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Abstract 

Objective: To examine the prevalence and prognostic role of tumor microenvironment (TME) markers in uterine 
carcinosarcoma (UCS) through immunohistochemical characterization.

Methods: The internal database of our institution was queried out for women with UCS who underwent surgery and 
thereafter postoperative chemotherapy with carboplatin and paclitaxel between January 2012 and December 2017. 
Tissue microarrays containing surgical samples of UCS from 57 women were assessed by immunohistochemistry for 
CD3, CD4, CD8, FOXP3, PD-1, PD-L1, and PD-L2.

Results: The mean age was 65.3 years (range, 49 to 79 years). For the epithelial component (E), CD3_E and CD4_E 
were highly expressed in 38 (66.7%) and in 40 (70.1%) patients, respectively, and were significantly associated with 
more advanced stages (p = 0.038 and p = 0.025, respectively). CD8_E was highly expressed in 42 (73.7%) patients, 
FOXP3_E 16 (28.1%), PD-1_E 35 (61.4%), PD-L1_E 27 (47.4%) and PD-L2_E 39 (68.4%). For the sarcomatous compo-
nent (S), the prevalence of high expression was: CD3_S 6 (10.5%), CD4_S 20 (35.1%), CD8_S 44 (77.2%), FOXP3_S 8 
(14%), PD-1_S 14 (24.6%), PD-L1_S 14 (24.6%) and PD-L2_S 8 (14%). By multivariate analysis, the CD8/FOXP3_S ratio 
(p = 0.026), CD4_E (p = 0.010), PD-L1_E (p = 0.013) and PD-L1_S (p = 0.008) markers significantly influenced progres-
sion-free survival. CD4/FOXP3_S ratio (p = 0.043), PD-1_E (p = 0.011), PD-L1_E (p = 0.036) and PD-L1_S (p = 0.028) had 
a significant association with overall survival.

Conclusion: Some differences in UCS clinical outcomes may be due to the subtype of TILs and PD-1/PD-L1 axis 
immune checkpoint signaling.
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Introduction
Uterine carcinosarcomas (UCS) are uncommon and 
overly aggressive tumors with biphasic histology com-
posed of epithelial (E) and sarcomatous (S) elements 
[1, 2]. Recently, these tumors have been thought to be 
derived from monoclonal carcinoma cells branched from 
embryonal mesoderm [3]. Given that, UCS are pointed 
out as a model for epithelial-mesenchymal transition, 
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a mechanism that results in loss of cell polarity, adhe-
sion, migratory and invasive properties, which facilitates 
metastasis [4].

UCS account for less than 5% of uterine cancers and 
the incidence ranges from 5.1 to 6.9 per 1,000,000 per-
son-years worldwide [5]. This tumor is usually diagnosed 
in older women, with a median age ranging from 62 to 
67 years [6]. African-American women are significantly at 
more risk of having UCS compared to Caucasian women 
[7]. In contrast, there is no Brazilian data regarding UCS 
specifically.

The tumor microenvironment (TME) plays an impor-
tant role in the progression and metastasis of tumors 
through the so-called “cancer immunoediting” mecha-
nism that leads to escape of cancer cells from immune 
surveillance [8]. Several cell types of the innate and adap-
tive immune system are involved in this complex process, 
including CD8+ lymphocytes, Th1/Th2 subclasses of 
CD4+ T lymphocytes, natural killer (NK) cells and fork-
head box protein 3 (FOXP3+) T regulatory (Treg) cells 
[9]. Recently, much has been discussed about the sub-
typing of tumor-infiltrating lymphocytes (TILs) in neo-
plasms of different sites [10].

