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ABSTRACT 

Background & Aims: Low skeletal muscle (SM) quality may be related to the degree 

of muscle fat infiltration and seems to be associated to worse outcomes. The aim of 

this study was to summarize the methodologies for indirect evaluation of SM fat 

infiltration using computed tomography (CT), as well as to describe the evolution of the 

terms used in the literature to define muscle quality by this method. 

Methods: An integrative bibliographic review in four databases included studies 

published until August 2018 in Portuguese, English or Spanish; performed in humans, 

adults and/or elderly, of both sex; which investigated SM quality through CT of the 

region between the third and fifth lumbar vertebrae and evaluated at least two muscular 

groups.  

Results: Sixty-seven studies were selected. A methodological standardization trend 

was observed in determining the abdominal region and the evaluated muscle groups. 

However, the most significant methodological variations concern the classification of 

SM quality, such as, the selection of SM areas, radiodensity ranges delimitation and 

their cut-off points, as well as the terminologies used. 

Conclusions: The methodological differences detected are probably due to the lack 

of more precise information about the correlation between SM radiodensity by CT and 

its composition. Therefore, recommendations were made to be followed until new 

studies considering the mentioned factors correct these gaps. 

 

Key words: Body Composition, Myosteatosis, Radiodensity, Muscle Tissue 
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1. INTRODUCTION 

Skeletal muscle (SM) quality is determined by several aspects, as its 

composition, morphology and architecture [1,2]. Among these, muscle composition is 

highlighted, since it can be affected by fat infiltration, also called myosteatosis, with 

consequent radiodensity reduction of its tissue [3,4].  

Among the available methodologies for muscle composition evaluation, 

computed tomography (CT) has been increasingly applied to investigate aspects of 

SM in vivo, enabling the identification of body tissue by anatomical characteristics and 

by radiodensity ranges differences [4–6]. Studies have shown that the muscle 

radiodensity determined by CT has a direct correlation with the triglyceride content 

when evaluated by muscle biopsy, that is, the greater the SM fat infiltration, the lower 

is this tissue radiodensity. Therefore, this imaging method is suggested to be capable 

of implying, indirectly, SM quality [5,7]. 

Nevertheless, a methodological plurality can be observed among studies using 

CT, especially regarding the evaluation of different body regions, muscle groups and 

methodologies for SM quality classification (selection of SM areas, radiodensity ranges 

- in Hounsfield Units, HU - and cut-off points) [4]. Similarly, the terminologies used to 

designate this subject are highly varied. Some authors designate as low quality SM the 

low radiodensity muscular tissue, while others consider as such the fat infiltrated SM, 

what leads to a diversity of denominations [8–12]. The lack of standardization impairs 

an adequate literary search as well as the comparison of scientific findings.  

Current studies indicate several health problems related to SM fat accumulation, 

both in healthy individuals as in those with the most diverse diseases, triggering, for 

example, functional capacity reduction, damages to glycemic control, lower survival, 

worse surgical outcomes and toxicity to cancer treatment [3,4,8,9,13–24]. 

Previous reviews that summarized this issue [4,25,26] did not explore 

extensively topics related to the methodological approach in different populations. 

Considering the relevance of this subject, it is necessary to expand the discussion 

about the theme, corroborating to the alignment among researchers in future studies. 

Therefore, this integrative literature review aims to summarize the methodologies 

implemented in different health areas for indirect evaluation of SM fat infiltration by CT, 

as well as to describe the evolution of the terms used to define muscle quality through 

this method. 
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2. METHODS 

Search strategies 

U.S. National Library of Medicine (PubMed), Scopus, Web of Science and Latin 

American and Caribbean Health Sciences Literature (LILACS) databases were 

searched between April and August 2018. Official descriptors consistent with the 

outcome in focus were selected for the search strategies construction from PubMed’s 

Medical Subject Headings and Descriptors in Health Sciences, in addition to free terms 

of researchers’ previous knowledge, pertinent to the research topic, in order to 

maximize identification of relevant studies. The process was carried out in English at 

PubMed, Scopus and Web of Science databases and, in English, Portuguese and 

Spanish at LILACS database. Moreover, characteristics search methods of each base 

were also applied. 

