

CONSTITUTIVE MOLECULAR ALTERATIONS IN THE 13q14 CHROMOSOME REGION IN PATIENTS WITH RETINOBLASTOMA

Vanessa dos Santos Mendonça Silva, Anna Claudia Evangelista dos Santos, Hector Nicolas Seuanez Abreu. Genetics Program, CPQ, Instituto Nacional de Câncer

MLPA was successful in showing alterations that had been undetected by direct sequencing, a reason why it has been adopted as a routine procedure for patients who do not show apparent RB1 mutations. This procedure is simple and easy to standardize for mutational screening for our Genetic Counseling Program.

PERSPECTIVES

RESULTS

Fifty nine patients were studied and six of them showed alterations (Table 1). Available samples from parents were also analyzed for identifying hereditary mutations.

Figure 2: Steps of MLPA reaction. From Schouten et al. (2002)

Table 1 – Patient information, alterations and MLPA findings in parents.

Patient	Sex	Presentation	Ageat Diagnosis	Alterations	Parents
P48	Male	Bilateral	8 months	Amplification of the region between exon 12 and 17 of the R B1	Father: Sample notavailable
					Mother: Without alterations
P30	Female	Bilateral	24 months	Deletion of exon 3 of RB1	Father: Without alterations
					Mother: Without alterations
P28	Male	Bilateral	9 months	Deletion of exon 23 of RB1	Father: Sample notavailable
					Mother: Without alterations
P49	Female	Bilateral	17 months	Heterozygous deletion of RB1 and partial deletion of ITM2B, RCTB2, PCDH8, DLEU 1 (13q14.2) and ENOX 1 (13q14.11).	Father: Sample not available
					Mother: Sample not available
P53	Female	Unilateral	20 months	Heterozygous deletion of <i>RB1</i> and partial deletion of <i>ITM2B</i> and RCTB2 (13q14.2).	Father: Sample not available
					Mother: Without alterations
P12	Male	Unilateral	17 months	Heterozygous deletion of R B1 gene and partial deletion of <i>ITM2B</i> , <i>RCTB2</i> <i>PCDH8</i> , <i>DLEU1</i> (13q14.2).	Father: Without alterations
					Mother: Without alterations

The fact that 53 patients with retinoblastoma did not show any alteration with direct sequencing and MLPA should be further investigated. Despite the predominance of RB1 alterations as trigger for retinoblastoma, it has recently been reported that, in some in 1.4% of patients, this gene is not affected. In this cohort, increased levels of the NMYC oncogene (V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma Derived Homolog) have been identified in tumor samples. It is not known whether retinoblastoma might be caused by inactivation of both of RB1 alleles with increased levels of NMYC or only by NMYC amplification. And it is also unknown whether NMYC amplification might be responsible for keeping a once established retinoblastoma phenotype. Regardless of these questions, the characterization of this retinoblastoma subtype (RB1+/+NMYCa) is essential for genetic counseling because it strongly suggests a nonhereditary form of retinoblastoma, with a normal risk for developing retinoblastoma in the unaffected eye or other types of cancer, as well as excluding familial risk. NMYC amplification will be studied by quantitative PCR or Fluorescence in situ hybridization (FISH).

Furthermore, a study of a set of 40 tumor samples will be screened by Next-Generation Sequencing (NGS) to look for presence of somatic RB1 alterations.

Projeto Gráfico: Setor de Edição e Informação Técnico-Científica / INCA

SAÚDI