The programmed death 1 receptor (PD-1), found on 
the surface of activated T cells and many other immune 
cells, is currently one of the most studied immune regula-
tory pathways able to strongly influence the mechanism 
of carcinogenesis, with a great potential of prognostic 
and therapeutic effect [11]. PD-1 with its ligands, pro-
grammed death-ligand 1 (PD-L1) and programmed 
death-ligand 2 (PD-L2), play a crucial role in tumor 
immune evasion. The immune checkpoint pathways 
inhibit T cell receptor (TCR) signaling via engagement 
of SHP-1 and SHP-2 phosphatases, resulting in reduced 
T-cell proliferation and cytokine production, increas-
ing susceptibility to apoptosis [12]. The Inhibition of the 
PD-1/PD-L1/PD-L2 interaction by different immunologi-
cal therapies can cause the T cell function to be restored, 
providing enhanced anti-tumor immune responses [13].

So far, no effective immune biomarkers have been 
timely assessed for UCS. This cohort aimed to gain a bet-
ter insight into the prevalence and prognostic value of 
TILs subtype, and also PD-1, PD-L1 and PD-L2 expres-
sion in patients with UCS.

Materials and methods
Patient selection and data collection
This study was approved by the Ethics in Human 
Research Committee of the Brazilian National Cancer 
Institute (INCA), Rio de Janeiro, Brazil, and was con-
ducted following the Good Clinical Practice Guidelines. 
All women diagnosed with UCS, who underwent sur-
gery and thereafter postoperative chemotherapy with the 

standard dose of every-3-week carboplatin AUC 5 and 
paclitaxel 175 mg/m2 (CP) for six cycles [14] at INCA 
between January 2012 and December 2017, were identi-
fied through the internal database. Patients with a scarce 
or inadequate pathological sample, with synchronous or 
anachronistic tumors, were excluded from this cohort. 
Clinical data regarding sociodemographic factors, stag-
ing, surgery, histological subtype (homologous versus 
heterologous), progression and survival were retrospec-
tively obtained in the medical records. The staging was 
performed based on the criteria of the International Fed-
eration of Gynecology and Obstetrics (FIGO, 2009) [15].

Immunohistochemistry
The tissue microarray (TMA) was built using samples 
of stromal areas of greatest tumor cellularity present in 
formalin-fixed paraffin-embedded primary tumors in 
surgical specimens. Three cores were punched in each 
of the two tumor components (E and S). All immuno-
histochemistry (IHC) analyses were performed on 4-μm 
sections following standard procedures. TMA sam-
ples were immunostained for CD3 (clone MRQ-39, Cell 
Marque, diluted 1:1000), CD4 (clone SP35, Cell Marque, 
diluted 1:400), CD8 (clone SP 16, Cell Marque, diluted 
1:1000), FOXP3 (clone 236A/E7, Abcam, diluted 1:50), 
PD-1 (clone NAT105, Cell Marque, diluted 1:100), PD-L1 
(clone SP142, Ventana, prediluted) and PD-L2 (clone 
ab200377, Abcam, diluted 1:200). The tumor cell staining 
was compared with that of negative controls made from 
counterstaining with hematoxylin and positive controls.

Intratumoral stromal immune markers were manually 
counted and scored as described hereafter. For PD-L1, 
PD-L2 and PD-1, the slides were scored according to the 
percentage of positive immune and tumor cells divided 
by the number of fields to calculate the mean value for 
each case, determined at 40x magnification [16]. For TILs 
subpopulations (CD3+, CD4+, CD8+ and FOXP3+) 
intratumoral stromal lymphocytes were counted manu-
ally and quantified as the average absolute number of 
immunolabeled lymphocytes at each observed field at 
40x magnification [17].