Aiming a comprehensive literature scan, the search was composed by one 

conceptual block. Whenever necessary, term truncations and the Boolean operator 

“OR” for combination of terms were used. Searches comprised title, abstract and 

keywords, using specific field markers for each database. The complete strategies 

applied, and the number of studies found in each database are listed in the 

Supplementary Table. 

 

Eligibility criteria 

The eligibility criteria were: studies published until August 2018 in Portuguese, 

English or Spanish; conducted in humans, addressing adults and/or elderly of both 

sex, healthy or sick; originals; observational design (transversal or longitudinal); which 

investigated SM quality by CT of the region between the third and fifth lumbar vertebrae 

(L3 and L5), since it is the most adequate method according to the literature and 

because these specific regions present a high correlation with the total body skeletal 

muscle mass [3,23,27–29]; and studies using at least two muscular groups of this 

anatomical location, due to the fact that a single SM group is not able to represent the 

total body musculature [30,31]. 

 

Studies selection 

The first researcher systematically assessed the eligibility of each study 

resulting from database searches based on title and abstract reading. The complete 
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selected articles were carefully reviewed by another researcher and compared with 

those of the initial evaluator. When necessary, the articles were discussed with the 

study group and eligibility was determined by consensus. The selection process is 

shown in Figure 1. 

Data of the included studies were computed and refined during the extraction 

process. For this, a standard form was developed with the items to be considered 

during the collection, considering the information contained only in the methodology of 

the articles. This tool included information about the authors, publication year, 

population characteristics (age, sex and presence or not of diseases), selected 

abdominal region, muscle groups and its areas analyzed by CT, radiodensity ranges 

and methodologies used to set their cut-off points and terms defining muscle quality. 

 

Figure 1. Flow diagram of the studies selection process. 
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3. RESULTS AND DISCUSSION 

Evolution of the imaging tools has allowed more consistent and precise body 

composition diagnoses and approaches [25,32]. This article reviewed the 

methodologies and terminologies used to indirectly determine SM quality evaluated by 

CT in different populations. 

Tables 1, 2, 3 and 4 show compiled findings of the sixty-seven included articles 

[3,5,8,9,11–24,28,33–80]. The high prevalence approach of individuals diagnosed with 

cancer among the evaluated populations (Table 1) [3,11,16–23,28,33–62] was 

probably due to previous availability of this exam, performed as routine for diagnosis, 

staging and clinical follow-up, enabling the convenient use of CT in this population 

profile [26,81,82]. 

 

Usage contextualization of the tool  

Besides the mechanical function performed by SM, it is integrally involved in 

metabolic processes, both in healthy conditions as well as in clinical situations [83]; 

therefore, the use of tools to evaluate its composition is of major importance. For this 

purpose, there is an availability of more invasive options, such as biopsy [5,7], 

however, there is also the possibility of imaging equipment use, such as CT, magnetic 

resonance [4] and ultrasonography [84,85].  

CT was initially applied in order to determine SM composition in different 

populations – healthy, clinical and/or surgical, but especially elderly – and currently it 

has been increasingly present in other pathological conditions [4,8,13,86–89]. This 

technology distinguishes tissues based on their radiodensity that reflects the chemical 

composition. Radiodensity values are expressed in HU, based on a linear scale, having 

water as reference (0HU) [5].  

The method ability to differentiate SM fat infiltration is given by radiodensity 

values. Moreover, chemically, CT reading is sensitive to proton content per unit of 

mass, which is high in adipose tissue [5], providing clear radiological findings, and area, 

volume and radiodensity precise quantification [26]. 

