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Abstract: The skin is our largest organ and the outermost protective barrier. Its aging reects
both intrinsic and extrinsic processes resulting from the constant insults it is exposed to. Aging
in the skin is accompanied by specic epigenetic modications, accumulation of senescent cells,
reduced cellular proliferation/tissue renewal, altered extracellular matrix, and a proinammatory
environment favoring undesirable conditions, including disease onset. Macrophages (Mϕ) are the
most abundant immune cell type in the skin and comprise a group of heterogeneous and plastic
cells that are key for skin homeostasis and host defense. However, they have also been implicated
in orchestrating chronic inammation during aging. Since Mϕ are related to innate and adaptive
immunity, it is possible that age-modied skin Mϕ promote adaptive immunity exacerbation and
exhaustion, favoring the emergence of proinammatory pathologies, such as skin cancer. In this
review, we will highlight recent ndings pertaining to the effects of aging hallmarks over Mϕ,
supporting the recognition of such cell types as a driving force in skin inammaging and age-related
diseases. We will also present recent research targeting Mϕ as potential therapeutic interventions in
inammatory skin disorders and cancer.
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1. Introduction

Aging is a time-dependent progressive accumulation of signicant cellular and tissue
changes, including physiological, structural, and functional changes, leading to functional
disorders and increased vulnerability to death [1]. This process is associated with molec-
ular events such as genomic instability, telomere attrition, epigenetic alterations, loss
of proteostasis, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senes-
cence, stem cell exhaustion, and altered intercellular communication, which can be termed
“hallmarks of aging” [2,3].

The skin is our largest organ and constitutes a protective barrier that prevents exces-
sive water loss and the entry of harmful substances and pathogens from the environment.
Its aging reects both intrinsic (or chronological) and extrinsic (such as radiation and pollu-
tion exposure) aging processes at the molecular and phenotypic levels [4]. Skin aging is a
process accompanied by changes that alter the local microenvironment, such as weakening
of the skin barrier and the accumulation of stressed and senescent cells, both of which
foster inammation through the invasion/release of Pathogen- and Damage-Associated
Molecular Patterns [5]. The consequences of such an altered microenvironment include the
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promotion of the senescence-associated secretory phenotype (SASP), compromising tissue
renewal and function, altered cellular interactions [6], and chronic low-grade inamma-
tion [7]. This sterile inammatory state, termed inammaging, develops in several organs
with advanced age and is associated with persistent inammation that ultimately exhausts
the skin’s defense system [5,8].

Macrophages (Mϕ), a group of heterogeneous and plastic cells, play a central role in
tissue homeostasis and repair, as well as host defense [9]. In the skin, Mϕ can be found in
different layers, being classied as recruited Mϕ originating from monocytes following
a recruitment process started by tissue injury, or as tissue-resident macrophages (TRM),
which are derived from both adult and embryonic progenitors [10]. In the interfollicular
epidermis, there are the Langerhans cells (LC), which can migrate to the lymph nodes
to present antigens, being related to antimicrobial immunity, immune surveillance, and
contact hypersensitivity [11]. Due to the shared characteristics with dendritic cells (DCs),
LC have long been classied as such [12,13]. Nevertheless, after further ontogeny studies
have demonstrated that LC arise from embryonic precursors and are maintained within the
epidermis by local self-renewal under steady-state conditions, LC are currently considered
a specialized subset of TRM [14]. Mϕ located in the dermis, on the other hand, are called
dermal Mϕ and are associated with tissue repair and clearance [15].

To exert such a variety of functions, Mϕmay acquire different phenotypes in response
to various stimuli. In this sense, based on in vitro assays, Mϕ have been divided into two
groups based on their polarization phenotypes: M1 and M2. Classically activated Mϕ

are deemed as M1 and constitute catabolic, proinammatory cells that are involved in
antimicrobial host defense. M2, or alternatively activated Mϕ, are anabolic cells with anti-
inammatory and tissue repair properties [16]. However, mainly due to recent advances in
single-cell RNA sequencing (scRNA-Seq), it is now clear that such a dichotomy does not
accurately represent Mϕ in vivo but represents the extremes of a wide range of continuous
phenotypes which have been reported [17,18].

The aging process has a great impact on Mϕ, including alterations in Mϕmetabolic
and immune function, impacting the Mϕ capability of clearance and immunosurveillance,
constituting an important aspect of immunosenescence [19]. In fact, old Mϕ in a mice
model were characterized with a senescent, proinammatory prole [20], associated with
increased oxidative stress, compromised antioxidant defenses, and impaired function [21].

Interestingly, the number of LC in the skin and their capacity to migrate to the lymph
node and stimulate T cells seems to be reduced in aged subjects compared to young
ones [22]. In aged mice, the same process is observed, accompanied by a decline in LC
maturation, but not in LC proliferation and survival levels, suggesting either a deciency
in bone marrow-derived LC progenitors or the generation of progenitors that are less
responsive to chemokine and cytokine signals [22]. The same study has also described a
higher level of phagocytosis in Mϕ from older mice [22], which is probably a result of an
age-related Mϕ hyperfunction, since during the aging process the skin barrier weakens,
favoring the pathogen’s invasion and stressed and senescent cells that should normally be
eliminated are accumulated [23].