For statistical purposes, the scores of these biomark-
ers were dichotomized into low and high-level groups for 
each of the histological elements, E and S, based on cut-
off points calculated according to the surv_cutpoint func-
tion of the survminer R package [18]. Thus, the cut-off 
for CD 3_E was 0, CD3_S was 60, CD4_E was 0, CD4_S 
was 20, CD8_E was 0, CD8_S was 1, FOXP3_E was 0, 
FOXP3_S was 5, PD-1_E was 0, PD-1_S was 1, PD-L1_E 
was 1, PD-L1_S was 20, PD-L2_E was 40 and PD-L2_S 
was 90. Likewise, the cutoff for ratios: CD4/FOXP3_E+ 
was 1, CD4/FOXP3_S+ was 2, CD8/FOXP3_E+ was 3, 
CD8/FOXP3_S+ was 3.7, CD8/CD4_E+ was 0.18 and 
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CD8/CD4_S+ was 3. The boxplots shown in additional 
Fig. 1 represent the distributions of the values of markers 
evaluated. The pathological analysis was performed twice 
for each slide of TMA by two experienced pathologists.

Statistical analysis
Progression-free survival (PFS) was calculated from the 
date of first CP infusion to the earliest date of disease 
progression, recurrence, or death. Overall survival (OS) 
was calculated from the first CP infusion to the date of 
death of any cause or censored if the patient was known 
to be alive on the last day of data collection. The Kaplan-
Meier method was used to estimate PFS and OS for each 
variable. Patients were stratified by age, body mass index 
(BMI), race, stage, omentectomy, residual disease, adju-
vant radiotherapy, lymphovascular invasion (LVI), histo-
logical subtype and IHC markers status. All continuous 
variables were evaluated by the Shapiro-Wilk test of 
normality. Categorical variables were described by their 
absolute and relative frequencies.

To assess the association of the IHC markers scores 
with mean age and BMI, the Student’s t-test was used. 
The correlation with categorical clinicopathological 
parameters was performed by Pearson’s chi-squared test 
and, when applicable, by Fisher’s exact test. A further 
analysis comparing the paired scores of immunohisto-
chemistry factors for epithelial and sarcomatous compo-
nents was performed by the Wilcoxon signed-rank test. 
The crude Hazard Ratio (HR) for each variable was cal-
culated by the Cox proportional hazards. The variables 
evaluated for survival outcomes on univariate analysis 
were adjusted for the FIGO stage in multivariate models. 
A p-value < 0.05 was considered statistically significant. 
The missing data were excluded from the analysis. The 
statistical analyses were conducted using the R project 
version 3.5.3 [18].

Results
The clinicopathological and IHC data of the 57 women 
included in this cohort were summarized in Tables 1 and 
2. The mean age was 65.3 years (range, 49 to 79 years). 
Briefly, there was a predominance of women ≥60 years 
old (40 cases, 70.2%), non-Caucasians (42 cases, 75%), 
with advanced disease (42 cases, 73.7%), heterologous 
subtype (30 cases, 71.4%), and LVI was detected in 25 
cases (60.1%) (additional Table 1). As for treatment data, 
37 (65%) patients were submitted to lymphadenectomy, 
27 (47.4%) patients underwent omentectomy, optimal 
debulking (defined as residual disease < 1.0 cm) was 
achieved in 39 (68.4%) and adjuvant radiotherapy was 
provided to 24 (42.8%) patients (additional Table 2).

By analyzing the E component, CD3_E was highly 
expressed in 38 (66.7%) patients and significantly 

associated with more advanced stages (p = 0.038). 
CD4_E was highly expressed in 40 (70.1%) patients and 
was significantly associated with more advanced stages 
(p = 0.025). CD8_E, FOXP3_E and PD-1_E were at a high 
level in 42 (73.7%), 16 (28.1%) and 25 (43.9%) patients, 
respectively, but did not show significant association 
with any of the clinicopathological features. PD-L1_E 
was overexpressed in 27 (47.4%) patients and was sig-
nificantly more highly expressed in patients ≥60 years old 
(p = 0.022) (Table 1). As for the assessment of IHC mark-
ers in the S component, the frequencies of highly positive 
expression were much lower in CD3_S (6 cases, 10.5%) 
and CD4_S (20 cases, 35.1%). CD8_S was expressed in 
44 cases (77.2%), FOXP3_S in 8 cases (14%), PD-1_S in 
14 cases (24.6%), PD-L1_S in 14 cases (24.6%) and PD-
L2_S in 8 cases (14%) (Table  2). Except for PD-L1, all 
other TME markers (CD3, CD4, CD8, FOXP3, PD-1 
and PD-L2) showed significantly greater expression in 
the sarcomatous component than in the epithelial com-
ponent (additional Table 5). Additional Fig. 2 shows rep-
resentative images of cases with high expression of IHC 
markers.

