

NF-kappaB regulates DNA repair-related genes and Redox metabolism in Breast Cancer Subtypes

Bruno R. B. Pires^{1,2}; Renata Binato^{1,2}; Gerson M. Ferreira^{1,2}; Carolina Panis³ and <u>Eliana Abdelhay^{1,2}</u>

1 Laboratório de Célula-Tronco, Divisão de Laboratórios do Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer, Rio de Janeiro, RJ,

Brazil; 2 Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Brazil;

3 Laboratório de Mediadores Inflamatórios, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brazil

ABSTRACT

Breast cancer (BC) is a heterogeneous disease composed of multiple subtypes with distinct outcomes and molecular features. Human BC may be classified in three major intrinsic groups: Luminal, HER2 and triple-negative (TNBC). Oxidative stress (OS) is an important condition to genomic instability and inflammatory networks in BC. Nuclear Factor (NF)- κ B signaling has risen as major player in BC pathogenesis. The correlation between NF- κ B and OS has been reported in cancer, but its role in BC intrinsic groups remain to be identified. Thus, we sought to examine the role of NF- κ B in BC cells focusing on understanding distinct BC subtypes. Therefore, we performed a series of global gene expression microarray analyses after NF- κ B silencing in human BC cell lines MDA-MB-231 (TNBC), HCC-1954 (HER2) and MCF-7 (Luminal) compared with their scramble counterparts from each cell line. Through pathway enrichment analysis and gene ontology information, our results showed the differential expression of relevant factors involved in base excision repair, double-strand break repair, glutathione metabolism, cytochrome P450 and cyclooxygenase as result of NF- κ B knockdown. Subsequently, we selected some altered genes related to DNA repair and OS for evaluation by RT-qPCR that confirmed the microarray findings. In addition, we performed biochemical analyses assessing the antioxidant capacity, lipid peroxidation profile and NO status in BC cell subtypes and correlated such parameters with the modulation of NF- κ B. After NF- κ B inhibition, luminal cells displayed higher antioxidant capacity at basal levels when compared to the other cells, as observed by the attenuated lipid peroxidation profile and high thiol content. HER2 cells demonstrated an intermediary oxidative profile, but with augmented thiol content and reduced lipid peroxidation. TNBC cells showed lower levels of antioxidants at basal levels, exhibiting a pro-oxidant status. As each studied cell line corresponded to one specific BC subtype, different genes were alte

RESULTS

Figure 1. Differentially expressed genes identified by the chip array assay showing increased and decreased genes in breast cancer cells with silenced (si) nuclear factor-kappa B (NF- κ B)/p65 compared with their scramble counterparts. Positive values (red columns) correspond to the number of up-regulated genes, and negative values (blue columns) correspond to the number of down-regulated genes.

A 25 20-* 15-10-

Figure 2. Venn diagram based on the number of altered genes related to redox metabolism found in each breast cancer model silenced for NF-κB/p65 compared with their scramble counterparts. Si-MDA: NF-κB/p65-silenced MDA-MB-231; si-HCC: NF-κB/p65-silenced HCC-1954; and si-MCF: NF-κB/p65-silenced MCF-7

D

F

Figure 4. Thiol content. MCF-7 (A, B), HCC (C, D) and MDA-MB231 (E, F) cells treated

(DHMEQ column) or not (CTR column) with the NF-κB inhibitor for 24 or 48 h. Data are

expressed as the means and standard errors of the means. * indicates statistical

DHMEQ

DHMEQ

DHMEQ

1.57

LPO

-1.53 *PEXI*

lactoperoxidase

CŤR

CTR

CTR

HCC-1954 48h

MDA-MB-231 48h

MCF-7 24h B MCF-7 48h

DHMEQ

DHMEQ

DHMEQ

MDA-MB-231 24h

HCC-1954 24h

CŤR

CŤR

CTR

significance (p < 0.05).

Ε

Table 1. List of DNA repair- and oxidative stress—related genes with altered expression in NF-κB-silenced (siNFκB) breast cancer cell lines.

