CT) and morphometric 
quantification
  MicroCT acquisition was performed as described in 
Dias (10). The deep learning segmentation tool available 
on DragonFly (11) was used to separate the newly formed 
bone from hydroxyapatite. Quantification was performed 
according to previously described methods (12).

Statistical analysis
  All experiments were carried out in triplicate, and the 
data are expressed as the mean±standard error of the 
mean. The data were compared using unpaired Mann–
Whitney tests, and a p-value＜0.05 was considered statisti-
cally significant. Statistical analysis was performed, and 
graphical representations were created using GraphPad 
PrismTM software (GraphPad Software Inc.).

Results and Discussion

  All hMSCs used in this study were confirmed by the 
minimum criteria established by Dominici et al., 2006 (8) 
(Fig. 1). We observed a reduction in the osteogenic differ-
entiation potential of hMSCs-AML in vitro (Fig. 1E and 
1F), corroborating other studies (4, 5). The findings of 
conventional in vitro differentiation assays are important 
and partially predictive of the in vivo physiologic func-
tions of hMSCs, but these cultures do not necessarily re-
flect the intrinsic physiological potential of the cells. 
Therefore, to accurately assess the in vivo functional prop-
erties of hMSCs in a physiological environment, we used 
a xenotransplantation assay (13).
  Histological examination of the implants revealed that 
only hMSC-HD cultures formed ectopic ossicles with sim-
ilar trabecular bone architecture and were able to support 
haematopoietic stroma (Fig. 2A and 2B). This recon-
stituted marrow stroma was filled with haematopoietic 
cells, which is an indicator of the multipotent capacity of 
hMSCs.
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Fig. 1. hMSC multipotency capacity in 
vitro. (A, B) Undifferentiated hMSCs- 
HD and hMSCs-AML (100× magnifi-
cation). (C, D) Adipogenic differen-
tiation of hMSCs-HD and hMSCs- 
AML. The accumulation of neutral 
lipid vacuoles stained with Oil Red 
O indicates cell differentiation (20×
magnification). (E, F) Osteogenic dif-
ferentiation of hMSC-HDs and hMSCs- 
AML. Calcium deposition stained with 
Alizarin Red indicates cell differen-
tiation (20× magnification). (G) BMP4
is downregulated in hMSCs-AML af-
ter 21 days of osteogenic induction. 
To verify BMP4 expression, we used 
RT-qPCR to determine changes in 
the mRNA expression obtained from 
hMSC-AML and hMSC-HD cultures. 
Data normalization was performed 
using the endogenous genes B2M and 
GAPDH. The bars indicate the mean 
mRNA expression levels (±standard 
deviation). *p＜0.01. hMSCs-HD: me-
senchymal stromal cells derived from 
healthy donors; hMSCs-AML: mesen-
chymal stromal cells derived from 
AML patients.

  In micro-CT-based 3D reconstruction, bone neo-
formation was identified in the hMSC-HD (Fig. 2C) and 
hMSC-AML implants (Fig. 2D); moreover, we observed 
that the quality (mineral density) of the newly formed tis-
sue was similar under both conditions (Fig. 2H). However, 
quantitative reductions in the bone volume formed, its 
thickness, and the relationship between bone volume 
formed and the volume of the tissue analysed were ob-
served in the implants formed from hMSCs-AML com-
pared to hMSCs-HD (Fig. 2E∼G). Thus, these results 

showed that hMSCs-AML maintained their in vivo bone 
differentiation capacity, but this capacity was reduced 
when compared to that of hMSCs-HD.
  These results corroborate those of Alice Pievani and col-
leagues, who observed significant alterations in mature 
bone formation from hMSCs derived from paediatric 
AML patients (14), and Frisch and coworkers, where a re-
duction in mineralized bone tissue formation was de-
scribed after in vivo assays using an immunocompetent 
murine model of AML (15). Thus, these changes could be 
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Fig. 2. In vivo osteogenic potential 
of BMSCs. In vivo transplantation as-
says were performed by combining 
hMSCs with HA/TCP followed by 
subcutaneous transplantation into 
immunocompromised mice. (A, B) 
H&E staining. (A) Implants from hMSC- 
HD cultures and (B) hMSC-AML cul-
tures. hMSCs-HD formed ectopic os-
sicles that were sometimes populated 
by host haematopoietic marrow (aste-
risk). The arrowheads indicate osteo-
cytes. (C∼H) Micro-CT analysis. (C) 
Bone tissue formed from hMSCs-HD 
and (D) hMSCs-AML from the 3D re-
construction of implants. For better 
visualization of the bone tissue for-
med (red), part of the HA/TCP (grey) 
was removed. (H) Tissue mineral den-
sity of implants formed from hMSCs- 
HD and hMSCs-AML. (E) Analysis of 
bone volume, (F) the relationship be-
tween bone volume and tissue vol-
ume, (G) and bone tissue thickness 
in implants formed from hMSCs-HD 
and hMSCs-AML. (I∼L) Human ori-
gin of the woven bone by immu-
nohistochemical analysis. Expression 
of BMP4 within the woven bone 
from (I) hMSCs-HD and (J) hMSCs- 
AML. Expression of Osterix within 
the woven bone from (K) hMSCs-HD 
and (L) hMSCs-AML. HA/TCP=hy-
droxyapatite/tricalcium phosphate.