Mϕ are considered as gatekeepers of tissue homeostasis and integrity, constituting
primary inammatory cytokine producers, as well as initiators and regulators of inamma-
tion, and representing one of the main cellular players in adaptive immunity exacerbation
and exhaustion during aging [24,25]. With that being said, it is possible to consider Mϕ

as important players in the promotion of chronic proinammatory-associated patholo-
gies, such as psoriasis [26,27], rosacea [28,29], vitiligo [30,31], and skin cancer [32,33]. In
recognition of the age-related alterations on Mϕ function and their importance during skin
aging, in this review, we will dissect how aging hallmarks may alter the Mϕ phenotype
and function and connect these plastic cells with skin inammaging. We will also present
recent research targeting Mϕ as potential targets for therapeutic interventions in chronic
age-related skin disorders.
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2. Hallmarks of Aging and Macrophages

Aging is a progressive and common process for all cells and tissues and can be caused
by both intracellular and extracellular factors. It leads to organismal dysfunction on
multiple levels, the main underlying processes being identied as the hallmarks of aging
(Figure 1). Such hallmarks are interconnected and converge to tissue inammation and
dysfunction [5].

Figure 1. Hallmarks of aging in Mϕ in the skin microenvironment. Skin inammaging is fostered by different yet
interconnected and synergistic aging hallmarks. Mϕ are plastic cells that play a pivotal role in the immune system
and have been associated with the persistent chronic inammation levels found in aged skin. Skin inammaging is
characterized by a shift towards pro-inammatory Mϕ phenotypes, which promote further tissue inammation in the skin
microenvironment through the secretion of pro-inammatory cytokines, activation of important inammatory pathways,
and increased oxidative stress. Chronic low-grade oxidative-inammatory stress during the aging process is a key factor
that stimulates a vicious cycle, contributing to age-associated disease onset. At the same time, the reduction of Mϕ with an
anti-inammatory phenotype contributes to the decrease in antigen presentation and phagocytosis, contributing to tissue
homeostasis disturbance.

2.1. Genomic Instability

DNA damage accumulation is expected to occur with aging and accumulates as a
result of many endogenous and exogenous factors. Genomic instability in the aging process
can be associated with somatic mutations, copy-number alterations, and chromosome ab-
normalities for nuclear as well as mitochondrial DNA (mtDNA) [2]. Such DNA alterations
may affect essential genes and transcriptional pathways, resulting in dysfunctional cells.

In the literature, the causes of genomic instability in Mϕ are scarce and one work
points out that it can be induced by pathogens such asMycobacterium tuberculosis [34]. M.
tuberculosis is the causative agent of tuberculosis with a pathological outcome associated
with the formation of granulomas. The granulomas formed in the development of several
chronic diseases (due to persistent inammatory stimuli) can modulate molecular pro-
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grams, which are involved in TRM differentiation and relate to clinical outcomes [35] and
DNA damage [36].

SinceMϕ are the most abundant immune cell type in the skin, and this tissue is directly
exposed to several environmental factors, such as UV radiation, genomic instability could
be a central hallmark of aging in aged Mϕ; after all, numerous DNA injuries can lead to
accumulated damage and altered Mϕ function in this tissue [37]. This in turn can lead to
altered gene expression of molecules such as cytokines, MHC class II, transcription factors,
an exacerbated production of reactive oxygen species (ROS) [15], and NF-κB signaling in
response to DNA damage [38], rendering Mϕ more susceptible to apoptosis, impairing
their phagocytosis function [39], and contributing to inammaging [40].

2.2. Telomere Attrition

Telomeres protect the ends of chromosomes from degradation and abnormal recom-
bination. Considered a primary hallmark of aging, telomere attrition causes the loss of
chromosome protective structures as they gradually get shorter [2]. This shortening process
has also been closely connected with inammation [41,42].

Comparing young and old mice, Kang and colleagues (2018) observed that the short-
ening of telomeres in Mϕ leads to increased ROS production, the same phenotype observed
for genomic instability (see Section 2.1). Furthermore, in their experiment, knockout mice
for Telomerase RNA Component (Terc−/−), a gene that encodes for the RNA that serves
as a template for the telomere repeats, showed telomere dysfunction in Mϕ, which is
associated with hyper inammation and mitochondrial abnormality, followed by oxidative
stress with hyperactivation of the Nod-like receptor protein 3 (NLRP3) inammasome (see
Section 2.6) [43].

The increase in oxidative stress can induce DNA breakdown, which can lead to
mutations that may explain most of the changes described in the aged Mϕ. The main
inammatory signaling pathway, NF-κB, regulates the maintenance of telomeres and
telomerase activity [44], just as the latter regulate NF-κB activity [45]. This relationship
leads to a defective autophagic response and overexpression of inammatory cytokines,
such as TNF-α, IL-6, and IFN in circulating Mϕ [46].

2.3. Epigenetic Alterations

Epigenetic alterations involve changes in DNA methylation (DNAm) patterns, post-
transcriptional modication of histones, and chromatin remodeling [2,47]. These aging-
induced epigenetic changes in Mϕ are mainly responsible for controlling the inammatory
prole and cell differentiation [48,49].

DNAm undergoes predictable time-dependent modications across CpG islands and
is inuenced by both intrinsic and extrinsic processes. Molecular clocks have been de-
veloped in order to calculate the “biological age” of biological samples using methylome
data [50,51], including a skin-specic Molecular Clock [51]. Age-associated epigenetic
remodeling involves highly localized gain/loss of DNAm at the binding sites of tran-
scription factors associated with the monocyte-macrophage differentiation process [52].
Despite a major lack of comprehension regarding the cause or effect role of epigenetic
changes and aging phenotypes, recent studies have shed light on at least a few events
that connect epigenetic changes in Mϕ and age-related phenotypes, such as inammation
and differentiation.

