

GENOMIC PROFILE OF *RUNX1-ETV6⁺* **PAEDIATRIC B-CELL PRECURSOR ACUTE LYMPHOBLASTIC** LEUKAEMIA

CAROLINE BARBIERI BLUNCK¹, BRUNO DE ALMEIDA LOPES¹, THAYANA DA CONCEIÇÃO BARBOSA¹, JULIO CESAR SANTORO¹, ELDA PEREIRA NORONHA², EUGÊNIA TERRA GRANADO², GABRIELA VERA-LOZADA³, ROCIO HASSAN³, MARCELA BRAGA MANSUR¹, MARIA DO SOCORRO POMBO DE OLIVEIRA² AND MARIANA EMERENCIANO¹ ¹MOLECULAR CANCER STUDY GROUP, DIVISION OF CLINICAL RESEARCH, RESEARCH CENTRE, INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, BRAZIL ²PROGRAMA DE HEMATOLOGIA-ONCOLOGIA PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE ANOI PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE ANOI PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE ANOI PEDIÁTRICO – INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE ANOI PEDIA INCA, RIO DE JANEIRO, RJ, DIVISÃO DE PESQUISA CLÍNICA E DESENVOLVIMENTO TECNOLÓGICO – INCA, CPQ, BRAZIL ³LABORATÓRIO DE ONCOVIROLOGIA - CENTRO DE TRANSPLANTE DE MEDULA ÓSSEA, INSTITUTO NACIONAL DE CÂNCER - INCA, RIO DE JANEIRO, RJ, DIVISÃO DE PESQUISA CLÍNICA E DESENVOLVIMENTO TECNOLÓGICO – INCA, CPQ, BRAZIL

INTRODUCTION

- B-cell precursor acute lymphoblastic leukaemias (BCP-ALL) are characterized by recurrent translocations, with t(12;21)(p13;q22) being the most common. This translocation generates the ETV6-RUNX1(ER) and the reciprocal *RUNX1-ETV6 (RE)* gene fusions in 100% and 76% of cases, respectively.

Figure 5. Frequency of deletions found in patients with direct transcript (n=37) and patients with direct and reciprocal transcript (n=20). The most frequently deletions found in RE and ER patients affecting ETV6

Detection of additional changes by MLPA

- Studies have shown that *RE* high expression confers worse prognosis. Moreover, other genetic changes have been described as important risk stratification markers.
- We aimed to characterize the genomic profile of patients harboring *RUNX1-ETV6*.

Figure 1. Schematic representation of the fusion ETV6-RUNX1 and RUNX1-ETV6. B-cell precursor acute lymphoblastic leukaemias (BCP-ALL) are characterized by recurrent translocations, with t(12;21)(p13;q22) being the most common. This translocation generates the ETV6-RUNX1(ER) and the reciprocal RUNX1-ETV6 (RE) gene fusions in 100% and 76% of cases, respectively.

Evaluation of transcripts by RT-qPCR

A. Gene expression of the direct transcript x CDKN2A/B

B. Gene expression of the reciprocal transcript x PAX5

Figure 6. Quantification of direct and reciprocal transcristal expression levels in patients with CDKN2A/B and PAX5 status A) Expression of the direct transcript in patients with wild type *CDKN2A/B* and deleted *CDKN2A/B*. B) Expression of the reciprocal transcript in patients with PAX5 wild type and *PAX5* deleted

Gene expression of the reciprol transcript x WBC C. Gene expression of the direct transcript x WBC D.