With a median follow-up of 51 months (95% confidence 
interval, CI: 40–70), 42 patients had disease progression 
or died until the moment of the analysis, and the three-
year rate of progression-free survival in the general study 
population was 21.2% (95% CI: 11.7–38.1). The outcome 
PFS was compared according to the clinicopathological 
parameters and IHC evaluations. As stated by the data in 
Table 3, patients with early stages I/II had 63% lower risk 
of progression than advanced stages III/IV (Hazard ratio, 
HR 0.37; 95% CI: 0.16–0.84; p = 0.017). By multivariate 
analysis for PFS, patients with high expression of CD4_E 
(high vs low; HR 0.43; 95% CI: 0.23–0.82; p = 0.010), 
PD-L1_E (high versus low; HR 0.45; 95% CI: 0.24–0.84; 
p = 0.013) and PD-L1_S (high versus low; HR 0.30; 95% 
CI: 0.12–0.74; p = 0.008) had significantly lower risk of 
progression or death. Conversely, patients with residual 
disease after surgery (R1/2 versus R0; HR 3.09; 95% CI: 
1.34–7.08; p = 0.008) and high CD8/FOXP3_S ratio (high 
versus low; HR 2.05; 95% CI: 1.08–3.85; p = 0.026) signifi-
cantly yielded poorer OS.

By the moment of the analysis, 38 patients died, and 
the three-year OS rate was 29.4% (95% CI: 18.1–47.6). 
As shown in Table  4, patients with early-stage disease 
I/II had a risk of death 72% lower than advanced stages 
III/IV (HR 0.28; 95% CI: 0.11–0.71; p = 0.008). Regarding 
multivariate analysis for OS, patients with high expres-
sion of PD1_E (high vs low; HR 0.39; 95% CI: 0.19–0.81; 
p = 0.011), PD-L1_E (high versus low; HR 0.49; 95% CI: 
0.25–0.96; p = 0.037) and PD-L1_S (high versus low; HR 
0.37; 95% CI: 0.15–0.90; p = 0.028) had significantly lower 
risk of death. By contrast, there was significantly worse 
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prognosis for patients with incomplete debulking (R1/2 
versus R0; HR 2.87; 95% CI: 1.40–5.89; p = 0.003) and low 
CD4/FOXP3_S ratio (high versus low; HR 2.04; 95% CI: 
1.02–4.09; p = 0.043).

Figures 1 and 2 show the Kaplan-Meier curves for PFS 
and OS according to the evaluated variables, respectively. 
Other complementary clinicopathological parameters 
did not influence the outcomes of PFS or OS (additional 
Tables 4 and 5).

Discussion
Some of the main clinicopathological features of UCS in 
the current study are in line with previous reports of large 
cohorts performed by Matsuo et al. through multicenter 
studies and examining The Surveillance, Epidemiology, 

and End Results (SEER) program database [19–22]. In 
this regard, the mean age greater than 60 years and the 
LVI present in most patients are highlighted. Conversely, 
advanced-stage disease at diagnosis and heterologous 
sarcomatous component were more frequent character-
istics in this cohort, perhaps due to the delay in diagnosis 
and local characteristics, respectively.

