

Robaina MCS¹, Soares Lima SC², Mazzoccoli L¹, Faccion RS¹, Pinto LW³, Queiroga E⁴, Bacchi CE⁴, Klumb CE¹ 1 PROGRAMA DE PESQUISA EM HEMATO-ONCOLOGIA MOLECULAR, INSTITUTO NACIONAL DE CÂNCER, RIO DE JANEIRO 2 PROGRAMA DE CARCINOGÊNESE MOLECULAR, INSTITUTO NACIONAL DE CÂNCER, RIO DE JANEIRO 3 DIVISÃO DE PATOLOGIA, INSTITUTO NACIONAL DE CÂNCER, RIO DE JANEIRO 4 CONSULTORIA EM PATOLOGIA, BOTUCATU, SÃO PAULO

BACKGROUND

Burkitt lymphoma (BL) is an aggressive lymphoma and the most common subtype of B-cell non-Hodgkin lymphoma (B-NHL) in childhood. It is characterized by the reciprocal translocation of MYC oncogene with immunoglobulin genes, resulting in MYC protein overexpression. MYC regulates more than 15% of the human transcriptome and a large set of microRNAs (miRNAs) such as miR-17-92 cluster. MYC acts regulating several genes involving on cell cycle control, metabolism, and apoptosis. Recently, BL without MYC translocation but with gene expression and pathological characteristics of BL have been identified. In the present study, we aimed to analyze the level of miRNAs regulated by MYC comparing MYC translocation positive and negative BL tumors.

Table 2: Patients' characteristics of MYC-negative cases

Patient	Gender/Age	Diagnostic	Initial site of disease	Stage	LDH (U/L)	EBV (ISH)	Immunohistochemical profile at diagnosis	Immunohistochemical complementary	Follow-up
22	M/9	Burkitt Lymphoma	Cervical mass	1	315	Negative	CD20+	NA	Alive
54	M4	Burkitt Lymphoma	Abdomen	111	570	Positive	CD20+, CD3-	TDT-, BCL6+, CD10+, BCL2-, Ki67100%	Alive
61	F7	Burkitt Lymphoma	Abdomen	111	1613	Positive	CD20+	CD20+, CD10+, BCL2-, Ki67100%	Alive
65	F/6	Burkitt Lymphoma	Abdomen	111	536	Negative	LCA+, CD99-, EMA-, desmin-, vimentin-	CD10+, CD20+, BCL2-, Ki67>90%	Alive
86	M/11	Burkitt Lymphoma	lleum	П	385	Negative	CD20+, Ki67+	CD10+ BCL6+	Alive
92	F/10	Burkitt Lymphoma	Nasopharyngeal mass	П	575	Negative	CD20+, CD10+, Tdt CD99-	BCL6+, BCL2-, MUM1-, Ki67>90%	Alive

LDH lactate dehydrogenase; EBV Epstein-Barr virus; ISH in situ hybridization;

- 41 formalin-fixed, paraffin-embedded (FFPE) tissue samples of pediatric BL from the Hematology Service of the National Cancer Institute, Brazil;
- MYC translocation was evaluated by fluorescence in situ hybridization (FISH);
- RecoverAll[™]Total Nucleic Acid Isolation Kit for FFPE tissue samples (Ambion[®]) was used • to isolate the miRNAs from BL samples;
- qRT-PCR for miRNA expression analysis was performed using TaqMan[®] MicroRNA Assays (Applied Biosystems) using a StepOne[™] System (Applied Biosystems);
- MYC protein expression was analyzed in BL samples by immunohistochemistry and in P493-6 (Burkitt lymphoma model cell line carrying a conditional tetracycline-regulated MYC) by western blotting.

RESULTS

In our previously analysis, about 15% BL cases (6 out of 41) had undetectable MYC translocation when analyzed using FISH and we did not observe a difference among the levels of miR-17-92 members in tumor samples that were negative and positive for MYC translocation. We advanced this analysis including other miRNAs that are regulated by MYC (miR-9, miR-29 family, miR-34a and miR-34b) and two miRNAs which are not MYC target but are relevant for apoptosis and proliferation pathways (miR-7 and miR-494). In summary, we investigated the expression profile of 13 miRNAs in 41 BL tumor samples with different status of MYC rearrangement. It was possible detect a different miRNA profile between positive and negative MYC translocation BL tumor samples. The tumor samples with MYC rearrangement showed miRNA levels higher than the BL cases without MYC rearrangement. In addition, we evaluated MYC protein level by immunohistochemistry in BL MYCnegative cases. High levels of MYC protein were detected in 3 out of 5 cases. It is important to emphasize that the MYC rearrangement negative cases had a histopathological, immunophenotypic and clinical profile of typical BL.

Table 1.	Patients	baseline	characteristics
	i attento	Suscinic	characteristics

Characteristic	Number (%)
Diagnostic	
BL	40 (97.6)
BL-HIV	1 (2.4)
Gender	
Female	10 (24.4)
Male	31 (75.6)
ge (years)	
Range	2-18
Mean	7.4

Figure 2: Representative immunohistochemical detection of MYC protein expression in BL MYC rearrangement negative samples. A BL sample was used as positive control; B negative expression (less than 20 % positive tumor cells); C positive expression (about 60-70% positive tumor cells) and D positive expression (over 70% positive tumor cells).

Figure 3: miRNA expression in different MYC levels. To investigate the relationship between Myc levels and miRNA we used P493-6 cells treated with tetracycline (MYC off) and then analyzed MIRH1 (miR-17-92 primary transcriptor) in time course without tetracycline. (A) MYC expression were analyzed in cells treated with tretracyclin during 24 hours and 30 minutes, 1, 2, 3, 4 and 6 hours without tetracycline. β-Actin expression

Median	6			
Stage (St. Jude)				
I/II	8 (19.5)			
III/IV	33 (80.5)			
LDH				
>1000	20 (48.8)			
≤1000	21 (51.2)			
EBV				
Positive	20 (52.6)			
Negative	18 (47.4)			
MYC rearrangement				
Positive	35 (85.4)			
Negative	6 (14.6)			
Outcome				
Live	30 (73.2)			
Dead	11 (26.8)			

LDH lactate dehydrogenase (normal level \leq 500 U/L), *HIV* human immunodeficiency virus, EBV Epstein-Barr virus

Robaina MC et al, 2016

served as a protein loading control. (B) MIRH1 levels correlate with mRNA MYC level. miRNA expression was evaluated by Quantitative Real time **OT-PCR**

CONCLUSION

Our data indicate that MYC expression may be regulated by a set of miRNAs in MYC translocationnegative BL suggesting involvement of MYC-target microRNA in the pathogenesis of specific MYC negative BL tumors.

Funding: Instituto Nacional de Ciência e Tecnologia (INCT) para Controle do Câncer: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) 573806/2008-0/FAPERJ E26/170.026/2008, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) E-26/110.238/2014—PPSUS, Programa de Oncobiologia/Fundação do Câncer, and FAPERJ E-26/110.375/2014. SWISS-BRIDGE Foundation, subproject 1B/2014.

Projeto Gráfico: Setor de Edição e Informação Técnico-Científica / INCA

SAÚDE