This tool was previously validated by Goodpaster et al. [5], who compared it with 

biopsy in a study demonstrating that muscle radiodensity obtained by CT correlated 

directly with triglyceride content found in the evaluated tissue. Thus, this imaging 

method has been suggested to be capable of inferring indirectly SM quality [5,7,26]. 
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However, CT is not able to directly measure the lipid amount and neither 

differentiate fat deposits location (intra- or extracellular) [90–92]. Another limitation is 

concerned with the fact that individuals are not usually submitted to this type of exam 

exclusively for research purposes or body composition assessment, due to the 

substantial ionization radiation emitted [27]. On the other hand, as mentioned above, 

this equipment is convenient and easily accessed in health services, since it can 

integrate therapeutic plans [26,81,82].    

 

Methodologies used for computed tomography application 

A methodological standardization trend was identified among the evaluated 

studies in determining L3 as abdominal region and all muscle groups investigated 

(Table 2). In contrast, methodologies for SM quality classification, such as the selection 

of SM areas, radiodensity ranges delimitation, as well as the cut-off points for these 

ranges, were characterized by inconsistent criteria (Table 3), as reported in other 

review studies [4,25].  

 

Abdominal region 

Similarly to a previous review [25], CT cross-sectional image at L3 level was the 

most frequent among the included articles (Table 2) [3,8,11,12,15–23,28,33–39,41–

53,55–67]. The predominance of this vertebral level evaluation is related to its linear 

correlation with total body skeletal muscle mass, demonstrated in a validation study 

[26]. Two references reported the use of images at the umbilical level [9,80], however, 

this is a non-static reference point, which could result in a measurement error [32]. 

 

Muscle groups 

Analysis of all muscle groups in the cross-sectional area of the chosen region 

was done by the majority (76.1%) of the studies (Table 2) [3,11,15–23,28,33–53,55–

62,64–67,71–75,77,80]. Assessment of the total cross-sectional muscle area is more 

sensitive to define total SM and has a strong interobserver agreement [30,31]. 

Paraspinals (erector spinae - including iliocostalis, longissimus and multifidus - and 

quadratus lumborum), psoas and abdominal wall muscles (transversus abdominus, 

internal and external obliques and rectus abdominus) are the SM considered as 

components of the muscle set at the abdominal region [26,82,93]. Analysis of only one 
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abdominal muscle group is not indicated, since isolated changes are not representative 

of the whole and relevant information about remaining tissues can be ignored by the 

visualization of only one group [30,31]. 

Other studies have selected, as a measurement of muscular composition, only 

psoas, as representative of the abdominal muscle groups [89,94]. However, this 

methodology has not been validated and presents a significant bias risk. This muscle, 

specifically, demonstrates a high measurement error, weak correlation with the total 

lumbar muscle area and can suffer atrophy due to diseases of the spine [30,32,82,95]. 

 

Methodologies for skeletal muscle quality classification 

Selection of the skeletal muscle areas 

There was a predominance of studies using mean attenuation of the total 

abdominal muscles area in the cross-sectional images (Table 3) [5,8,9,11–13,15–

24,33–48,50–53,55,57–60,64–68,71,73,75,79]. Other authors determined the muscle 

radiodensity using only a SM specific region, denominated “region of interest” 

[4,14,54,69,70,72,76–78,80]. However, this may be considered a limiting methodology 

because it considers only one region as representative of the whole, when, in fact, total 

muscle composition is heterogeneous between the different groups [96]. Furthermore, 

small measurement errors of an isolated tissue portion could mathematically generate 

higher errors when this region is extrapolated to total body skeletal muscle tissue [30]. 

The use of a mathematical index generated by Weinberg et al. [97], called 

“skeletal muscle gauge”, that multiplies SM index (SM normalized area multiplied by 

the square height) by mean muscle radiodensity was justified by the authors since it 

integrates both SM quantity as well as its quality in the same variable. This new 

indicator showed a stronger correlation with age, in addition to a greater power to 

predict toxicity and hospitalizations in patients undergoing chemotherapy [61,62,97], 

when compared to the isolated indexes. However, it was not associated with overall 

survival in patients with metastatic breast cancer [62]. The results of this indicator were 

presented in Arbitrary Units (AU), since the SM index and radiodensity hold different 

measure units [49,56,61,62,97].  