There is a growing body of evidence supporting the 
role of TME in the development and growth of solid 
tumors. Through pro-inflammatory cytokines actively 
secreted by tumor cells, leukocytes of the innate and 
adaptive immune system, including macrophages, neu-
trophils, NK cells, dendritic cells, mast cells, T and B 
lymphocytes, that infiltrate into the TME [23–26]. 
Thus, a better understanding of the composition of the 

Table 3 Crude and adjusted Hazards Ratios for Carcinosarcoma progression-free survival (PFS) estimated by univariate analysis and 
multivariate analysis

All variables were adjusted for staging in multivariate analysis. Significant P-values are emboldened

LVI Lymphovascular Invasion, E Epithelial Component, S Sarcomatous Component, ER Estrogen Receptor, PR Progesterone Receptor, CD3 Cluster of Differentiation 3, 
CD4 Cluster of Differentiation 4, CD8 Cluster of Differentiation 8, FOXP3 Forkhead Box P3, PD-1 Programmed Cell Death Protein 1, PD-L1 Programmed Death-Ligand 1, 
PD-L2 Programmed Death-Ligand 2

Clinicopathological features Univariate analysis Multivariate analysis

HR 95%CI p-value HR 95%CI p-value

Age (<  60 vs. ≥ 60) 1.03 0.99–1.07 0.171 1.03 0.99–1.07 0.111

Stage (I/II vs III/IV) 0.37 0.16–0.84 0.017 – – –

Residual disease (R1/2 vs R0) 4.19 2.13–8.25 0.001 3.09 1.34–7.08 0.008
Adjuvant radiotherapy (Yes vs No) 0.57 0.30–1.08 0.087 0.66 0.34–1.26 0.213

LVI (present vs absent) 1.06 0.50–2.25 0.872 1.05 0.49–2.22 0.906

Histological subtype (Homologous vs 
Heterologous)

0.83 0.39–1.78 0.631 0.94 0.44–2.02 0.885

CD3_E (high vs low) 0.58 0.31–1.08 0.086 0.67 0.26–1.27 0.229

CD3_S (high vs low) 0.48 0.15–1.57 0.225 0.62 0.19–2.07 0.439

CD4_E (high vs low) 0.39 0.21–0.74 0.004 0.43 0.23–0.82 0.010
CD4_S (high vs low) 0.62 0.80–3.21 0.184 0.60 0.30–1.20 0.153

CD8_E (high vs low) 0.67 0.35–1.29 0.232 0.61 0.31–1.19 0.151

CD8_S (high vs low) 0.86 0.42–1.75 0.669 0.71 0.34–1.48 0.364

FOXP3_E (high vs low) 0.55 0.26–1.17 0.120 0.54 0.26–1.16 0.115

FOXP3_S (high vs low) 0.41 0.14–1.15 0.090 0.42 0.15–1.19 0.103

PD-1_E (high vs low) 0.47 0.25–0.90 0.022 0.54 0.28–1.04 0.065

PD-1_S (high vs low) 0.66 0.31–1.41 0.286 0.73 0.34–1.56 0.420

PD-L1_E (high vs low) 0.47 0.25–0.88 0.019 0.45 0.24–0.84 0.013
PD-L1_S (high vs low) 0.28 0.12–0.67 0.004 0.30 0.12–0.74 0.008
PD-L2_E (high vs low) 0.48 0.22–1.06 0.070 0.62 0.28–1.38 0.241

PD-L2_S (high vs low) 0.46 0.16–1.31 0.147 0.43 0.15–1.22 0.114

CD4/FOXP3_E ratio (high vs low) 0.57 0.31–1.04 0.067 0.63 0.34–1.16 0.141

CD4/FOXP3_S ratio (high vs low) 1.43 0.76–2.67 0.267 1.65 0.87–3.11 0.120

CD8/FOXP3_E ratio (high vs low) 0.74 0.39–1.41 0.363 0.84 0.44–1.60 0.605

CD8/FOXP3_S ratio (high vs low) 2.27 1.21–4.26 0.010 2.05 1.08–3.85 0.026
CD8/CD4_E ratio (high vs low) 0.61 0.24–1.56 0.299 0.51 0.20–1.33 0.171

