

IDENTIFICATION OF NOVEL PARTNERS OF ASXL2 PROTEIN BY HIGH-THROUGHPUT PROTEOMICS AND THEIR IMPLICATION IN CHROMATIN REMODELING IN BREAST CANCER SUBTYPES

Mariana Araujo¹, Eliana Abdelhay¹, Stephany Corrêa¹

1- Laboratório de Célula Tronco, Centro de Transplante de Medula Óssea - CEMO, Instituto Nacional de Câncer – INCA, Brazil

INTRODUCTION

Breast cancer's (BC) etiology can be related to epigenetic factors. Among them, chromatin remodeling is one of the least explored, and includes the action of the antagonic protein families Polycomb (Pc) and Trithorax (Trx), respectively involved in gene silencing and activation. Asx has been described as an enhancer of Pc and Trx activity in Drosophila development, with homologues of this protein described in humans (ASXL). ASXL2 has been reported in estrogen receptor-positive (ER+) BC, mediating ER activation and the transcription of its target genes by recruiting histone modifiers to the chromatin. In a previous study from our group, ASXL2 was found overexpressed in Luminal A (LUM A, ER+) and Triple Negative (TN, ER-) BC cell lines, respectively the least and most aggressive ones.

RESULTS

Figure 1: Classification of Breast Cancer molecular subtypes. Adapted from Wong and Rebelo, 2012.

ASXL2 expression in BC cell lines

Figure 2: Model for the epigenetic role of ASXL2 in ER+ Breast Cancer. Adapted from Park et al., 2016.

nscriptional activation

cruitment of PRC1 comple

Transcriptional repression

ASXL2 interacts with Pc and Trx members in Development

Figure 6: ASXL2 is related with histone modifiers in BC. (A) Protein identification of ASXL2's partners through proteomic analysis in MCF-7 (LUM A) and MDA-MB-231 (TN) cells after ASXL2 imumnoprecipitation (n=3). Results normalized to IgG control. (B) Venn diagram of the proteins immunoprecipitated with ASXL2 in MCF-7 and MDA-MB-231 cells. (C) List of cellular processes in which the identified proteins are involved, obtained via in *silico* analysis through the GeneCards website (www.genecards.org).

ANK3	Ankyrin-3	CCDC88C	Protein Daple
CDC125	Coiled-coil domain-containing protein 125	CCT2	T-complex protein 1 subunit beta
CFL1	Cofilin-1	CFL1	Cofilin-1
NTRL	Centriolin	DOCK8	Dedicator of cytokinesis protein 8
OPS7B	COP9 signalosome complex subunit 7b	EEF2	Elongation factor 2
CUBN	Cubilin	EIF5A	Eukaryotic translation initiation factor 5A-1
NHD1	Dynein heavy chain domain-containing protein 1	EPHA6	Ephrin type-A receptor 6
OCK10	Dedicator of cytokinesis protein 10	FLNC	Filamin-C
OCK7	Dedicator of cytokinesis protein 7	GFAP	Glial fibrillary acidic protein
EF1A2	Elongation factor 1-alpha 2	IFI44	Interferon-induced protein 44
EEF2	Elongation factor 2	IL1R1	Interleukin-1 receptor type 1
HBP1	EH domain-binding protein 1	KRT1	Keratin, type II cytoskeletal 1
ENO1	Alpha-enolase	KRT10	Keratin, type I cytoskeletal 10
ENO2	Gamma-enolase	KRT2	Keratin, type II cytoskeletal 2 epidermal
ENO3	Beta-enolase	KRT4	Keratin, type II cytoskeletal 4
AM47E	Protein FAM47E	KRT5	Keratin, type II cytoskeletal 5
ASN	Fatty acid synthase	KRT6A	Keratin, type II cytoskeletal 6A
FLNA	Filamin-A	KRT6B	Keratin, type II cytoskeletal 6B
G6PD	Glucose-6-phosphate 1-dehvdrogenase	KRT6C	Keratin, type II cytoskeletal 6C
GAK	Cvclin-G-associated kinase	KRT7	Keratin, type II cytoskeletal 7
APDH	Glyceraldehyde-3-phosphate dehydrogenase	KRT77	Keratin, type II cytoskeletal 1b
GFAP	Glial fibrillary acidic protein	KRT8	Keratin, type II cytoskeletal 8
90AB4P	Putative heat shock protein HSP 90-beta 4	KRT80	Keratin, type II cytoskeletal 80
P90B1	Endoplasmin	LDHB	L-lactate dehvdrogenase B chain
ISPA9	Stress-70 protein, mitochondrial	PPFIA1	Liprin-alpha-1
ADE1	Protein Jade-1	PRRC2C	Protein PRRC2C
KDM8	JmjC domain-containing protein 5	PTBP1	Polypyrimidine tract-binding protein 1
KRT1	Keratin, type II cytoskeletal 1	RAPGEF2	Rap quanine nucleotide exchange factor 2
(RT18	Keratin, type I cytoskeletal 18	RPGRIP1L	Protein fantom
KRT4	Keratin, type II cytoskeletal 4	RSBN1L	Round spermatid basic protein 1-like protein
KRT7	Keratin, type II cytoskeletal 7	SFN	14-3-3 protein sigma
(RT80	Keratin, type II cytoskeletal 80	TBC1D9B	TBC1 domain family member 9B
AP3K11	Mitogen-activated protein kinase kinase kinase 11	TF	Serotransferrin
YO5A	Unconventional myosin-Va	TRIM17	E3 ubiguitin-protein ligase TRIM17
YO9A	Unconventional myosin-IXa	VIM	Vimentin
NCL	Nucleolin	YWHAB	14-3-3 protein beta/alpha
IPM1	Nucleophosmin	YWHAE	14-3-3 protein epsilon
CBP2	Poly(rC)-binding protein 2	YWHAG	14-3-3 protein gamma
PKM	Pyruvate kinase PKM	YWHAH	14-3-3 protein eta
OTEE	POTE ankyrin domain family member E	YWHAQ	14-3-3 protein theta
OTEF	POTE ankyrin domain family member F	YWHAZ	14-3-3 protein zeta/delta
DTEKP	Putative beta-actin-like protein 3	1	
PPIA	Peptidyl-prolyl cis-trans isomerase A	1	
RDX1	Peroxiredoxin-1	1	
PGEF4	Rap guanine nucleotide exchange factor 4	1	
RPL6	60S ribosomal protein L6	1	
PLP1	60S acidic ribosomal protein P1	1	
LC3A2	4F2 cell-surface antigen heavy chain	1	
REK1	Splicing regulatory glutamine/lysine-rich protein 1	1	
TE	Constraint	1	

Interactome of ASXL2's partner proteins in MCF-7 cells

Interactome of ASXL2's partner proteins in MDA-MB-231 cells

Figure 4: ASXL2 interacts with Pc and Trx members in Development. (A) In silico analysis of

Overall, our results pointed to chromatin modifiers and remodelers poorly investigated in BC as potential partners of ASXL2 and suggest differential action of Pc and Trx members in LUM A and TN cells. Validation of obtained results, as well as