

THE ROLE OF p53 AND SP1 IN DNA METHYLTRANSFERASES GENE REGULATION

Vanessa Paiva Leite de Sousa¹, Tatiana de Almeida Simão^{1,2}, Nathalia Meireles da Costa¹, Luis Felipe Ribeiro Pinto^{1,2}

¹Programa de Carcinogênese Molecular, Centro de Pesquisa (CPQ), Instituto Nacional de Câncer (INCA) ²Laboratório de Toxicologia e Biologia Molecular, Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ)

INTRODUCTION

• DNA methylation is an epigenetic mechanism characterized by the addition of a methyl group to cytosines in CpG dinucleotides and catalyzed by the DNA methyltransferases DNMTs [1, 2].

• 3 DNMTs with catalytic activity have been described in humans DNMT1, DNMT3A and DNMT3B [2].

Table 1: The association between the presence of *TP53* mutation and the expression levels of *DNMT3B* in the ESCC samples analyzed.

	<i>DNMT</i> 3 <i>B</i> ≥ 2	DNMT3B < 2	TOTAL
Mutated TP53	12 (86%)	2 (14%)	14 (100%)
Wild-Type <i>TP</i> 53	25 (49%)	26 (51%)	51 (100%)

- •DNMTs overexpression has been reported in several different tumors, such as: lung, liver and esophagus tumors[3,4,5].
- Results obtained by our group demonstrated a relationship between DNMT3B overexpression and mutations in the tumor supressor gene TP53 in esophageal squamous cell carcinoma (ESCC)[6].

AIM

To evaluate the role of p53 and SP1 in DNMTs (DNMT1, DNMT3A and DNMT3B) gene regulation.

RESULTS

> <u>DNMT1, DNMT3A, DNMT3B</u> and SP1 gene expression in TE-1 and HCT-116 cell lines under basal conditions

Figure 2: DNMTs and SP1 basal mRNA expression in the esophageal squamous cell carcinoma harboring wild-type (TE-1 – 32°C) or mutant (TE-1 – $37^{\circ}C$) p53 and the colorectal carcinoma expressing (HCT-116^{+/+}) or not (HCT-116^{-/-}) p53 cell lines by qRT-PCR. *p<0.05, **p<0.01, ***p<0.001

> DNMT1, DNMT3A, DNMT3B and SP1 gene expression in TE-1 and HCT-116 cell lines upon TP53 silencing

• About half of the human tumors harbors mutations in TP53 [7].

• SP1 is a transcription factor overexpressed in a wide range of tumor advanced stage, metastatic potential and

poor prognosis [8].

•Interaction between p53 and SP1 in the regulation of different genes has already been reported reduced DNMT1

gene expression in lung cancer cell line [3].

> DNMT1, DNMT3A, DNMT3B and SP1 gene expression in TE-1 and TE-13 cell lines

Figure 6: DNMTs and SP1 mRNA expression in the esophageal squamous cell carcinoma harboring wild-type (TE-1 – 32°C) or mutant (TE-1 – 37°C) p53 and p53-null (TE-13) cell lines by qRT-PCR upon SP1 silencing achieved by transfection of target specif siRNA. *p<0.05, **p<0.01, ***p<0.001

> DNMT1, DNMT3A, DNMT3B expression in TE-1 and TE-13 cell line after treatment with

Figure 3: DNMTs and SP1 mRNA expression in the esophageal squamous cell carcinoma harboring wild-type (TE-1 – 32°C) or mutant (TE-1 – 37°C) p53 and the colorectal carcinoma (HCT-116) cell lines by qRT-PCR upon TP53 silencing achieved by transfection of target specif siRNA. *p<0.05, **p<0.01, ***p<0.001

> <u>DNMT1, DNMT3A, DNMT3B</u> and SP1 gene expression in TE-1, TE-13 and HCT-116 cell lines following TP53 overexpression

Figure 4: DNMTs and SP1 mRNA expression in the esophageal squamous cell carcinoma harboring wild-type p53 (TE-1 – 32°C), p53-null (TE-13) and the colorectal carcinoma expressing (HCT-116^{+/+}) or not p53 (HCT-116^{-/-}) cell lines (HCT-116) cell lines by qRT-PCR following *TP53* overexpression achieved by transfection of p53 expression vector. *p<0.05, **p<0.01, ***p<0.001