Fold Change	Gene Symbol	Description	GO Biological Process	GO Molecular Function
11.78	TP63	tumor protein p63	replicative cell aging	DNA binding transcription factor activity
9.4	PTGES	prostaglandin E synthase	prostaglandin metabolic process; cyclooxygenase pathway; response to lipopolysaccharide; fatty acid metabolic process	glutathione binding; isomerase activity
5.01	GPX2	glutathione peroxidase 2 (gastrointestinal)	oxidation-reduction process; response to oxidative stress; cellular oxidant detoxification	electron carrier activity; peroxidase activity; oxidoreductase activity
2.78	СР	ceruloplasmin (ferroxidase)	copper ion transport; oxidation- reduction process;	ferroxidase activity; copper ion binding; chaperone binding; oxidoreductase activity; metal ion binding
2.39	SEPW1	selenoprotein W, 1	cell redox homeostasis	antioxidant activity; selenium binding
2.06	HPGD	hydroxyprostaglandin dehydrogenase 15-(NAD)	fatty acid metabolic process; prostaglandin metabolic process	NAD binding; oxidoreductase activity;
2.04	XDH	xanthine dehydrogenase	xanthine catabolic process; oxidation-reduction process; regulation of reactive oxygen species	iron ion binding; electron carrier activity; oxidoreductase activity, metal ion binding
1.98	RAD51	RAD51 recombinase	DNA repair; DNA recombinase assembly	DNA binding; recombinase activity
1.64	POR	P450 (cytochrome) oxidoreductase	xenobiotic metabolic process; response to nutrient	enzyme binding; hydrolase activity; electron transfer activity
-1.76	ARG2	arginase 2	urea cycle; arginine metabolic process; nitric oxide biosynthetic process	arginase activity; metal ion binding; hydrolase activity
-2.56	GSTM1	glutathione S-transferase mu 1	glutathione metabolic process; xenobiotic metabolic process	glutathione transferase activity; enzyme binding
siNFĸB	HCC-1954			
Fold Change	Gene Symbol	Description	GO Biological Process	GO Molecular Function
1.7	COXIIP	COX11 cytochrome c oxidase assembly homolog (yeast) pseudogene 1	e mitochondrial electron transport, hydrogen ion transmembrane transport	cytochrome-c oxidase activity
1.64	BRCAI	breast cancer 1, early onset	DNA repair, double-strand break repair via homologous recombination	DNA binding, ligase activity
1.58	FARI	fatty acyl CoA reductase 1	glycerophospholipid biosynthetic process; oxidation-reduction process	fatty-acyl-CoA reductase (alcohol- forming) activity; oxidoreductase activity
1.58	RB1	retinoblastoma 1	cell cycle checkpoint, G1/S transition of mitotic cell cycle	DNA binding transcription factor activity, enzyme binding
1.56	HPGD	hydroxyprostaglandin dehydrogenase 15-(NAD)	fatty acid metabolic process, prostaglandin metabolic process	NAD binding, prostaglandin E receptor activity, oxidoreductase activity
1.54	PEXI	peroxisomal biogenesis facto 1	r peroxisome membrane biogenesis; cellular lipid metabolic process	protein binding; protein homodimerization activity
1.52	XRCC4	X-ray repair complementing defective repair in Chinese hamster cells 4	DNA repair, double-strand break repair	DNA binding; protein binding; ligase activity
1.51	COX8C	cytochrome c oxidase subuni VIIIC	t mitochondrial electron transport, hydrogen ion transmembrane transport	cytochrome-c oxidase activity
-1.82	LIPK	lipase, family member K	lipid catabolic process; lipid metabolic process	hydrolase activity
siNFĸB	MCF-7			
Fold	Gene	Description	GO Biological Process	GO Molecular Function
Change	DTCSI	prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase) prostaglandin biosynthetic process;		peroxidase activity; lipid binding; heme binding; metal ion binding;

Figure 3. Relative expression by real time PCR (qPCR) of differentially expressed genes in the microarray analysis after NF- κ B genetic silencing. The mRNA levels were assessed in MDA-MB-231 (A); HCC-1954 (B) and MCF-7 (C) cells, comparing the NF- κ B-silenced condition (si) with the Scramble (sc) counterpart. Data are expressed as the means and standard errors of the means. *: p-value < 0.05; **: p < 0.01; ***: p < 0.001.

С

Ε

Figure 5. Lipid peroxidation profile. MCF-7 (A, B), HCC-1954 (C, D) and MDA-MB231 (E, F) cells treated or not with NF-κB inhibitor (DHMEQ) for 24 or 48 h. Data are expressed as the means. * indicates statistical significance (p < 0.05). Time (min).

Figure 6. Nitrite as an estimate of NO levels. MCF-7 (A, B), HCC (C, D) and MDA-MB231 (E, F) cells treated (DHMEQ column) or not (CTR column) with the NF-κB inhibitor for 24 or 48 h. Data are expressed as the means and standard errors of the means. * indicates statistical significance (p < 0.05).

-1.61	SEPP1	selenoprotein P, plasma, 1	process; response to oxidative stress	selenium binding
-1.62	OXR1	oxidation resistance 1	response to oxidative stress; oxidation-reduction process	protein binding; oxidoreductase activity
-1.81	CYCS	cytochrome c, somatic	mitochondrial electron transport; apoptotic process	iron ion binding; electron transfer activity; heme binding
-2.19	MDM1	Mdm1 nuclear protein homolog (mouse)	p53 binding protein; regulation of centriole replication	protein binding
-2.76	ATM	ATM serine/threonine kinase; nuclear protein, ataxia- telangiectasia locus	DNA repair; telomere maintenance	transferase activity; DNA binding; protein serine/threonine kinase activity
-2.85	ATR	ATR serine/threonine kinase	DNA repair; cell cycle; DNA damage checkpoint	transferase activity; DNA binding; protein serine/threonine kinase activity
-3.82	BRCA2	breast cancer 2, early onset	double-strand break repair via homologous recombination; DNA synthesis involved in DNA repair	protease binding; histone acetyltransferase activity; protein binding; H3 histone acetyltransferase activity; H4 histone acetyltransferase activity; gamma-tubulin binding; DNA binding
-3.88	ATRX	alpha thalassemia/mental retardation syndrome X-linked	DNA repair; nucleosome assembly	chromatin binding; helicase activity; DNA binding; DNA helicase activity; helicase activity

response to oxidative stress;

hydrogen peroxide catabolic

peroxisome organization

peroxisomal biogenesis factor protein targeting to peroxisome;

process; oxidation-reduction process activity

activity

heme binding; metal ion binding;

protein binding; ATP binding;

nucleotide binding

peroxidase activity; oxidoreductase

Projeto Gráfico: Setor de Edição e Informação Técnico-Científica / INCA