Articles dividing total SM range into two sub-ranges, denominated as "low or 

high radiodensity SM", were also found. The researchers calculated the representative 

muscle area of these two ranges [3,28]. This methodology allows the identification of 
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the extension of the SM area with presumed more or less fat infiltration, instead of only 

classifying it based on mean radiodensity and is considered by the authors as a 

promising methodology [3]. 

 

Radiodensity ranges 

Our findings reported some standardization in radiodensity ranges for SM 

demarcation (Table 3), what corroborates previous reviews [4,25]. It was observed, 

with only few variations, a predominance of the range from -29HU to +150HU [15–

23,34–40,42–49,51–53,55–62,64–67]. Intervals from -29HU to +160HU [24] and from 

0HU to +100HU were also found [5,80]. These ranges evaluated SM as a whole, 

without classifying it in low or high radiodensity [4,5,19,25,33].  

When delimited the low radiodensity SM ranges, these were not consistent 

among studies [4,19,25]. Some articles established as low attenuation the ranges from 

-29HU to +29HU [19] and from 0HU to +29HU [74]. Others, not included in the results, 

used the interval from 0HU to +34HU [98,99]. Researchers in our group named the 

interval from -29HU to +29HU as “low radiodensity SM” [3,28], while the interval from 

+30HU to +150HU was determined as “high radiodensity SM” [3,28]. The variation from 

+30HU to +100HU for high density SM was also identified [74]. 

 

Figure 2. Ranges used by the studies to delimit SM areas according its radiodensity.  
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This diversity in the radiodensity ranges used (Figure 2), mainly in relation to 

the lower point of what is considered as SM interval, and specifically, the low 

radiodensity SM, may be related to technological limitations experienced by the 

pioneers in determining the real tissue constitution of this "transition" site. This can 

result in an empirical institution of some parameters and/or based on authors previous 

knowledge, what made the standardization difficult [99–103]. The wide range of new 

information persisted and suffered punctual alterations, although heterogeneous over 

time. This matter has been continuously studied by different groups in isolation, fact 

that resulted in an arbitrary determination of different methodologies [100–107]. 

In 1979, even without full knowledge of how tissue biochemistry relates to 

muscle radiodensity, it was already supposed that the concentration of  main contractile 

proteins and enzymes – myoglobin, hemoglobin, collagen – in addition to fat 

concentration, were important factors to define muscle radiodensity [101]. In the 

following years, some authors have stated that portions of SM radiodensity range could 

also be composed by other lean tissues, muscular components and connective tissue 

elements. However, it is not clear yet what determines this lower muscle density 

[99,105,108–111]. 

In 2000, a CT validation study through biopsy identified that reduction of the 

muscle radiodensity, determined by this imaging instrument, reflected lipid 

concentration contained therein [5]. Notwithstanding, the same authors, corroborating 

previous assumptions, pointed that it would be unlikely that lipid content was the only 

contributor to the alterations in muscle radiodensity. Other factors or changes in SM 

properties, such as muscle protein, perfusion or extracellular water content could also 

affect it [5,112]. Exact histological and biochemical knowledge of the tissues that 

compose this “transition” region is still scarce. Currently, the most widely accepted 

molecular constituent likely to cause the marked reduction in SM radiodensity is the 

infiltrated and accumulated fat [113]. Nevertheless, other possible molecular 

participations need to be considered in future studies.  

In turn, the range from -29HU to -1HU is even less reported by articles. This 

range was recently used to define the interval classifying low radiodensity muscle 

[3,19,28], and it was included in the radiodensity interval lower or equal to +30HU to 

discriminate intermuscular fat [75]. An article not included in our results, treated this 

range as solely fat [99]. Most of the papers included in the present review inserted it in 
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a larger range considered as muscle, from -29HU to +150HU [15–23,34–40,42–49,51–

53,55–62,64–67]. Other studies have used it in a range from -50HU to +150HU [12,73] 

or from -30HU to +150HU [54] for SM differentiation. 

As discussed above, these variations are, probably, in the same way related to 

the lack of information about tissue constitution of these specific intervals. 