> DNMT1, DNMT3A, DNMT3B and SP1 gene expression in TE-1 cell line after

treatment with MMS 1mM

Figure 7: DNMTs mRNA expression in the esophageal squamous cell carcinoma harboring wild-type p53 (TE-1 – 32°C) and p53-null (TE-13) cell lines after treatment with Mithramycin A. Mithramycin A is a G-C specific DNA binding drug, and prevents, subsequently, SP1 DNA binding. *p<0.05, **p<0.01, ***p<0.001

> DNMT1, DNMT3A, DNMT3B and SP1 gene expression in TE-1, TE-13 and HCT-116 cell lines following SP1 overexpression

Figure 8: DNMTs and SP1 mRNA expression in the esophageal squamous cell carcinoma harboring wild-type p53 (TE-1-32°C), p53-null (TE-13) and the colorectal carcinoma expressing (HCT-116^{+/+}) or not p53 (HCT-116^{-/-}) cell lines by qRT-PCR following SP1 overexpression achieved by transfection of p53 expression vector. *p<0.05, **p<0.01, ***p<0.001

> Evaluation of the presence of the p53 and SP1 responsive elements in DNMTs and TP53

promoter regions

Figure 9: Evaluation of the presence of the p53 and SP1 responsive elements in DNMTs and TP53 promoter regions. The analysis was performed using the software MatInspector.

Figure 5: DNMTs and SP1 mRNA expression in the esophageal squamous cell carcinoma harboring wild-type p53 (TE-1 – 32°C) cell line after treatment with 1mM Methyl Methanesulfonate (MMS) 1mM. *p<0.05, **p<0.01, ***p<0.001

METHODOLOGY

Table 2: Description of the cell lines used in this study.

Cell Line	Tissue of Origin	TP53 Status
TE-1	Esophageal squamous cell carcinoma	<i>TP53</i> temperature sensitive mutant: 32°C - WT p53 and 37°C - mutant p53
TE-13	Esophageal squamous cell carcinoma	Absent
HCT-116	Colorectal carcinoma	wт
HCT-116 ^{p53-/-}	Colorectal carcinoma	Absent

TE-1 cell line was treated with 1mM of Methyl Methanesulfonate (MMS).

TE-1 e TE-13 cell lines were treated with different concentrations of Mithramycin A (50nM, 100nM and 200 nM).

DNMTs gene expression was evaluated in cell lines by qRT-PCR.

Software utilizado: MatInspecto

CONCLUSION

These data show that p53 and SP1 play a role in DNMTs gene regulation, in a dose-dependent manner, and further experiments are needed to understand the mechanisms by which this regulation occurs.

REFERENCES

- 1. Adams RL et al. Mouse DNA methylase: methylation of native DNA. Biochim Biophys Acta, v. 561, n. 2, p. 345-57, 1979.
- 2. Luczak Mw et al. The role of DNA methylation in cancer development. Folia Histochem Cytobiol, v.44, n.3, p.143-154, 2006.
- 3. Lin RK et al. Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res, v. 70, n. 14, p. 5807-17, 2010.
- 4. Oh BK et al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med, v. 20, n. 1, p. 65-73, 2007.
- 5. Simão TA et al. Lower expression of p14ARF and p16INK4a correlates with higher DNMT3B expression in human oesophageal squamous cell carcinomas. Hum Exp Toxicol, v.25, n. 9, p. 515-22, 2006.
- 6. Simão, TA. Alterações Genéticas e Epigenéticas em Carcinoma Epidermóide de Esôfago. Rio de Janeiro, 2008. 146p. Instituto de Biologia Roberto Alcântara Gomes da Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 2008
- 7. Hainaut P et al. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res, v.77 p.81-137, 2000.
- 8. Vizcaíno Cet al. Sp1 transcription factor: A long-standing target in cancer chemotherapy, Pharmacol Ther. v. 152, p. 111-24, 2015.

Financial support: CNPq, CAPES and MS

Projeto Gráfico: Serviço de Edição e Informação Técnico-Científica / INCA

