ANALYSIS OF MICRORNAS EXPRESSION IN PEDIATRIC PATIENTS WITH BURKITT LYMPHOMA/LEUKEMIA ACCORDING TO THE MYC TRANSLOCATION STATUS

MARIANA T. DE SOUZA^{1,2}, GABRIELA VERA-LOZADA³, TERESINHA DE JESUS MARQUES SALLES⁴, LUCIANA W. PINTO⁵, THOMAS LIEHR⁶, ROCIO HASSAN^{2,3}, MARIA LUIZA MACEDO SILVA^{1,2}

¹Cytogenetics Department, Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil. ²Post Graduation Oncology Program, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil. ³Oncovirology Department, Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil. ⁴Department of Genetics, Pernambuco University, Recife, PE, Brazil. ⁵Integrated Department of Pathology, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil. ⁶Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, TH, Germany

INTRODUCTION

Translocations between MYC oncogene and immunoglobulin genes (IGH, IGL, IGK) have been considered for many years the genetic hallmark of Burkitt Lymphoma/Leukemia (BL/L) and, one of the most

important parameters for the definition of BL/L at diagnosis. Supporting the idea of *MYC* post-transcriptional deregulation in BL/L, some studies have found differential expression patterns of specific miRNAs, and other factors, in comparison to other Non-Hodgkin Lymphomas (NHL), in which *MYC* plays a role as the central hub of a complex network in the pathogenic model of BL/L. Here, we studied the expression levels of *MYC*, *BCL2*, *CD10* and selected miRNAs, in a subset of patients from our pediatric BL/L cohort, aiming to explore associations between miRNA expression and the presence of a translocated *MYC* (*t-MYC*).

METHODS AND RESULTS

The expression levels of *MYC, BCL2*, and *CD10* gene, as well as miRNAs -9*, -155, -let7a, -let7b, -let7e, -150, -21, were studied in 10 BL/L tumor samples (9 lymph nodes and 1 bone marrow, BM) with 9 cases harboring the t(8;14)(q24;q32) and 1 without t-*MYC*.

Additionally, 3 BL and 2 Diffuse Large B Cell Lymphoma (DLBCL) cell lines, 3 reactive follicular hyperplasia (RFH) and 2 normal BM samples were included.

RNA was extracted from FFPE BM biopsy, BL/L and RFH lymph node using the MasterPure[™] RNA Purification Kit (Epicentre). RNA from BM and cell lines was extracted with Direct-zol[™] RNA MiniPrep (Zymo Research).

Relative expressions of CD10 and BCL2 were evaluated by TaqMan® assays, as previously described, using the average of ACTB and B2M reference genes for normalization.

MYC expression was quantified with SYBR green[®] assays using the average of ACTB and GUSB for normalization.

miRNAs were quantified with stem-loop TaqMan[®] assays after reverse transcription with MicroRNA Reverse Transcription Kit (Applied Biosystems) for each miRNA and the reference small RNA RNU48. Quantification values were expressed as fold change (2-ddCq) after calibration with the classical BL sample exhibiting the lowest expression level.

Epstein-Barr virus (EBV) was detected by *in situ* Hybridization (ISH) and Polymerase Chain Reaction (PCR).

The BL/L sample without t-*MYC* showed a gene expression pattern alike the other BL/L samples, except for miR155, miRlet7b and CD10 (Figure 1A-C), which showed a trend for low expression.

For this reason, the sample without t-MYC was included in the BL/L group for subsequent analysis, except for the differentially expressed genes.

BL/L samples showed higher expression levels of *MYC*, and lower expression levels of *BCL2* and miR150 in comparison to RFH (MYC: median 6.33 vs. 2.10; BCL2: 0.60 vs 120.6; miR150: 1.24 vs 6.4; P<0.05, Mann-Whitney test).

Hummel and coworkers in 2006, proposed a molecular signature for BL, including cases with lymphomas without t-*MYC*. Among them, *CD10* and *BCL2*, besides *MYC*, were found to be differentially expressed and are now used as classifiers for BL signature. BL and DLBCL cell lines showed a particular pattern of gene expression, different from the primary samples, however, these differences were not statistically significant (**Figure 1A-F**).

Some studies have observed a differential expression of miR9* in cases lacking t-*MYC*, however, we were unable to test this hypothesis due to the small size of our sample.

In the BL/L group, there was a trend for correlations (p<0.1) between MYC and miR9*, MYC and miR150, miRs -21 and -let7a, and miRs -21 and -let7e. There are reports that show downregulation of miR150 in BL/L, and we could also observe that trend for the association between miR9 150 and MYC.

Finally, the detection of EBV by RNA-ISH allowed us to detect one case expressing the EBERs transcripts (Figure 2).

Figure 2: EBV+ Burkitt lymphoma. Cell nuclei exhibit a brown staining due to the reactivity with RNA EBERs probes (100x).

Figure 1: Comparisons of cellular genes and microRNA (miR) expressions among BL/L group, reactive follicular hyperplasias (RFH) and BL- and diffuse large B cell lymphoma (DLBCL)-derived cell lines. A: miR155; B: Let7b; C: CD10; D: MYC; E: BCL2; F: miR150. BL*: represent the BL/L case without t-*MYC*; BL/L: classical Burkitt lymphoma/leukemia; BL CL represent the mean values of BL-derived cell lines; DLBCL CL represent the mean values of diffuse large B-cell lymphoma (DLBCL)-derived cell lines; RFH: reactive follicular hyperplasia lymph nodes. Bars represent the mean of fold change values in each category, except by BL*, which represents the mean value of fold change ± standard deviation.

CONCLUSION

Our preliminary data highlight some potential interactions between miRNAs and *MYC* in BL/L, such as downregulation of miR150 in BL/L and a trend for low expression of miR155, miRlet7b and CD10 in the case without t-MYC. These are preliminary results that need to be confirmed in a larger group of cases.

Finantial support: Ministerio da Saude, CAPES and CNPq.

Projeto Gráfico: Área de Edição e Produção de Materiais Técnico-Científicos / INCA