CD8/CD4_S ratio (high vs low) 1.69 0.78–3.67 0.186 1.87 0.86–4.10 0.113
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lymphomononuclear infiltrate in TME has paved the 
way as biomarkers for a more personalized antican-
cer therapy. Many immunotherapeutic agents, includ-
ing immunomodulators, vaccines, adoptive transfer of 
endogenous or genetically modified T cells, cytokines, 
and mainly immune checkpoint inhibitors (ICIs), have 
shown remarkably beneficial effects for better thera-
peutic response and increased survival in gynecologic 
cancers [27].

To the best of our knowledge, there is no previous 
published data assessing the predictive or prognostic 
role of TME markers in UCS so far. Likewise, stud-
ies on the characterization of TME in gynecological 
cancer are very scarce. Zhang et  al. [28] investigated 
the prognostic impact of TME profile in 221 patients 

with endometrial cancer. Similar to our results, highly 
expressed CD4+ TILs were significantly associated 
with better OS and longer treatment-free interval and 
may be associated with chemosensitivity. Jong et al. [29] 
have recently reported 368 FIGO stage I–IV endome-
trial cancer patients with highly expressed CD8+ TILs, 
a marker for killer cytotoxic T cells, and a high CD8 +/
FOXP3+ ratio was associated with better disease-free 
survival. FOXP3 is the most specific marker for Treg 
cells and, often associated with a negative impact on 
survival in several types of cancer, is likely to have an 
important role in suppressing anti-tumor immunity [30, 
31]. Ore-Arce et al. [32] also reported that high CD8+ 
TILs was significantly associated with better 5-year OS 
in 68 women with FIGO stage I–IV endometrial cancer. 

Table 4 Crude and adjusted Hazards Ratios for Carcinosarcoma Overall survival (OS) estimated by univariate analysis and multivariate 
analysis

All variables were adjusted for staging in multivariate analysis. Significant P-values are emboldened

LVI Lymphovascular Invasion, E Epithelial Component, S Sarcomatous Component, ER Estrogen Receptor, PR Progesterone Receptor, CD3 Cluster of Differentiation 3, 
CD4 Cluster of Differentiation 4, CD8 Cluster of Differentiation 8, FOXP3 Forkhead Box P3, PD-1 Programmed Cell Death Protein 1, PD-L1 Programmed Death-Ligand 1, 
PD-L2 Programmed Death-Ligand 2

Clinicopathological features Univariate analysis Multivariate 
analysis

HR 95%CI p-value HR 95%CI p-value

Age 1.02 0.98–1.07 0.307 1.03 0.98–1.08 0.157

Stage (I/II vs III/IV) 0.28 0.11–0.71 0.008 –

Residual disease (R1/2 vs R0) 3.83 1.92–7.62 0.001 2.87 1.40–5.89 0.003
Adjuvant radiotherapy (Yes vs No) 0.53 0.27–1.05 0.068 0.64 0.32–1.28 0.214

LVI (present vs absent) 1.05 0.47–2.35 0.900 0.99 0.44–2.22 0.985

Histological subtype (Homologous vs 
Heterologous)

0.84 0.38–1.87 0.671 0.90 0.40–2.01 0.806

CD3_E (high vs low) 0.52 0.27–0.99 0.047 0.65 0.33–1.25 0.200

CD3_S (high vs low) 0.54 0.16–1.79 0.315 0.73 0.22–2.42 0.605

CD4_E (high vs low) 0.52 0.26–1.01 0.054 0.56 0.28–1.11 0.972

CD4_S (high vs low) 0.66 0.32–1.33 0.241 0.60 0.30–1.22 0.160

CD8_E (high vs low) 0.69 0.35–1.39 0.301 0.60 0.29–1.23 0.163

CD8_S (high vs low) 0.77 0.37–1.59 0.478 0.61 0.29–1.28 0.193

FOXP3_E (high vs low) 0.46 0.20–1.06 0.069 0.43 0.18–1.01 0.052

FOXP3_S (high vs low) 0.24 0.06–0.99 0.048 0.26 0.06–1.09 0.066

PD-1_E (high vs low) 0.33 0.16–0.68 0.002 0.39 0.19–0.81 0.011
PD-1_S (high vs low) 0.46 0.19–1.10 0.080 0.52 0.22–1.27 0.152