For instance, aging-associated changes in DNAm, particularly the demethylation
in the tumor necrosis factor (TNF-α) promoter, a cytokine predominantly produced by
Mϕ, revealed a possible link between inammation, Mϕ, and chronic age-related diseases.
The promoter demethylation has been described to occur in peripheral blood leukocytes
and Mϕ of aging subjects and is accompanied by a reduction of TNF-α reporter gene
activity [53], possibly associated with chronic inammatory processes.

Other studies have also revealed that protein-3 containing the Jumonji domain (Jmjd-3),
a H3K27 demethylase, promotes the induction of Irf-4, and SMYD-3, an H3K4 methyltrans-
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ferase, of IL-4 and IL-12 [54,55]. These histone-modifying proteins play a central role in
aging and their activities increase in the course of this process. In Mϕ, they contribute to
the positive regulation of regenerative and anti-inammatory proles [55,56].

These epigenetic alterations in the skin microenvironment contribute to inammaging
and can be directly linked to clinical outcomes. For instance, the chronic exposure of Mϕ to
inammatory triggers and products of dead or senescent cells (see Section 2.7) can impose
epigenetic changes that cause Mϕ’ altered response capacity during skin aging [52].

2.4. Loss of Proteostasis

Proteostasis is dened as the process of protein homeostasis maintenance and com-
prises a complex proteostasis network (PN), mainly composed by specialized proteins
such as chaperones and cochaperones, translational machinery, the ubiquitin-proteasome
system (UPS), and the autophagy machinery [57]. The PN has the role of controlling
protein synthesis, modication, secretion, and degradation. It also reduces misfolded
proteins by restoring, removing, or degrading them through the unfolded protein response
(UPR) activity to prevent their accumulation in cellular compartments [58]. The chaperone-
mediated autophagy (CMA) is another player in the proteostasis balance. HSPA8 is a
central component of CMA and is an abundant protein in Mϕ and other immune cells.
Together with a co-chaperone complex, HSPA8 recognizes “CMA-targeting recognition
motifs” in the targeted protein sequence, unfolding the substrate and delivering it to a
protein called lysosome-associated membrane protein 2A (LAMP2A), which internalizes
the targeted proteins for subsequent degradation in the lysosomal lumen [59]. If those
mechanisms fail to restore homeostasis, apoptotic pathways may be activated to ensure
survival of the organism [58].

Autophagy is a paramount process in the maintenance of skin homeostasis throughout
aging, the consequences of age-related autophagy decay affecting different skin types,
including LC. An example describing the consequences of the loss of proteostasis on aged
skin is the change of elastin, collagen, and melanin levels [60–62] found in wrinkled and
hypopigmented skin [60,63]. The balance in the composition of those proteins is essential
for skin function and health and, interestingly, Mϕ play an important role in this context.
For instance, Mϕ synthesize metalloelastases (e.g., metalloelastase 12) that participate in
the elimination of nonfunctional elastin aggregates generated in the skin as a consequence
of photoaging [64,65].

If on one side, healthy Mϕ are important contributors to the maintenance of pro-
teostasis, aged Mϕ exhibit diminished inositol-requiring enzyme 1α (IRE1α) activation (a
stress sensor that activates UPR) and increased susceptibility to endoplasmic reticulum
(ER) stress-dependent apoptosis [66]. During high levels of ER stress, UPR activates IRE1α,
which in turn assists the alternative splicing of X-box binding protein 1 (XBP1) mRNA [67].
After its activation, the transcription factor XBP1 induces the expression of cytokines such
as pro–IL-1β [68]. However, it has been shown that Toll-like Receptors (TLR) in mice and
humanMϕ can directly activate XBP1, without UPR mediation, or even in synergy with ER
stress [67], leading to the splicing of XBP1 and activation of a sustained proinammatory
environment by IL-1β, IL-6, and TNF [67,69].

In fact, it has been shown that the inammasome is activated in the context of excessive
misfolded protein accumulation, which is exacerbated in autophagy- or p62 (sequestosome
1)-decient Mϕ [70,71]. In addition, ER stress can also be transferred from neighboring
parenchymal cells to TRMs by upregulating the splicing of UPR components, such as
Grp78, Gadd34, Chop, and Xbp-1 [72,73]. This phenomenon of a “transmissible” ER stress
state is mediated by the production of IL-4, IL-10, and by apoptotic bodies from stressed
cells [72]. Therefore, the age-related loss of proteostasis in the skin affects Mϕ and seems
to contribute to the local inammaging phenotype.
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2.5. Deregulated Nutrient Sensing

Aging directly affects the sensors and molecular targets of nutrients and uid home-
ostatic regulation [74]. One of the underlying mechanisms by which aging promotes
deregulated nutrient sensing is by promoting disturbed insulin sensitivity, which compro-
mises the capacity of some tissues to uptake and metabolize nutrients [75].

Importantly, nutrient sensing components have been directly linked to longevity, in-
cluding the mammalian targets of rapamycin (mTOR) and AMP-dependent protein kinase
(AMPK), the two major components of nutrient sensing and metabolic regulation. AMPK
has an inhibitory effect on mTOR signaling, which is activated during nutrient starvation,
leading to a rise in the AMP:ATP ratio [76]. In association with nicotinamide adenine
dinucleotide (NAD), high AMP levels activate sirtuins, responsible for insulin signaling
pathway and longevity regulation. Consequently, the excess of nutrient availability can
promote aging-associated diseases [77,78].