Consequently, they are eventually disregarded by researchers or addressed in random 

ways. Given current disparities, and until more adequate and reliable information are 

reached, Aubrey et al. [4] suggested as a possibility, the incorporation of the total range 

from -29HU to +29HU to define low radiodensity SM. 

Likewise, variations in the tissue determination of the range equal or lower than 

-30HU are observed, what is already considered by the literature as fat per se. Most 

of the authors use such range to classify infiltrated muscle fat, and this area, when 

located within the muscle groups analyzed, is applied to estimate individuals’ body fat 

[107]. 

Some articles have considered not only muscle tissue radiodensity, but also this 

range as consistent with fat infiltrated in muscle as a parameter for SM quality. Thus, 

some authors designate as intermuscular fat [44,48,57,65,66,71] and intramuscular  

[20,21,28,38,43,45,55,59] the ranges covering tissues presenting radiodensity 

between -190HU and –30HU. The interval -190HU until –90HU was also named as 

intramuscular fat [53]. These terms define lipid infiltration both outside and inside the 

myocyte, respectively, but CT is not capable of differentiating it, as previously 

mentioned [90]. 

CT methodological limitations, approach disagreements and determination of 

the described tissue radiodensity spectrum, result, therefore, in variations for the 

proposed nomenclatures, which will be discussed later. This scenario and even 

intervals omission can lead to failures at the evaluation of a significant and clinically 

representative body area [4]. 

 

Cut-off points 

Most of the included studies analyzed their findings using the variables in a 

continuous way [representative tissue area of radiodensity, in cm²/m², or mean muscle 

attenuation (MA), in HU] for mean or median comparison with dependent variables of 

the studies interest, without establishing cut-off points for the radiodensity ranges used 
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(Table 3) [5,8,9,11–13,15,24,33,40,45,47,49,53,55,56,61,62,66,68,69,75,78–80]. 

Despite the continuous nature of the variable and its capability of predicting outcomes, 

some authors consider the interpretation of continuous prognostic covariates complex, 

therefore, they normally prefer to categorize them based on a cut-off point to stratify 

different risk groups for decision-making [26]. 

Thereby, another significant portion of studies 

[16,18,20,23,35,37,39,41,44,46,50,51,57,64,65] used as a parameter the set of cut-off 

points for low radiodensity muscle determined by Martin et al. [19] (using optimal 

stratification) in cancer patients [26]. There were also those who stipulated cut-off 

points for their own population [3,17,19,21,22,28,34,36,38,43,52,54,58,59,67,70–

72,74,77]. Two articles [42,60] used pre-established cut-off points of other studies 

[4,5,114,115], among which, one evaluated visceral, subcutaneous and total fat [114] 

and another assessed sarcopenia, reporting only the mean MA for its population, 

stratified by the presence of sarcopenia [115].  

Since the range of low radiodensity are not standardized and adequately 

defined, inconsistencies at data collection and analysis are expected, making the 

comparison of results difficult [32]. The standardization process must consider specific 

characteristics of factors such as age, sex, ethnicity and diseases [25]. 

 

Conceptual evolution 

Another relevant point is the terminology inconsistency to designate SM quality 

through its composition (Table 4), which is a consequence of the methodological 

problems discussed previously [4,113]. Among the nomenclatures observed in the 

evaluated articles, the ones that stood out were those referring to SM, such as 

"attenuation or radiological attenuation, radiodensity and density" [3,5,8,9,11–

24,28,33–39,41–62,64–70,72–80].  

However, the use of "MA" as a synonym for terms such "SM radiodensity or 

density" needs to be better evaluated. According to Oxford and Cambridge 

dictionaries, respectively, "attenuation" means reducing the force, effect, or value of 

something, and "attenuating" means making something smaller, thinner or weaker  

[116,117]. Its use in the context of SM quality seems to arise from the fact that, when 

analyzed by CT, the presence of fat attenuates SM radiodensity, because, as 

previously stated, this tool reads tissue radiodensity, generated by its chemical 
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composition [5]. Thus, we reinforce that perhaps the term "SM radiodensity" is the most 

appropriate to be applied, considering the perspectives of interpretation presented 

here. In addition, since CT is an indirect measure of tissue composition, and therefore, 

it is not possible to accurately state what tissue is present, in the absence of a direct 

measure [5]. 

