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ABSTRACT

Breast cancer (BC) is a heterogeneous disease composed of multiple subtypes with different molecular characteristics and clinical outcomes. In Brazil, this neoplasia is the first cause of cancer death in women, mainly due to the diagnosis in
advanced stages, when the possibility of the development of metastasis is greater. The metastatic processin BCis related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1.
We examined the role of NF-kB in the aggressive properties and regulation of EMT-TFs in human BC cells. Blocking NF-kB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin
[DHMEQ] treatment) in the aggressive MDA-MB-231 (Triple Negative, TNBC) and HCC-1954 (HER2/neu positive) cell lines resulted in downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin and upregulation of E-cadherin transcripts.
Bioinformatics tools identified several NF-kB binding sites along the promoter region of SNAIL, SLUG, SIP1 and TWIST1 genes, which were confirmed by chromatin immunoprecipitation and luciferase reporter assays. Thus, we suggest that NF-kB
directly regulates the transcription of EMT-TF genes in breast cancer. Further, we evaluated the mRNA levels for NF-kB, Twist, Slug, and Sip1 on 46 breast tumor samples. Comparing the BC subtypes, we observed that TNBC expressed more Slug and
Sip1than other groups and, interestingly, Twist1l was overexpressed in HER2 samples. Twist1 is described to be the master regulator of EMT in BC, however, its role during the evolution of the intrinsic BC subtypes remains unclear. To investigate the
biological significance of Twist1 for HER2 subtype, we silenced its expression using shRNA-approach in HCC-1954 cells. Compared to negative silencing control (Scramble), Twist1 knockdown resulted in 92% reduction of its mMRNA levels. We also
observed that the knockdown caused profound molecular alterations in Her2 cells, because a large-scale microarray analysis by GeneChip human exon array showed altered expression of 311 genes. Metacore software grouped these genes
according to molecular function, revealing numerous correlations between Twist1 with important biological processes and signaling pathways such as Blood Coagulation, TGF-B/SMADs, Interleukin-17, and e.g. Together, our findings may
contribute to a greater understanding of the metastatic process of this neoplasia and point out NF-kB and Twist1 as potential target for breast cancer treatment. Oxidative stress is a well-known condition to ensure the genomic instability, especially
in BC, which redox alterations have been widely characterized. However, the molecular triggers have still to be identified. In this context, we have investigated the role of the main pro-oxidant transcription factor, NF-kB, in BC subtypes gene profile,
using microarray approach. Our results showed that NF-kB knockdown in MDA-MB-231 (TNBC), HCC-1954 (HER2) and MCF-7 (Luminal) lead to differential expression of relevant members from glutathione metabolism, prostaglandins, cytochrome
P450 and cyclooxygenase, suggesting a relation between redox balance and NF-kB in such cells. We also validated the microarray dataset focusing on oxidative stress, performing biochemical analyses regarding the antioxidant capacity, lipid
peroxidation profile and nitric oxide status in BC cells. Our data showed a distinct pattern of the oxidative status in each one of the three studied cell lines, explained by the intrinsic characteristics of each BC subtype. Thus, our findings suggest that

