Molecular pathways of response and potential
mechanisms of resistance to the HSP90 inhibitor,
Celastrol, in Hodgkin and Reed-Sternberg cells
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INTRODUCTION METHODS

Classical Hodgkin lymphoma (cHL) is an unusual malignancy in that the tumor cells, the Hodgkin and

Reed-Sternberg cells (H-RS), account for a minor component of the tumor mass, the bulk of which is a {; a | ip"ptb'“”e:wf:“wfi

mixed cellular infiltrate’. Most patients with cHL (80%) enjoy durable remissions following front-line é P:“’f"'t“’:'HRS - Cell Gyl Al by P taning

treatment, however, relapsed or refractory disease is a challenging problem with a poor prognosis and cells e .

limited therapeutic options’. In addition, the development of less toxic therapeutics agents is an ongoing

goal because current therapyis associated with toxicity and secondary malignancies. m;hlhﬁ"mwmmm @

In cancer chemoprevention, the use of natural compounds represents a promising strategy in the search R | e %%g - @D - [meaf:"d'ﬁ;‘:,f,ﬁffm]

for novel therapeutic agents’. Celastrol, a triterpene derived from the Chinese medicinal plant | . e

Triterygium wilfordii, has been identified as a novel inhibitor of Heat-shock protein 90 (HSP90) and has _— s \

attracted great attention lately for its potent anti-tumor effects’. Here, the effects of celastrol, were Ecm | f*x et it rktanes

determined on cHL-derived cell lines (KM-H2 and L428). We also applied a proteomic approach to reveal } __J K et e MR 5
In silico analysis (WB and qPCR)

the potentials targets being modulated by celastrol.
Figure 1. Study design.

RESULTS

Effects of celastrol on KM-H2 and L428 cells Table 3. Representative Pathways modulated in KM-H2 and L428 cell lines.
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Figure 4. Western blot analysis of
RAS differentially expressed proteins found
in our proteomic study. KM-H2 and L428
p44l42 cells were treated with 1uM of celastrol
p_p44/42 for 24h for validation of potential
markers based on quantitative MS-data.
HSF-1 Samples (30ug) were separated by SDS-
PAGE and probed with specific
HSP70 antibodies, as indicated. NT: non-
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Figure 2. Effects of celastrol on KM-H2 and L428 cells. KM-H2 (A) and L428 (B) cell lines were treated with the indicated
concentrations of celastrol or the vehicle control (DMSO) for 24, 48 and 72 h, and cell viability was detected by WST-1 assay.
Apoptosis of KM-H2 (C) and L428 (D) cell lines induced by celastrol (0.5, 1, 2.5 and 5uM) determined by the Annexin V assay after
24h. Cell lines incubated with vehicle control (DMSO) were used as control of spontaneous apoptosis. The images are
representative of three independent experiments and the means and errors of all the independent experiments are shown in the
column graphical. Percentage of celastrol-induced cell death was calculated by subtracting the spontaneous death in the control
from the overall cell death in the celastrol-treated samples for each dose point. E) Profile of caspase-3/7 activation mediated by
celastrol compound in KM-H2 and L428 cells. The percentages of celastrol caspase-3,7 activation was calculated by subtracting the
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Figure 5. mRNA levels were analyzed by real-
time PCR 24 hours after treatment with
celastrol. NT: untreated and TT: treated. Bars:
SD. * differ from control P <0.001.
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treatment. TT: treatment.
values in the caspase positive from the negative control sample (DMSO). F) Analysis of cell cycle profile changes induced by the p-C-FOS
celastrol compound in KM-H2 and L428 cells. The cell lines were exposed to indicated concentrations of celastrol and to DMSO and 0 HSP27
collected after a 24-h exposure. One representative of 3 independent experiments is shown. The values shown are the mean of _
threeindependent experiments. Error bars represent + standard error (*p<0.01, **p<0.001). b-actin

Table 2. Re rese“tative B|O|Og|ca| prOceSS |||OdUIated i|| KIVI" |2 an ”

Iymphoma CE" Ilnes #  Biogical processes FDR N# p:z::lins in N:;:;:::::s
e We shown that celastrol perturbs multiple signaling T<wrzzeiine

1 - . 554 e This study provides the first evidence of the potential role of
p at hways W h iC h m a i n |y i nVO |Ves t h e M A P K ki n a Se posttranscriptional regulation of gene expression o 412%E- 669 39
’ . . _ 2 chromosome organization g2 o 53 celastrol, a HSP90 inhibitor, in regulating the growth and survival
pathway, metabolism, dysregulation of protein s oganslcomganization S e 103 of H-RS cells
fold in rOteOI SiS rotein trafficki N 3 nd 4 regulation of organelle organization 11 _ 1713 60 ) ] . .
. kgI’ . P y . » P 5 5 reguiation of cellular component organization ﬂgzi 3298 88 e QOurresults indicate that celastrol can promote the apoptosis
C OS e e On Or anlza IOn' cellular protein metabolic process ’ - 1 :
Hy h sal froct . dulate th " celrpmen ety e 1oe in KM-H2 cells by down-modulating the MAPK/ERK pathway and
(] Oweve r‘ e m a O r e eC Wa S O m O u a e e Fc receptor signaling pathway 11 361 27 . .
t . ’ h tJ . d t h t 8  cellular component organization or biogenesis 1’31116E- 7183 144 th at reSISta n Ce m ay e m e rge I n pa rt d u e to CO m pe n Sato ry
rotein omeostasis an e Siress response 7,4728- . . . . .
P P ®  calloyoe I 58 mechanisminvolving activation of HSP27.
pathways. s e - e Our work suggests celastrol as a promising anti-tumoral
L428 cell line -
1 translational initiation 1,170E- 173 32 . . Tt e .
2 SRP-dependent cotranslational protein targeting to 1,027‘;E- 103 o4 CO m pO U n d a n d d |SC I OSE H S P90 a n d H S P2 7 | n h | b |t | O n S a S
Table 1. Differentially expressed proteins in KM-H2 and L428 cell lines mem?ra”e o o 1’028%5 Figure 7. Proposed model for the effects celastrol on HRS . .
Compared tothe treated and untreated condition. 3  protein localization to endoplasmic reticulum 1 525%E 148 27 cells Ca N d |d ate ta rgets N C H L.
- - 4 viral gene expression ’ 20 ) 136 26
dlfferent:::::/ecie::ressed KM-H2 L428 5 23‘55:5!3&?512%2”&5&? catabolic process, 1,553 137 2
up-regulated 121 2 6 viral transcription 1’62901 E- 124 25
doyvn—re_gulated 6 182 7  cotranslational protein targeting to membrane 366915 110 24 @F APER.J ®
un!que !n T 87 9 8 protein targeting to ER ;01 70E- 117 24 & Peaciian o Eatads to Ria de lanein c@mggﬂgg
unigque in NT 48 81 establishment of protein localization to 1,841E-
total 262 344 9 endoplasmic reticulum 19 122 24
10 cellular component biogenesis ?’9278E' 3351 106

*Process listed in the table are those statistically most relevant using the Metacore Analysis.
FDR: False discovery rate.
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