C. Gene expression of the reciprocal transcript x percentage CD9 D. Gene expression of the reciprocal transcript x MFI R= 0.57 P=0.02

(RE=45%/RE=49%), CDKN2A/B (RE=40%/ER=33%) and PAX5 (RE=29%/ER=38%),

Age at diagnosis (y)	>10	9.05	0.47-173.31	0.14
WBC at diagnosis (10 ⁹ cells/L)	>25	4.70	0.53-41.90	0.17
TEL-AML1 expression		1.23	0.79 -1.93	0.36
AML1-TEL expression		7.02	2.01-24.52	0.002
AML1 expression		1.10	0.84-1.43	0.49

Figure 2. Patients were divided into two groups by the 75th percentile for the expression of ETV6-RUNX1, RUNX1-ETV6, and RUNX1. Dashedline, high expression (p>75); solid line, lowexpression (p<75). B) High expression is associated with an unfavorable prognosis. C) Schematic for the nature and time of acquisition of genetic alterations in the pathogenesis of B-ALL.

METHO	DS AND	RESULTS

Figure 7. Correlation analysis between levels of the direct / reciprocal transcripts and age and leucometria. P-value calculated through the Pearson test (Pearson's R measures the degree of linear correlation between two quantitative variables).

Figure 8. Correlation analysis between the levels of the direct/reciprocal transcripts and CD9 cell expression (Percentual and IMF) P-value calculated through the Pearson test (Pearson's R measures the degree of linear correlation between two quantitative variables).

Detection of direct and reciprocal transcripts and additional changes by FISH

• FISH analysis using commercial probe

• FISH analysis using in-house probes

Figure 9. Interphase nucleus FISH using commercial double-dip probe

Analysis using commercial probe showed 114 with ER^{\dagger} and 30% (26/114) of these patients Figure 10. Localization of FISH probes developed in-house on metaphase chromosomes. had both the gene fusion and a non-rearranged ETV6 allele del. A) Location of *RUNX1* and *ETV6* bacs on healthy donor metaphase chromosomes in their respective chromosomes

Figure 11. FISH of interphase nuclei using probe type BACs. Analysis using probe in-house developed (BACs) probes revealed a *RUNX1-ETV6* amplification pattern in 2% of cases. Interestingly, we observed that 3 of 10 RE patients showed a duplication pattern of the *RE* fusion.

Normal RUNX1-ETV6(+)RUNX1-ETV6(+)RUNX1-ETV6(+)and and extra sign of the Duplication RUNX1 gene RUNX1-ETV6

Demographic and laboratory characteristics

Figure 3. Test flowchart

Table 1. Demographic and laboratory characteristics of the patients in relation to the presence of the direct and reciprocal transcript found by RT-PCR

Variables	ETV6	ETV6-RUNX1	
	RUNX1-ETV6	RUNX1-ETV6+	
	n (%)	n (%)*	
Age (months)			
0-12	02(2.85)	0	
13-120	20(28.5)	41(58.5)	P = 0.236
>120	02(2.85)	04(5.71)	
Sex			
Femino	09(12.8)	18(25.7)	<i>P</i> = 0.122
Masculino	15(21.4)	28(40.0)	
Subtype BCP-			
ALL			
pro-B	01(1.4)	0	
Common	21(30.0)	39(55.7)	P=0.631
pre-B	02(2.85)	05(7.1)	
WBC x 10 ⁹ /L			
<50.000	19(27.1)	39(55.7)	
>50.000	05(7.1)	07(10.0)	P= 0.603
С D 9			
≤ 64%	14(20.0)	10(1.4)	
> 64%	09(12.8)	36(51.4)	P = 0.001
ROPAR for detec	tion of RUMAY-ETV	6 was pe(fórií) ed in 70	cases.

CONCLUSION

The correlation between *RE* expression and *PAX5* del is still unclear and is worthy of further investigation. In addition, all cases with *RE* duplication had a concomitant del of the non-rearranged *ETV6* allele, which suggests that this loss may contribute to the formation of the duplication. Our results suggest that patients with *RE* have a heterogeneous pattern and the characterization of this subgroup may provide new insights for risk stratification and treatment strategies.

Development agency: Ministério da Saúde, FAPERJ, CNPq

Projeto Gráfico: Área de Edição e Produção de Materiais Técnico-Científicos / INCA