Accordingly, the modulation of nutrient sensing signaling inuences several immune
cell types including Mϕ. It has been said that the Mϕ immunometabolism inuences Mϕ

polarization and activation, processes which are tightly linked to skin homeostasis and
inammaging. Mϕmetabolic signatures have been closely connected with the M1-like and
M2-like phenotypes; the M1-like Mϕ heavily relying on glycolysis, and the M2-like Mϕ

being more dependent on oxidative phosphorylation [79]. During the aging process, Mϕ

function and phenotypes are disturbed due to many factors, including nutrient sensing
dysregulation and the installation of a chronic low-grade inammation environment in
the tissue. In this sense, deregulated nutrient sensing can increase Mϕ glycolysis and
suppress the oxidative phosphorylation (via attenuation of IL-4-induced anti-inammatory
responses), favoring the accumulation of M1-likeMϕ in the aged skin [80–83]. The presence
of M2-like prole is therefore reduced, causing skin damage and promoting the progression
of age-associated diseases [84–86].

Furthermore, FOXO and mTOR are targets of the insulin and insulin-like growth
factor 1 (IGF-1) signaling (IIS) pathway and are inuenced by nutrient status, altering
tissue homeostasis, and inammation [87,88]. In a very elegant experiment, the skin
of mice lacking both the insulin and IGF-1 receptor in myeloid cells was enriched in
noninammatory Mϕ phenotype after the induction of dermatitis. When compared to
controls, it showed evidence of a proinammatory IR/IGF-1R-dependent pathway and
a connection between cutaneous inammatory responses and diseases such as insulin-
resistant diabetes mellitus type 2 [89]. In addition, SASP has been highly associated with
Mϕ inammatory factors in conditions of hyperglycaemia, contributing to the fueling of
low-grade inammation in diabetes [90]. Under nutrient starvation, FOXO1 migrates to
the nucleus after phosphorylation and seems to stimulate proinammatory TLR4 signaling
and IL-8β production in Mϕ. FOXO1 migration also stimulates the expression of the anti-
inammatory cytokine IL-10 in M2-like cells [91], supporting the phenotypic development
of aging Mϕ in distinct directions [19].

Bone marrow-derived Mϕ have also shown an increasing expression of growth hor-
mone receptor (GH-R) and GH-R-dependent induction of inammatory components in
aged mice. Current evidence suggests that the downregulation of NLRP3 inammasome in
Mϕ by GH-R is capable of maintaining immune system homeostasis and extending health-
and lifespan [92].

Since nutrient sensing signaling pathways can be pharmacologically modulated
and are closely linked to inammation, interesting observations could be made regard-
ing the manipulation of Mϕ phenotypes in the skin. For instance, the modulation of
AMPK/mTOR/NLRP3 inammasome signaling using Metformin revealed that the drug
treatment promoted reduced NLRP3 signaling and promoted the regenerative M2-like
phenotype in skin Mϕ, paving a way to re-establish skin Mϕ equilibrium [93]. Several
other anti-inammatory drugs target immunometabolism and may also contribute in this
sense, as revised by [94].
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2.6. Mitochondrial Dysfunction

Mitochondrial production of ROS is crucial for the skin’s defense against pathogens [95].
However, dysfunctional mitochondria in Mϕ can generate excessive production of ROS
and cause damage to important intracellular structures, including the mtDNA [22], con-
tributing to defective apoptosis and activation of inammasomes [96]. Aged Mϕ present
mitochondrial dysfunction associated with decreased ATP production, reduction of mito-
chondrial membrane potential (∆Ψm), and increased oxidative stress, as well as depreciated
antioxidant defense response that can impair Mϕ functions and lead to senescence [97]. For
instance, during lung Streptococcus pneumoniae infections, impaired mitochondrial function
of aged Mϕ increases lung pathology and oxidative stress [98].

The activity of the oxidative phosphorylation system is also altered in aging. During
aerobic respiration, oxygen can be reduced prematurely, generating a high amount of ROS,
a process that is exacerbated in senescent cells [99]. Besides that, Minhas and colleagues
(2019) demonstrated the importance of NAD+ levels to maintain mitochondrial respiration
and regulate Mϕ phagocytosis in an anti-inammatory homeostatic state, both in vitro
and in vivo. NAD+ levels can be replenished by de novo synthesis and via the kynurenine
pathway. Blockage of de novo NAD+ synthesis impaired phagocytosis and resolution of
inammation in aged Mϕ [100].

In addition to sensing and cleansing cellular debris, Mϕ also detect accumulation of
mitochondrial garbage in the cellular microenvironment, leading to a continuous stimu-
lation of these cells and thus their activation [101] and thus sustaining an environment
of chronic low-grade inammation with production of cytokines and ROS [97]. ROS ac-
cumulation in intracellular microenvironments (not only in the mitochondria) can cause
DNA damage in aged tissues [28]. In the context of the skin, ultraviolet (UV) radiation-
induced mtDNA injury also leads to more ROS production, accelerating photoaging [102].
In photodamaged skin, xanthine oxidase-induced ROS is reported to be the cause of al-
terations in collagen biosynthesis in cultured human dermal broblasts [103]. Moreover,
other enzymatic and non-enzymatic sources of ROS are observed in the skin. Besides
mitochondrial ROS production via electron transport chain and UV-induced ROS, there is
production of ROS via peroxisomes, ER, and skin cell membranes [104]. In cultured Mϕ,
Ives and colleagues (2015) demonstrated that xanthine oxidase (XO) is the major source of
ROS [105]. XO expression and activity has also been shown to be increased in old mice,
closely associating with oxidative stress and exacerbated ROS formation [21].