PD-L1_E (high vs low) 0.54 0.28–1.03 0.062 0.49 0.25–0.96 0.037
PD-L1_S (high vs low) 0.34 0.14–0.81 0.015 0.37 0.15–0.90 0.028
PD-L2_E (high vs low) 0.56 0.24–1.29 0.173 0.76 0.32–1.77 0.519

PD-L2_S (high vs low) 0.44 0.13–1.44 0.174 0.41 0.12–1.35 0.144

CD4/FOXP3_E ratio (high vs low) 0.67 0.36–1.27 0.223 0.76 0.40–1.45 0.407

CD4/FOXP3_S ratio (high vs low) 1.83 0.92–3.65 0.086 2.04 1.02–4.09 0.043
CD8/FOXP3_E ratio (high vs low) 0.68 0.35–1.33 0.262 0.79 0.40–1.57 0.506

CD8/FOXP3_S ratio (high vs low) 2.22 1.14–4.29 0.018 1.91 0.98–3.73 0.058

CD8/CD4_E ratio (high vs low) 0.69 0.27–1.78 0.446 0.58 0.23–1.51 0.268

CD8/CD4_S ratio (high vs low) 0.98 0.39–2.53 0.969 1.16 0.45–3.01 0.754
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Fig. 1 Progression-free survival (PFS) by: A stage; B residual disease status; C CD4_E status; D PD-L1_E status, E PD-L1_S status and F CD8/FOXP3_S 
ratio status. Residual disease after surgery was stratified into R0 (without residual disease) vs R1 (microscopic residual disease) and R2 (macroscopic 
residual disease). As for immunohistochemistry markers, Kaplan Meier curves for PFS were stratified by the median values as the cut-off for 
prognostic evaluation and divided into low vs high lymphocytic variable subsets. The blue solid line indicates patients with low values and the red 
solid line high values. Tick marks indicate censored data
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Fig. 2 Overall survival (OS) by: A stage; B residual disease status; C PD1_E status; D PD-L1_E status, E PD-L1_S status and F CD8/FOXP3_S ratio 
status. Residual disease after surgery was stratified into R0 (without residual disease) vs R1 (microscopic residual disease) and R2 (macroscopic 
residual disease). As for immunohistochemistry markers, Kaplan Meier curves for OS were stratified by the median values as the cut-off for 
prognostic evaluation and divided into low vs high lymphocytic variable subsets. The blue solid line indicates patients with low values and the red 
solid line high values. Tick marks indicate censored data
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Conversely, our current results suggested that high 
CD8/FOXP3_S and CD4/FOXP3_S ratios significantly 
yielded poorer survival outcomes.

Such conflicting findings might be strongly 
explained by tumor heterogeneity based on the histo-
logic distribution of TILs at the tumor site. The afore-
mentioned studies might have used TMAs that were 
built up with cores of diverse numbers, sizes and from 
distinct areas in the surgical samples (peri-tumoral 
or intra-tumor), consequently with different propor-
tions of other immune cell subtypes that might have 
important roles in the TME (Myeloid-derived suppres-
sor cells, MDSCs, Macrophages M2, granulocytes, B 
cells and so on). That said, these other subpopulations 
of TILs could influence the prognostic impact of the 
CD8+/FOXP3+ and CD4+/FOXP3+ ratios [33]. Salet 
and Elkordab [34] have suggested that Treg (FOXP3+) 
should be performed in subgroups based on their 
location in the tumor tissue and the current prognos-
tic influence of each subgroup should be evaluated 
individually.

