

CRLF2 EXPRESSION ASSOCIATES WITH COMBINED NOTCH1/IKZF1 STATUS IN CHILDHOOD T-CELL ACUTE LYMPHOBLASTIC LEUKAEMIA

Ana Luiza Tardem Maciel¹, Caroline Pires Poubel¹, Elda Pereira Noronha², Maria S. Pombo-de-Oliveira², <u>Marcela Braga Mansur</u>^{1*}, <u>Mariana Emerenciano</u>^{1*} ¹ Division of Clinical Research, Research Centre, Instituto Nacional de Câncer-INCA, Rio de Janeiro, RJ, Brazil ² Paediatric Haematology-Oncology Program-PHOP, Research Centre, Instituto Nacional de Câncer-INCA, Rio de Janeiro, RJ, Brazil

*These authors contributed equally to this work.

BACKGROUND

T-cell acute lymphoblastic leukaemia (T-ALL) is an aggressive haematopoietic disorder that represents 15% of paediatric ALL. Although numerous relevant molecular alterations have already been identified, few have a consensual prognostic value;

CRLF2 overexpression was recently identified in high-risk T-ALL patients., for these cases no genomic abnormality was found to be associated with CRLF2 overexpression

Table 1. Clinical-demographic characteristics of T-ALL patients according to *CRLF2* and *IKZF1* expression

	CRLF2 n(%)		IKZF1 m(%)					CRLF2 n(%)			IKZF1 n(%)		-
	High	Low	р	High	Low	<i>p</i>		High	Low	р	High	Low	p
Age (Years)			0.446			0.166	Age (Years)			0.446			0.166
>10	6 (75.00)	27 (55.10)		8 (80.00)	25 (53.19)		>10	6 (75.00)	27 (55.10)		8 (80.00)	25 (53.19)	
10-21	2 (25.00)	22 (44.90)		2 (20.00)	22 (46.81)		10-21	2 (25.00)	22 (44.90)		2 (20.00)	22 (46.81)	
Sex			1.00			0.680	Sex			1.00			0.680
Female	2 (25.00)	11 (22.45)		3 (30.00)	10 (21.28)		Female	2 (25.00)	11 (22.45)		3 (30.00)	10 (21.28)	
Male	6 (75.00)	38 (77.55)		7 (70.00)	37 (78.72)		Male	6 (75.00)	38 (77.55)		7 (70.00)	37 (78.72)	
WBC (x10°cels/L)			0.187			0.429	WBC (x10 ⁹ cels/L)			0.187			0.429
<50	4 (50.00)	11 (22.45)		4 (40.00)	11 (23.40)		<\$0	4 (50.00)	11 (22.45)		4 (40.00)	11 (23.40)	
≥50	4 (50.00)	38 (77.55)		6 (60.00)	36 (76.59)		≥50	4 (50.00)	38 (77.55)		6 (60.00)	36 (76.59)	
Risk Classification (NCI)			0.004*			0.370	Risk Classification (NCI)			0.004*			0.370
Standart	3 (37.50)	6 (12.24)		3 (30.00)	8 (17.02)		Standart	3 (37.50)	6 (12.24)		3 (30.00)	8 (17.02)	
High	5 (62.50)	43 (87.75)		7 (70.00)	41 (87.23)		High	5 (62.50)	43 (87.75)		7 (70.00)	41 (87.23)	
Molecular Characterization*							Molecular Characterization*						
NOTCH1/FBXW7 mut	2 (33.3)	16 (53.3)	0.658	2 (20.00)	16 (61.54)	0.059	NOTCH1/FBXW7 mut	2 (33.3)	16 (53.3)	0.658	2 (20.00)	16 (61.54)	0.059
STIL-TALI+	1 (25.0)	8 (23.53)	0.616	2 (66.67)	7 (41.18)	0.566	STIL-TAL1+	1 (25.0)	8 (23.53)	0.616	2 (66.67)	7 (41.18)	0.566
TLX3 presence	0 (0)	3 (7.69)	1.000	1 (14.28)	2 (5.40)	0.436	TLX3 presence	0 (0)	3 (7.69)	1.000	1 (14.28)	2 (5.40)	0.436
IKZF1 alterations	0 (0)	1 (2.04)	1.000	0(0)	1 (2.13)	1.000	IKZF1 alterations	0 (0)	1 (2.04)	1.000	0 (0)	1 (2.13)	1.000
CRLF2 alterations	NA	NA	-	NA	NA		CRLF2 alterations	NA	NA		NA	NA	-

(figure 1a and b).

IKZF1 has been recently shown as a direct transcriptional regulator of *CRLF2* expression. Moreover, it is known that NOTCH1 controls *IKZF1* expression in T-ALL (figure 1c and d).
We hypothesized that *NOTCH1/IKZF1* status could be one mechanism responsible for *CRLF2* deregulation in T-ALL.

WBC, white cell count; NA, not analysed; CNA, copy number alterations; *IKZF1* alterations, *IKZF1* mutations or CNA. *The frequencies were calculated using the total number of analysed samples.

Figura 4. IKZF1 expression (a. and c.) in CRLF2 groups and CRLF2 expression (b. and d.) in IKZF1 groups.

Figure 1. a. *CRLF2* expression and genomic alterations. Red line representes the cut off for *CRLF2* overexpression patients. **b.** Association of *CRLF2* overexpression to event free survival (Palmi *et al*, 2016. **c.** Heatmap of microarray-based differential gene expression (*IKZF1* ang Notch1 target genes) following treatment of human T-ALL cell lines with activating *NOTCH1* mutations (Witkowski *et al*, 2015) **d.** Model of *CRLF2* expression regulation by *IKZF1* (Ge *et al*, 2016).

METHODS AND RESULTS

Figure 2. Flowchart representing the study design developed for investigate CRLF2 overexpression, IKZF1 loss and NOTCH1 activating mutations in T-ALL. Two independent cohorts were investigated and in silico tests were realizes with TARGET database.

Cutoff determination

Figure 5. a. and b. CRLF2 expression in NOTCH1/FBXW7 mutated and IKZF1-low group. c. Notch1 mutated (in PEST and HD domains) signalling pathway. Modified from Ainfants I et al, 2008.

Figure 3. Cutoff for CRLF2 and IKZF1 determination by the web application Cutoff Finder. The highlight in pink represents laboratory cohort and in gray, in silico cohort.

Figura 6. a and b. CRLF2 expression and NOTCH1 mutated domains. c and d. CRLF2 expression and generating mutations of intracellular NOCTH1 stability and instability.

CONCLUSIONS

✤ Our data support the notion that aberrant IKZF1 low expression and NOTCH1/FBXW7 mutations, mainly those that lead to an increase the stabilization of ICN1, play a role in CRLF2 upregulation.

However, it does not rule out that other mechanisms might also lead to this overexpression in those T-ALL cases.

Financial Support. CAPES, CNPQ, Ministério da Saúde/INCA

Projeto Gráfico: Setor de Edição e Informação Técnico-Científica / INCA