As extensively revised by Beek and colleagues (2019), there is a tight link between
mitochondrial dysfunction and ER in aged Mϕ, that results in impaired calcium and redox
homeostasis and leads to oxidative stress and activation of several pathways, including the
inammasome. Consequently, a proinammatory environment is promoted by enhancing
IL-1β secretion and nuclear translocation of NF-kB [19]. Furthermore, it has been proposed
that this age-related oxidative-inammatory stress (“oxi-inammaging”) occurs in a vicious
cycle during aging [106]. Taken together, it can be expected that age-related ER and
oxidative stresses can contribute to an enhanced production of pro-inammatory cytokines
in Mϕ and thus to systemic inammaging, favoring the onset of pathologies.

2.7. Cellular Senescence

Cellular senescence is a cellular state characterized by cell cycle arrest, even under
growth-promoting conditions [2]. Other phenotypes of cellular senescence include apopto-
sis resistance and SASP [107]. In the human skin, senescent keratinocytes and broblasts
accumulate with age and support a feedforward system mainly mediated by SASP to
accelerate tissue function decay [108]. Senescent cells show increased production of proin-
ammatory cytokines, chemokines, growth factors and metalloproteinases [109], telomere
attrition (see Section 2.2), epigenetic alterations (see Section 2.3), loss of proteostasis (see
Section 2.4), and dysfunctional mitochondria (see Section 2.6), underscoring the many
facets of the senescent cell phenotype.
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The age-related alterations of immune system elements have been dened as im-
munosenescence and are characterized by changes in anatomical barriers, lymphoid organs
and immune cell function, all of which synergize to result in a systemic organismal low-
grade inammation, deemed inammaging [5].

Intrinsic and extrinsic factors of immunosenescence affect both recruited Mϕ and
TRMs. In homeostatic conditions, activated Mϕ clear cell debris [110], but when senescent
cell clearance is not effective, such cells accumulate and intensify SASP, causing several
alterations in the local milieu, including Mϕ dysfunction [111]. Using a mouse model,
Prattichizzo and colleagues (2018) demonstrated that in hyperglycemic conditions, both
cellular senescence and SASP can be induced in Mϕ [90]. In aged tissues, the activated
Mϕ produces molecules that drive inammatory response, such as IL-6, matrix metal-
loproteinases, chemokines and other mediators [112,113]. Together, these indicate that
dysfunctional Mϕ are both a result of dysfunctional niches and cellular senescence, in
addition to contributing to the maintenance of low-grade tissue inammation.

2.8. Stem Cell Exhaustion

Stem cell exhaustion is a consequence of the sum of several hallmarks of aging men-
tioned above and is likely one of the main culprits for the loss of tissue regenerative capacity,
and consequently organismal aging. Examples of that loss have already been related to
immunosenescence [114,115].

Skin homeostasis is mainly maintained by two stem cell types: dermal mesenchymal
stem cells (dermal MSCs), present in the inner layer of dermis, and epidermal stem cells
(ESCs), located in the basal epidermal layer. While ESCs are responsible for epidermal cell
renewal, a consequence of the capacity to differentiate into different cell lineages of the
skin, such as keratinocytes and melanocytes [116,117], dermal MSCs are capable of differen-
tiating into subcutaneous adipocytes, osteoblasts, and chondrocytes [118,119]. With aging,
a loss of ESC and dermal MSC production and differentiation is observed, with consequent
deceleration of skin cell renewal and reduction of skin healing capacity [119,120].

Tissue-resident hematopoietic cells, progenitors of Mϕ, can self-maintain indepen-
dently of hematopoietic stem cells (HSC). Mϕ derived from yolk-sac are replaced by
HSC-derived ones only in a few organs, including epidermis skin layer (LC originating
from erythro-myeloid progenitors) [121]. This statement suggests a more important role
is played by the cell’s origin than its tissue location in life span [14]. As a consequence, it
is not surprising that the aged skin tends to have less LC in its composition, decreasing
antigen-specic immunity [122].

Wound repair is a continuous process comprising four phases: hemostasis, inamma-
tory, proliferative, and remodeling (or resolution) phases [123]. With the advance in aging,
there is a delayed lesion reepithelization and decreased tensile strength [124–126]. That
may also indicate the importance of the presence of Mϕ subpopulations in key moments
of wound skin repair [123]. The M1-like Mϕ prole contributes to the early stage of skin
healing by promoting an inammatory response with the production of high levels of proin-
ammatory cytokines. On the other hand, M2-like Mϕ are responsible for the tissue repair
process itself, including the regulation of re-vascularisation processes, broblast prolifera-
tion, and myobroblast conversion, in addition to collagen production via inhibition of the
AMPK/mTOR/NLRP3 inammasome signaling axis, as discussed in Section 2.5 [93]. Im-
mune cells such as Mϕ are capable of activating epidermal stem cells for re-epithelialization
under the establishment of an inammatory wound microenvironment [127].