This cohort also suggested that highly expressed 
PD-L1, both in the epithelial and sarcomatous com-
ponents, was found to be significant and independ-
ent marker for favorable PFS and OS. Likewise, highly 
expressed PD-1_E also showed a favorable association 
with OS in our cohort. PD-1/PD-L1 axis immune check-
point signaling, known to play an important role in can-
cer progression and survival, is currently one of the most 
explored pathways in gynecological cancers [35]. Along 
with mismatch repair deficiency (dMMR), microsatel-
lite instability (MSI) status and tumor mutational burden 
(TMB), PD-L1 has been identified as a potential predic-
tive biomarker for endometrial cancer in some phase II 
clinical trials with immune checkpoint inhibitors [36, 37]. 
The cohort of 700 patients with uterine cancer performed 
by Engerud et  al. [38] showed PD-L1 and PD-1 expres-
sion in 59 and 63% in primary tumors, respectively, with 
similar expression patterns across microsatellite stable 
(MSS) and MSI tumors. However, they did not influence 
survival outcomes.

Some other findings of this cohort suggest that the 
lymphocyte markers evaluated (CD3, CD4, CD8 and 
FOXP3), as well as PD-L1, PD-L2 and PD-1, seemed 
to be more highly expressed amidst the sarcoma-
tous component. Therefore, UCS with sarcomatous 
dominance (defined as the proportion of the sarcoma 
component being greater than 50% in the primary 
tumor within all examined hysterectomy specimens), 
which was associated with shorter survival in previ-
ous reports [20, 21], may be targetable by immuno-
therapeutic agents. Unfortunately, the analysis of 

sarcomatous dominance is beyond the scope of the 
current study. Some data point to the fact that the 
more advanced the stage of solid tumors, the greater 
the expression of TILs markers in the TME favoring 
tumor progression [39].

The survival analyzes further exhibited that 
advanced stage (III/IV) and incomplete debulking are 
significantly associated with poorer PFS and OS out-
comes. The negative prognostic impact of these clin-
icopathological variables has already been shown in 
other cohorts of carcinosarcoma [19, 20, 40, 41]. In a 
secondary analysis of a prior multicenter retrospective 
study, Matsuo et  al. [42] suggested that LVI contain-
ing a sarcomatous component might be a predictor 
of decreased survival for women with UCS. However, 
LVI showed no significant association with survival in 
our cohort.

The strengths of this study lie in the novelty of the in-
depth analysis of TME data in UCS by presenting the 
characteristics of the lymphomononuclear infiltrate cor-
relating with clinicopathological features and evaluating 
the impact on survival. The study population is homog-
enous in that we only included patients with carcinosar-
coma who underwent primary surgery and subsequently 
adjuvant chemotherapy with CP. Moreover, all surgical 
samples were double-checked by experienced patholo-
gists. Lastly, a thorough descriptive presentation of 
clinicopathological variables was performed and mul-
tivariate analyzes reinforce the internal validity of the 
results.

The weaknesses of this study are strongly related 
to the fact that it is a retrospective analysis. So, some 
missing confounding factors may exist in the analysis. 
For example, even with well-established institutional 
protocols, the choice of adjuvant treatment with chem-
otherapy and or radiotherapy was at the discretion of 
the care providers. Additionally, the small sample may 
have been insufficient to ensure adequate power to 
detect differences in survival for some TME markers. 
Furthermore, molecular analysis was not performed in 
this study.

Conclusion
This is possibly the first report to delve into the com-
position of TME in carcinosarcoma. Assessments of 
immune markers for progression and survival outcomes 
may have been impaired by the small sample. How-
ever, due to the increased prevalence of high expres-
sion of immune markers in this setting, the findings can 
respectfully provide some basis for formulating studies 
to evaluate novel therapeutic strategies with immuno-
therapeutic agents.
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