 Terms referring to adipose tissue in muscles were found in a smaller amount 

[11,13,15,33,36,39,40,46–49,53,55,56,62–66,68–70,72,74–76,80], just as others 

more specific when designating the fat location in muscle, such as "intramuscular or 

intramyocellular" [3,9,17,20,21,28,34,38,43,45,50,53,55,67,70,72,78] and 

"intermuscular" [5,13,45,48,50,57,65,66,71,75]. The presence of two cellular pathways 

of fat origin in SM enables these nomenclatures variations. The first pathway is direct  

and is due to lipid accumulation within the myocytes [118]. Whereas, "intermuscular" 

variation is due to accumulation of satellite cells (stem cell population) and 

mesenchymal interstitial cells below the basal lamina of muscle fibers [119–121]. The 

first ones contribute to myogenesis during muscle regeneration, and are more resistant 

to adipogenic differentiation, while the others differ rapidly in fat under muscle injury or 

administration of glucocorticoids [119,121,122]. Therefore, it is understood that the 

authors considered for evaluation lipids as such, infiltrated and accumulated in muscle 

tissue. Consequently, the term "myosteatosis", which means fat in SM has the same 

origin [8–12]. 

This context is related to impaired energetic homeostasis, insulin insensitivity, 

inflammation and functional muscular deficits [121,123], generating "SM quality or 

muscular quality” nominal variations [3,17,34,40,47,56,58,64,66,67,74,76,80], due to 

tissue damage. A vicious cycle can be constituted with the presence of insulin 

resistance and obesity, since both foster SM fat accumulation by impairment of local 

fatty acids metabolism [121,124,125]. 
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4. CONCLUSION 

This review indicates a methodological standardization trend to determine the 

abdominal region and muscle groups evaluated, while topics for classification of SM 

quality, such as the selection of SM areas, radiodensity ranges delimitation and their 

cut-off points, were characterized by methodological multiplicity, as well as the terms 

used for its nomenclature. 

The continuity of L3 use and evaluation of all muscle groups at this vertebral 

level is highly recommended as well as the preference for total muscle area selection. 

Methodology definition to classify fat infiltrated muscle tissue, according to its 

radiodensity, should be preferably validated with studies comparing CT radiological 

findings and direct methods of muscle composition evaluation. Specificities 

consideration of each studied population, which may impact radiodensity cut-off points 

is also recommended. Nomenclature uniformization can be facilitated by the 

elucidation of these topics. 

Methodological adjustment of this scenario and greater exploration are essential 

to avoid suboptimal screening and support scientific discussion, allowing a 

comprehensive understanding about its clinical relevance.   
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6. TABLES 

 

 

CNCD - Chronic non-communicable diseases 

 

 

Table 1. Characteristics of the populations addressed by the studies. 

Characteristics % (n) References 

Cancer patients 61,2% (n=41) [3,11,16–23,28,33–62] 

Healthy individuals 14,9% (n=10) [5,12,13,68–74] 

Orthopedic and neuromuscular diseases patients 8,9% (n=6) [8,63,76,77,79,80] 

CNCD patients (overweight, obesity, diabetes mellitus, hepatic steatosis, cirrhosis) – 
excluding cancer 

7,5% (n=5) [9,14,64,65,78] 

Other patients (critical, in renal transplant, pancreatitis, apnea and seropositive) 7,5% (n=5) [15,24,66,67,75] 
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         L3 – third lumbar vertebrae; L4 –fourth lumbar vertebrae; L5 – fifth lumbar vertebrae; 

 

 
 

 
Table 2. Summarization of the methodologies used to evaluate the abdominal region and muscle groups by computed tomography. 