Through single-cell transcriptomic data analysis, a study was capable of character-
izing a dermal subpopulation of Mϕ that contributes to local nerve regeneration and
axon sprouting after a mechanical injury [128]. Another study also observed that during
skin repair, Mϕ are also capable of stimulating the proliferation of adipocyte precur-
sors [129]. Aged Mϕ tend to lose their ability to migrate into wounds, with consequent
retention of the Mϕ at the dermis and increased tissue damaging release of ROS and
proinammatory cytokines [130]. In the epidermis, such an excessive proinammatory
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microenvironment depletes epidermal stem cells, further contributing to compromised
skin healing capacity [131].

2.9. Altered Intercellular Communication

The age-related changes in intercellular communication have been characterized in the
autocrine, paracrine, endocrine, and neuroendocrine levels. The neurohormonal signaling
(e.g., renin-angiotensin, adrenergic, insulin-IGF1 signaling) tends to be deregulated in
aging as inammatory reactions increase, immunosurveillance against pathogens and
premalignant cells declines, and the composition of the peri- and extracellular environment
changes, thereby affecting the mechanical and functional properties of all tissues, including
the skin [2,132].

Recently, it was observed that mast cells are important in the recruitment of Mϕ in
aging through the change in the pattern of chemoattractant cytokines [133]. But there have
still been few studies on how these intercellular communications involve Mϕ in the skin.
Still, it is already known that the age-related changes in intercellular communication are
associated with inammation. The accumulation of tissue damage throughout life, the
likelihood of cytokines being secreted by senescent cells, the enhanced activation of the
NF-κB transcription factor, and the occurrence of a defective autophagy response all seem
to foster the immune system failure [96,134].

3. Targeting Macrophages in Chronic Skin Diseases

Given that aging strongly impacts immune cells, immunosenescence has been listed as
a key feature in age-associated diseases arising from the imbalance between inammatory
and anti-inammatory states. In this section, we will discuss chronic inammation associ-
ated with different skin pathologies, highlighting the involvement of Mϕ and pointing to
treatment possibilities (Figure 2).

Figure 2. Macrophage-centered approaches for chronic skin disease treatment. In recognition of the major role played
by aged Mϕ in oxi-inammaging, which in turn has been recognized as a risk factor for the development of chronic
inammatory skin diseases, it is possible that Mϕ-targeted therapies constitute a promising alternative for at least some
inammatory skin disorders.

3.1. Psoriasis

Chronic inammation, oxidative stress, and proinammatory cytokines play signi-
cant roles in the onset and progression of psoriatic skin lesions, which are characterized
by hyperproliferation and altered differentiation of keratinocytes, as well as high T cell
and Mϕ inltration [135–137]. There is evidence that Mϕ are highly activated in psori-
atic lesions with increased production of TNF-α and classical activation of mononuclear
phagocytes. Accordingly, the pathological overexpression of TNF-α is involved in the
etiology of psoriasis in humans [138] and is intensied with age-related telomere attrition
conditions [46]. Moreover, mononuclear phagocytes induce cleavage and release of soluble
forms of CD14 and CD163, reinforcing their participation in the inammation at the lesion
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site [139]. In mice, a study depletedMϕ from skin lesions and observed signicant recovery
in inammation with reduced levels of TNF-α [140]. Another study showed that T regula-
tory lymphocytes are capable of suppressing the tissue-damaging activity of Mϕ-mediated
psoriasis [136]. Moreover, Piperlongumin (PPL) epigenetically inhibits histone-modifying
enzymes, which include class I (HDAC1–4) and class II (HDAC6) histone deacetylases, in
Mϕ. In a psoriasis mouse model, PPL inhibited the hyperproliferation and inammation
of keratinocytes and Mϕ, relieving symptoms and highlighting its potential use as a ther-
apy [39]. Furthermore, given the convincing evidence that oxidative stress is involved in the
pathogenesis of psoriasis, antioxidants have been suggested as potential treatment options,
such as proanthocyanidins (class of avonoids with antioxidant, anti-inammatory, and
antiangiogenic properties) [141,142]. Another example is Astilbin, a bioactive compound
extracted from the medicinal herb Rhizoma Smilacis glabrae, which has also been shown to
have the potential effect of reducing ROS and activating NRF2 (a key transcription factor in
the cellular defense against oxidative or electrophilic stress), as well as inhibiting Vascular
Endothelial Growth Factor (VEGF), an important factor in the maintenance of inammation
caused in psoriasis [143].

3.2. Melanoma

Melanoma is a rare but aggressive type of skin cancer whose etiology is related to
aging, chronic exposure to UVB radiation, and genetic susceptibility [144]. Mϕ have
been investigated as both melanoma suppressors and supporting cells, suggesting the
need for further investigation of the theme. Mϕ can contribute to melanogenesis in
conditions of chronic inammation through the production of ROS and the reinforcement
of oxidative stress [145], as well as through the direct interaction with melanoma cells in
a way that facilitates their dissemination [146]. In addition, our group has identied a
consistent, but yet not fully characterized, Mϕ subpopulation that is enriched in metastatic
melanomas with poor prognosis and immunosuppressed tumor microenvironment [147].
Moreover, scRNA-Seq analysis identied a gene signature of myeloid cells that facilitate
metastasis in melanoma [148]. Nevertheless, due to their inammatory activity, activated
Mϕ have been used in vitro and in vivo to help target melanoma cells. For instance, Mϕ

can be reprogrammed in vitro and injected intravenously in mice to reduce melanoma
pulmonary metastases [149]. Additionally, reprogrammed tumor-associated TAM with
synthetic triterpenoid CDDO-Me lead to reduced IL-6 secretion (see Sections 2.2 and 2.3)
and inhibited surface expression of CD163 [150], a Mϕmarker associated with poor clinical
outcomes in melanoma [151].