NF-kB may represent an additional mechanism related with oxidative stress maintenancein BC, operating by various forms to deal with other important predominant signaling for each BC subtype.
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Figure 1. Relative expression of the EMT-inducing factors after NF-kB/p65 signaling inhibition. The mRNA levels of
SNAIL1, SLUG, TWIST1, and SIP1 were assessed in MDA-MB-231 (A) and HCC-1954 (B) cells at 8, 16 and 24 h of
DHMEQ treatment. NF-kB/p65 inhibition was evaluated at protein levels by western blot assay at 16 and 24 h of
DHMEQ treatment. Ponceau staining was used as a loading control. Ctrl: control. DHMEQ:
dehydroxymethylepoxyquinomicin. The data were expressed as the mean + SD. * = p<0.05, ** = p<0.01, *** =
p<0.001.
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Figura 5. ChIP-qPCR of predicted NF-kB/p65 binding sites in the SNAIL1, SLUG, TWIST1 and SIP1 promoter regions
using MDA-MB-231 (A) and HCC-1954 (B) cells. The histograms set a fold-change of each site by comparing the IgG
negative control to NF-kB/p65 antibodies with the natural and treated with DHMEQ, the specific NF-kB/p65
inhibitor. DHMEQ: dehydroxymethylepoxyquinomicin. The data were expressed as the mean £ SD. * = p<0.05, ** =
p<0.01, *** =p<0.001
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Figure 9. Silencing of Twistl in Her2 breast cancer cells HCC-1954. Relative expression of Twistl after its
knockdown using shRNA-approach. (A). Hierarchical clustering of differentially expressed genes identified by chip
array assay (B). The data were analyzed using Partek® software and 2-fold change was used as criteria to define
up-regulation (red) or down-regulation (green). Scramble is the negative silencing control.
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Figure 10. Biological process analysis of transcripts that have their expression up-regulated or down-regulated as a
result of Twist1 silencing. The processes are arranged by Metacore software according to a statistical significance of
the number of genes presentedin each group.
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Figure 2. Relative expression of EMT-phenotype markers after NF-kB/p65 signaling
inhibition. The mRNA levels of E-CADHERIN, N-CADHERIN and MMP11 were assessed in
MDA-MB-231 (A) and HCC-1954 (B) cells at 8, 16 and 24 h of DHMEQ treatment. The
data were expressed asthe mean £ SD. * = p<0.05, ** =p<0.01, *** = p<0.001.
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Figure 6. Relative luciferase activity in MDA-MB-231 cells transfected with pGL3-plasmid
containing the SLUG (A), TWIST1 (B) and SIP1 (C) promoter regions. The firefly luciferase
was normalized to the renilla vector, and the values are relative to the pGL3 (Mock) signal.
The black boxes in the schematic plasmid constructs represent NF-kB binding sites. The
bar graphs represent the relative luciferase activities of each construct in MDA-MB-231
cells. The white bars indicate natural NF-kB expression, and the black bars show NF-kB
inhibition through DHMEQ treatment. DHMEQ: dehydroxymethylepoxyquinomicin, the

specific NF-kB/p65 inhibitor. Each bar represents the mean +SD.
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Figure 11. Pathway maps of the main signaling altered according to the statistical
significance (p-value) of the gene distribution in the analyzes. (A) Epithelial-to-
Mesenchymal Transition dependent on TGF-8 /SMADs was the main signaling altered as a
result of Twist1 silencing. (B) Th17-mediated Immune Response was the second signaling
more altered in consequence of Twistl silencing. . The relative expression data of the
genes identified in the study are visualized on the map through a thermometer in blue (for

down-regulation) or red (for up-regularion).
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Figure 13. Thiol content. MCF-7 (A and B), HCC (Cand
D) and MDA-MB231 (E and F) cells treated (DHMEQ
column) or not (CTR column) with the NF-kB inhibitor
for 24 or 48 hours. Data are expressed as means and
standard errors of the means. * indicates statistical
significance (p<0.05).
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Figure 3. Relative expression of EMT-phenotype markers after NF-kB/p65
signaling inhibition. The mRNA levels of E-CADHERIN, N-CADHERIN and
MMP11 were assessed in MDA-MB-231 (A) and HCC-1954 (B) cells at 8, 16
and 24 h of DHMEQ treatment. The data were expressed as the mean + SD. *
=p<0.05, **=p<0.01, *** =p<0.001.
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Figura 4. Representative scheme of putative NF-kB binding sites located in the SNAIL1 (A), SLUG (B), TWIST1 (C) and SIP1 (D)
promoter regions predicted by Tfsitescan, TESS, TFBind, TFSearch and Transfac bioinformatics tools. An alignment of the DNA
region showed evolutionarily conservation among metazoan species. Identical nucleotides are in the blue. Red boxes indicate the
regionsinvestigated by chromatin immunoprecipitation. +1: transcription start site.
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significance (p<0.05).

Figure 14. Lipid peroxidation profile. MCF-7 (A and B), HCC
(Cand D) and MDA-MB231 (E and F) cells treated (DHMEQ)
or not (CTR) with the NF-kB inhibitor for 24 or 48 hours.
Data are expressed as means. * indicates statistical

Figure 15. Nitrite as estimative of NO levels. MCF-7 (A and B), HCC (C
and D) and MDA-MB231 (E and F) cells treated (DHMEQ column) or
not (CTR column) with the NF-kB inhibitor for 24 or 48 hours. Data are
expressed as means and standard errors of the means. * indicates
statistical significance (p<0.05).
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