  
  
  

A
b

d
o
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a
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io

n
 

Evaluated points % (n) References 

L3 70,1% (n=47) 
[3,8,11,12,15–23,28,33–
39,41–53,55–67] 

L4 and L5 8,9% (n=6) [5,13,68,71,75,76] 

L3, L4 and L5 7,5% (n=5) [14,69,73,74,77] 

Mid abdominal level 4,5% (n=3) [70,72,78] 

L3 and L4 3% (n=2) [24,40] 

Umbilical level 3% (n=2) [9,80] 

L3 and L5 1,5% (n=1) [79] 

L4 1,5% (n=1) [54] 

  
  
  
  
  
  
  
  
 M

u
s
c
le

 g
ro

u
p

s
 

Paraspinal, psoas, transversus abdominus, internal and external obliques and rectus 
abdominus muscles or all abdominal region muscles (when the study did not inform 
which were the evaluated muscles) 

76,1% (n=51) 
[3,11,15–23,28,33–53,55–
62,64–67,71,73–75,77,80] 

Paraspinal muscles 11,9% (n=8) [9,63,69,70,72,76,78,79] 

Paraspinal and psoas muscles 4,5% (n=3) [5,24,54] 

Paraspinal and abdominal (rectus and lateral) muscles 3% (n=2) [13,68] 

Paraspinal, psoas, internal and external obliques and rectus abdominus muscles 1,5% (n=1) [8] 

Paraspinal, psoas, internal and external obliques, rectus abdominus, transversus spinae 
and latissimus dorsi muscles 

1,5% (n=1) [12] 

Paraspinal, psoas, transversus abdominus, internal and external obliques, rectus 
abdominus and gluteus maximus muscles 

1,5% (n=1) [14] 
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Table 3 – Summarization of the methodologies used for skeletal muscle quality classification by computed tomography. 
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Evaluated points % (n) References 

Mean attenuation of the total abdominal muscles area 74,6% (n=50) 
[5,8,9,11–13,15–24,33–48,50–
53,55,57–60,64–68,71,73,75,79] 

Regions of interest 13,4% (n=9) [14,54,69,70,72,76–78,80] 

Mean attenuation of the total abdominal muscles area and skeletal muscle gauge 6% (n=4) [49,56,61,62] 

High or low radiodensity SM indexes area 3% (n=2) [3,28] 

High or low density SM area 1,5% (n=1) [74] 

Did not inform the methodology used for this topic 1,5% (n=1) [63] 
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a
d
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d
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n

s
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y
 r

a
n

g
e
s
 

SM: -29HU to +150HU 37,3% (n=25) 
[15–18,22,23,34–
37,39,40,42,46,47,49,51,52,56,58,
60–62,64,67] 

Did not inform the methodology used for this topic 20,9% (n=14) 
[8,9,11,13,14,33,42,50,63,68,69,76
,77,79] 

SM: -29HU to +150HU; Intramuscular fat: -190HU to -30HU 10,4% (n=7) [20,21,38,43,45,55,59] 

SM: -29HU to +150HU; Intermuscular fat: -190HU to -30HU 7,5% (n=5) [44,48,57,65,66] 

Fat range (general) 4,5% (n=3) [70,72,78] 

SM: 0HU to +100HU 3% (n=2) [5,80] 

SM: −50HU to +150HU 3% (n=2) [12,73] 

Low radiodensity SM: –29HU to +29HU; High radiodensity SM: +30HU to +150HU; 
Intramuscular fat: -190HU to -30HU 

1,5% (n=1) [28] 

Low radiodensity SM: –29HU to +29HU; High radiodensity SM: +30HU to +150HU 1,5% (n=1) [3] 

SM: 0HU to +100HU; Intermuscular fat: -190HU to -30HU   1,5% (n=1) [71] 
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Table 3 (continuation) – Summarization of the methodologies used for skeletal muscle quality classification by computed 

tomography. 