3.3. Non-Melanoma Skin Cancer

Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most com-
mon non-melanoma skin cancer types, with aging constituting a strong risk factor for
their incidence [152,153]. TAM play a relevant role in the pathology of both types of can-
cer. Although a M2-like polarization can be induced in Mϕ by SCC cells in a co-culture
model, [154] another study pointed to Mϕ in the SCC microenvironment expressing both
M1-like and M2-like markers, highlighting the heterogeneous states of Mϕ in SCC [155].
Interestingly, CD68+ TAM are enriched in SCC when compared to BCC tumors [156]. Taken
together, these results could indicate that TAM can contribute to inammaging and can be
targeted to decrease inammatory responses.

3.4. Cutaneous Lupus Erythematosus

Cutaneous lupus erythematosus, or discoid lupus erythematosus (DLE), is an au-
toimmune disease characterized by the presence of diverse autoantibodies and chronic
inammation, mainly in the skin. The constant presence of immunosenescence and inam-
mation simulates an “inammaging” milieu that renders the immune system components
of patients with DLE more sensitive to the aging process, since the clinical manifestations
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presented by young DLE patients resemble those that occur with age-related physiological
senescence [157].

As observed throughout the discussion presented in the rst section of the present
review, Mϕ actively participates in the aging process by promoting oxidative stress. Their
relationship with the pathophysiology of DLE is no different, playing an important role
in DLE pathogenesis through oxidative damage-mediated lesions. Unexpectedly, such
a pathological role played by Mϕ does not seem strongly related to any specic Mϕ

phenotypes; Chong and colleagues (2015) observed Mϕ displaying M1-like, M2-like, and
CD163+ with mixed polarizations in DLE samples [158].

Despite the differences between DLE and systemic lupus erythematosus (SLE), both
conditions have Mϕ-mediated oxidative stress as a key factor in disease onset and pro-
gression [159]. Different studies with anti-oxidative therapies have already resulted in
signicant clinical responses for SLE, and we envisage that it could also apply to DLE.
For instance, Lee and colleagues (2014) observed that SLE patients that responded to the
rituximab treatment, which mediates the binding and phagocytosis of B cells by Mϕ, had
higher levels of the genes encoding MnSOD, Cu/ZnSOD, catalase, GPx-1, Gpx-4 and GR,
which are necessary for cellular antioxidant capacity [160,161].

3.5. Rosacea

Rosacea is classied as a chronic inammatory skin disease of the central facial skin
characterized by an abnormal activation of immune responses, vascular dysfunction, and
a strong alteration in skin barrier permeability [162]. The disease can be classied into
four main clinical subtypes: erythematotelangiectatic, papulopustular, phymatous, and
ocular rosacea. The clinical complexity in distinguishing those subtypes can be related to a
possible progression from one subtype to another, in addition to their co-occurrence [163].

Early stage perivascular and later-stage pilosebaceous inltrates, for example, are
highly composed of adaptive and innate immune system cells, such as type 1 and 17 T
helper cells, Mϕ and mast cells in papules and erythema, neutrophils in pustules, and
plasma cells in phymata [164]. Trigger factors of rosacea lead to the release of IFN-γ,
TNF-α, matrix metalloproteinases, and IL-26, which are responsible for the migration and
polarization of Mϕ, in addition to Mϕ IL-1 synthesis [165]. Moreover, the activation of
inammasomes in Mϕ inuences the expression of clinical symptoms in rosacea [166]. In
this process, chronic oxidative stress is extremely relevant for maintaining the disorder,
since antioxidant and oxidant status were unbalanced in patients with rosacea, when
compared to controls [167]. A series of drugs that act in the short and long-term targeting
of the antioxidant metabolism have been tested for rosacea, presenting a signicant advance
in the treatment of such patients [168].

Liu and colleagues (2020) demonstrated that there is a modulation of M1-like Mϕ

in a rosacea mice model via one ADAM-like metalloproteinase activation, ADAMDEC1,
exclusively expressed in Mϕ and mature dendritic cells, corroborating the inammatory
status of the disease [28]. Another study concluded that rosacea presents abnormal Mϕ

inltration, and that the treatment with Paeoniorin, a traditional Chinese medicine, leads
to Mϕ inhibition in rosacea inammatory response [29]. Another study has tested an
undirected treatment against the inammatory microenvironment in rosacea that hampers
polarization into an M1-like prole. The anti-inammatory and anti-angiogenic proper-
ties of aspirin alleviate rosacea-like skin dermatitis via Th1 and Th17-polarized immune
response suppression, inhibited NF-κB signaling, and the release of pro-inammatory
cytokines [162].

3.6. Scleroderma

Systemic sclerosis, or scleroderma, is a rare connective tissue disease, characterized by
systemic autoimmunity and brosis in multiple organs, including the skin, internal organs,
and even blood vessels. The pathogenesis of scleroderma has been gradually claried and
seems to involve genetic, environmental, and, more importantly, immunological factors.
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The activation of the humoral and cellular immune response seems to be the trigger for the
inammatory process and activation of pro-brotic cytokines such as TGF-β, which acts by
stimulating broblasts to increase extracellular matrix deposition [169]. In agreement with
such observations, early scleroderma skin is characterized by the presence of inammatory
cells, predominantly Mϕ, but also T lymphocytes and mast cells [170]. Importantly, Mϕ

are a key component of scleroderma brosis, interacting with and activating brogenesis
by tissue broblasts [171].