associated with the leukaemic transformation process and 
the development of AML.
  This potential of hMSCs to differentiate into osteoblasts 

in BM is an essential process for normal haematopoiesis 
and for the maintenance of HSCs. The process occurs 
from commitment towards the osteogenic lineage, osteo-



Pedro L. Azevedo, et al: In Vivo Osteogenic Potential is Reduced in AML-MSCs  231

progenitor cell proliferation, osteoblast maturation and 
bone matrix mineralization, driven by a complex network 
of cytokines, hormones, and growth factors (16, 17). 
Changes in the regulation of this process, associated with 
lower production of osteoblasts, may result in altered bone 
deposition and alter the maintenance of HSCs. It is be-
lieved that reduced bone deposition can promote the exit 
of quiescent HSCs from the endosteal niche, associated 
with an increase in the number of circulating blasts in BM 
(18).
  Interestingly, we also observed that hMSCs-HD were 
able to develop a supportive haematopoietic stroma and 
reconstruct an in vivo bone marrow-like microenvironment 
in mice with haematopoietic cells (Fig. 2A), confirming 
that hMSCs can organize and are important components 
of the haematopoietic microenvironment (13, 19). This 
finding was not observed in the implants obtained from 
hMSCs-AML, evidence that corroborates the report by 
Priya Chandran and colleagues, who found that hMSCs- 
AML have altered capacity to expand differentiated hae-
matopoietic progenitors in vitro (20).
  BMP4, a member of the transforming growth factor β 

(TGF-β) superfamily of secreted signalling molecules, 
was initially identified for its ability to induce bone for-
mation (21) and plays an important role in osteogenic 
differentiation. It induces the commitment of hMSCs to-
wards the osteogenic lineage and enhances the activity of 
mature osteoblasts (16). BMP receptor activation in osteo-
genesis, involves both Smad1/5/8 and MAPK downstream 
signaling activation, and works in conjunction with Osterix 
via both Runx2 dependent and independent pathways (22). 
In mice, has already been evidenced that overexpressing 
BMP4 had enlarged bones containing thick trabeculae 
(23), and the loss of BMP4 resulted in severe impairment 
of osteogenesis (24). In this work, the BMP4 expression 
of hMSCs-AML after 21 days of osteogenic induction in 
vitro was also decreased (Fig. 1G), similar to un-
differentiated hMSCs-AML (4), indicating that it could be 
associated with reduced osteogenic potential. In fact, it 
was not possible to observe the expression of BMP4 in im-
plants obtained in vivo from hMSCs-AML (Fig. 2J) when 
comparing intense marking in the matrix adjacent to new 
bone formed from the hMSCs-HD (Fig. 2I).
  In addition, BMP4 is a critical component produced by 
haematopoietic microenvironment that regulates both 
HSCs number and function (7, 25). Thus, a decreased of 
BMP4 expression in implants obtained in vivo from 
hMSCs-AML, could be associated with the changes in 
HSCs, contribute to the suppressing normal hematopoi-
esis, the leukaemic transformation and culminate in the 

AML.
  Finally, osteoblast differentiation is a multistep process 
in which hMSCs differentiate into osteoblast lineage cells, 
including osteocytes. Osterix (OSX) is an osteoblast-spe-
cific transcription factor that activates a repertoire of 
genes during the differentiation of preosteoblasts into ma-
ture osteoblasts and osteocytes (16). Similar to BMP4, we 
observed OSX expression in hMSC-HD implants only 
(Fig. 2K), confirming that there was alteration in osteo-
genic differentiation and formation of mature osteoblasts 
in hMSCs-AML.
  In conclusion, the current study showed a reduction in 
osteogenic differentiation potential in vivo and an absence 
of osteocytes and haematopoietic support when hMSCs- 
AML were used, in contrast to what we found using 
hMSCs-HD. These findings correlate with the decreased 
expression of key osteogenic markers such as BMP4 and 
OSX. These alterations could influence the BM micro-
environment, promoting the release of HSCs from the qui-
escent niche and indirectly being important factors in the 
leukaemic transformation process and leukaemia pro-
gression.
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