Evaluated points % (n) References 

SM: -29HU to +150HU; Low MA: -29HU to +29 HU 1,5% (n=1) [19] 

SM: -29HU to +160HU 1,5% (n=1) [24] 

Intermuscular fat: ≤30HU 1,5% (n=1) [75] 

SM: -29HU to +150HU; Intramuscular fat: -190HU to -90HU 1,5% (n=1) [53] 

SM: -30HU to +150HU 1,5% (n=1) [54] 

SM: 0HU to +100 HU, considering low density SM: 0HU to +29HU and high density 
SM: +30HU to +100HU 

1,5% (n=1) [74] 

  
  
  
  
  
  
  
  
  

C
u

t-
o

ff
 p

o
in

ts
 

Cut-off points did not established, findings continuously analyzed and, mean and 
median values of the entire abdominal region were compared among groups 

37,3% (n=25) 
[5,8,9,11–
13,15,24,33,40,45,47,49,53,55,56,
61,62,66,68,69,75,78–80] 

Cut-off points established for the evaluated population, through statistical analyzes, 
tercile and quartile  

29,8% (n=20) 
[3,17,19,21,22,28,34,36,38,43,52,
54,58,59,67,70–72,74,77] 

Cut-off points pre-established by Martin et al. (2013)[19] 22,4% (n=15) 
[16,18,20,23,35,37,39,41,44,46,50
,51,57,64,65] 

Cut-off points pre-established for visceral, subcutaneous and total fat [114] and 
sarcopenia (the study showed only the mean MA for its population) [115]  

1,5% (n=1) [42] 

Cut-off point <30HU [4,5] 1,5% (n=1) [60] 

Mean of the entire abdominal region continuously, correlation tests and linear 
regression  

1,5% (n=1) [73] 

Values of each muscle group alone as continuous variables. 1,5% (n=1) [14] 

Mean of the continuous variable of all groups and terciles, did not stratified by sex.  1,5% (n=1) [48] 

Mean of the continuous variable of all groups and cut-off points created for a MQ 
Index: Radiographic Density Ratio = Radiographic Muscle Density/Standard 
Deviation of Density.  

1,5% (n=1) [76] 

Did not inform the methodology used for this topic.  1,5% (n=1) [63] 

             HU – Hounsfield Units; MA – muscle attenuation; MQ – muscle quality; SM – skeletal muscle;  
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Table 4. Summarization of the terms used to evaluate and refer to skeletal muscle quality by computed tomography. 

Used terms % (n) References 

SM attenuation/MA 62,7% (n=42) 
[5,9,12,13,17–19,21–
24,28,34,35,37,38,41,42,45–49,51,53–
58,62,64–68,70,72–74,78,80] 

SM density/Muscle density 35,8% (n=24) 
[8,11,14–16,33,39,45,49,50,52,53,56,60–
62,66,67,69,74–77,79] 

SM radiodensity/Muscle radiodensity/Radiological SM attenuation  25,4% (n=17) 
[3,11,16,20,28,33,36,43,44,46,48,50,52,5
7,59,60,66] 

Intramuscular AT/Intramuscular fat 23,9% (n=16) 
[9,17,20,21,28,34,38,43,45,50,53,55,67,7
0,72,78] 

SM quality/MQ 19,4% (n=13) [3,17,34,40,47,56,58,64,66,67,74,76,80] 

Myosteatosis 17,9% (n=12) [20,28,35,40–42,53,64,65,68,74,76] 

Muscle fat infiltration 14,9% (n=10) [13,15,46,48,53,64,65,68,74,76] 

Muscle fat content/Muscle lipid content/Lipid in muscle/Triglyceride 
muscle content 

14,9% (n=10) [33,39,47,49,55,56,62,70,72,80] 

Intermuscular AT 10,4% (n=7) [5,13,48,57,65,66,71] 

Fatty muscle infiltration 8,9% (n=6) [11,33,36,40,63,75] 

Intermuscular fat 4,5% (n=3) [45,50,75] 

Muscle composition 3% (n=2) [13,68] 

Intramyocellular triglycerides 3% (n=2) [3,28] 

Fat deposits 1,5% (n=1) [69] 

Muscle lipid infiltration 1,5% (n=1) [66] 

Sarcopenia (considering area and MA) 1,5% (n=1) [56] 

AT – adipose tissue; MA – muscle attenuation; MQ – muscle quality; SM – skeletal muscle; 
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