Despite not being considered as an age-related disorder, it is increasingly clear that
systemic sclerosis is aggravated by advanced age [172]. In this sense, different aging hall-
marks have been studied in scleroderma patients; immunosenescence being hypothesized
as an age-related process which inuences the disease outcome [172]. Nevertheless, the
underlying mechanism still requires further investigation. SASP has also been suggested
as a mechanism by which the age-related accumulation of senescent cells promote Mϕ

activation and tissue brosis in scleroderma patients [173].
Studies in general have highlighted the role of Mϕ in the development of brosis in

the skin and other organs, such as the heart, since age-related changes in the composition,
gene expression and functionality of cardiac tissue Mϕ render the tissue more suscep-
tible to brosis [174]. Corroborating the important role played by Mϕ in scleroderma,
different in vitro and in vivo experimental approaches targeting the inhibition of phospho-
diesterase 4, adenosine pathway, and probrotic growth factor receptors all seemed to
confer positive benets through the restriction of M2-like Mϕ. The modulation of pro-
brotic growth factor receptors by nintedanib was further conrmed in a clinical study [171].
Interestingly, the modulation of M1-like Mϕ differentiation also seemed to be benecial in
a murine model of scleroderma [171].

Taken together, different literature reports suggest that the brotic process in scle-
roderma is accelerated by the recruitment of Mϕ and that this process seems to be
aggravated by different age-related phenotypes, including immune dysfunction and
cellular senescence.

Oxidative stress is another pathological feature of systemic sclerosis, acting in the
path of inammation, autoimmunity, and brosis. In fact, when broblasts derived from
brotic and non-brotic skin of systemic sclerosis (SSc) patients are evaluated, higher levels
of ROS are observed when compared to broblasts derived from healthy samples. The
stressed broblasts promote a probrotic phenotype through the oxidative inactivation
of PTP1B (protein tyrosine phosphatase), which leads to the increase of collagen levels
in the skin [175]. However, intravenous administration of NAC (N-acetylcysteine), a free
radical scavenger and precursor to the antioxidant glutathione, inhibited collagen synthesis
and broblast proliferation [176] and reduced the production of peroxynitrite by lung
macrophages in vitro [177,178].

The relevance of Mϕ as therapeutic targets of scleroderma is under investigation but
seems promising, including at least one clinical trial in the theme.

3.7. Vitiligo

Vitiligo is an autoimmune skin chronic disease inwhichmelanocytes are destroyed [179].
The development of vitiligo occurs in parallel with the activation and inltration of immune
(mainly mononuclear) cells in the skin, but with changes and losses in its functioning and
effectiveness [180]. At the molecular level, ROS have been described as responsible for
damaging the manifested melanocytes, leading to the generation of autoantigens through
different pathways that promote a chronic oxi-inammation environment [181].

In this context, monocyte-derived Mϕ have been shown to play a relevant role in
contrast to the TRM. This has been demonstrated mainly through studies that evaluated
Mϕmigration inhibiting factor (MIF), a pro-inammatory cytokine whose secretion was
induced by DNA damage oxidative stress [182]. Farag and colleagues (2018) observed that
the concentration of serum MIF was higher in subjects with vitiligo, constituting a possible
biomarker of disease severity [31]. In another study with a larger patient cohort, similar
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observations were made regarding MIF levels, with the difference that MIF levels were also
associated with patient treatment status [183]. The serum levels of granulocyte-macrophage
colony-stimulating factor (GM-CSF), essential for the development of immune system stem
cells, were also found increased in patients with vitiligo, indicating the role of these cells in
vitiligo pathogenesis [30].

Mϕ phagocytize deposits derived from melanocytes, essential for the vitiligo recol-
oring process after treatment with corticosteroids [184]. In contrast, the inammatory
process induces the migration of cytotoxic T lymphocytes and, consequently, a state of anti-
inammatory imbalance. Observing the effects of PAPLAL, a nanocolloid of platinum (Pt)
and palladium (Pd) that acts in the antioxidant pathway, it was suggested that it regulates
the plasticity of Mϕ, inhibiting M1-like polarization and favoring the balance of M2-like
populations in the skin. Thus, it decreases the cytotoxic activity at the lesion site and favors
the repigmentation and recovery of healthy skin [185]. Another potential treatment option
for vitiligo consists of drugs such as aspirin, which inhibit the pro-inammatory pathways
and have already been seen to increase the survival of melanocytes. Aspirin has been
shown to inhibit the activation of proinammatory Mϕ through the NF-κB pathway [186].

4. Concluding Remarks

The effect of age on Mϕ function is still contentious since there is limited data on the
hallmarks of aging on epidermal and dermal Mϕ populations. Among the age-related
changes that occur in Mϕ are a heightened state of basal oxi-inammation and diminished
or hyperactive inammatory responses, which seem to be driven by metabolic-dependent
epigenetic changes. In addition, most studies conducted so far have disregarded the devel-
opment origin diversity as well as polarization states associated with Mϕ, underscoring
the need for additional studies in these areas to ll the current knowledge gaps. Ideally,
such studies should be designed to specically investigate the aging impact over the skin’s
resident or recruited Mϕ subpopulations throughout the lifespan.

Due to the relevant role played by Mϕ in inammaging and other age-related phe-
notypes and pathologies, research in the theme is set to expand. Hopefully, as knowl-
edge regarding the underlying mechanisms and consequences of Mϕ aging increases,
more therapeutic alternatives may be hypothesized and tested to promote healthy aging
and longevity.
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