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Abstract: Background: Laryngeal squamous cell carcinoma (LSCC) is one of the most incident tumors
in the world, especially in developing countries, such as Brazil. Different from other tumors, LSCC
prognosis did not improve during the past four decades. Therefore, the objective of this study was
to develop biomarkers that can predict LSCC patient’s prognosis. Results: Transcriptome analysis
pointed out 287 overexpressed genes in LSCC in comparison to adjacent mucosa. Among these,
a gene-pattern signature was created with 24 genes associated with prognosis. The Bayesian clustering
of both Brazil and The Cancer Genome Atlas (TCGA) data pointed out clusters of samples possessing
significative differences in the prognosis, and the expression panel of three genes (ALCAM, GBP6, and
ME1) was capable to distinguish patients with worse prognosis with an accuracy of 97%. Survival
analyses with TCGA data highlighted ALCAM gene expression as an independent prognostic factor
for LSCC. This was further confirmed through immunohistochemistry, using a validation set of
Brazilian patients. ALCAM expression was not associated with prognosis for other head and neck
tumor sites. Conclusion: ALCAM overexpression seems to be an independent prognosis biomarker
for LSCC patients.

Keywords: laryngeal squamous cell carcinoma; transcriptome analysis; prognostic
biomarker; ALCAM

1. Introduction

Laryngeal squamous cell carcinoma (LSCC) is a highly incident and mortal disease [1], affecting
mainly the male population of medium- and low-income countries, such as Brazil that presents
the fourth highest incidence of this disease in the world [2,3]. LSCC diagnosis and treatment is
multidisciplinary, with the employment of different procedures. Nevertheless, 60% of patients present
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advanced disease, and LSCC is one of few tumors with decreasing five-year survival rates over the
past 40 years [4,5]. Consequently, there is a demand to improve therapy response.

The application of molecular biomarkers in the diagnosis, prognosis, and treatment choice was
essential to reduce the mortality rates of prostate, breast, colorectal, and lung cancer [6–9]. Recently,
The Cancer Genome Atlas (TCGA) consortium published a comprehensive molecular study on head
and neck squamous cell carcinoma (HNSCC) [10]. However, not only several molecular alterations
were not site-specific, but also, they were not analyzed regarding clinicopathological features [11].
There is a lack of a more comprehensive molecular analyses concerning LSCC prognosis [5], resulting
in gene-specific or small gene panel analyses. So, at the somatic level, mutations in CDKN2A and TP53,
and copy number alterations in CDKN2A, PIK3CA, and HER2 were associated with worse survival
rates of patients with LSCC. Besides, analysis of mutations in CDKN2A and TP53 in laryngeal dysplasia
could predict lesions that would develop into a tumor [12–14]. In addition, hypermethylation of
CDKN2A gene body was associated with better locoregional control after surgery [15], and LMX1B
hypermethylation was associated with worse overall and disease-free survival rates [16]. Additionally,
the expression of long noncoding RNAs, such as CCAT1, DGR5, H19, and HOTAIR, were also associated
with LSCC prognosis and diagnosis [17]. The signature of claudin expression, specifically claudin 1, 3,
7, and 8, was associated with early diagnosis and metastasis identification and related to prognosis [18],
whereas the analysis of tumor-associated immune cells components, especially CD3, CD4, CD8, CD68,
and CD163 positive cells, was described as useful to predict the response of immunological checkpoint
inhibitor therapy [19].

Therefore, the objective of this study was to identify biomarkers associated with LSCC prognosis.
To achieve it, we carried out a transcriptomic analysis and validated the identified genes in our own
validation set of samples, and also in the TCGA database, revealing ALCAM overexpression as an
independent prognostic factor for LSCC patients.

2. Results

2.1. Identifying Molecular Prognostic Biomarker for LSCC Patients

Transcriptome analysis revealed 725 differentially expressed genes (DEG), 287 overexpressed
and 438 underexpressed, in LSCC when compared to nonmalignant surrounding mucosa (NSM)
(Table S1). These DEGs were related to cell signaling pathways associated with neoplastic
progression, such as cell-extracellular matrix interaction, focal adhesion, PI3K/AKT, and small cell lung
cancer-associated pathway.

Among the 287 overexpressed genes, 24 were associated with prognosis (log-rank p-value < 0.05),
creating a suggestive prognostic gene-pattern expression signature panel of LSCC (Table 1). Therefore,
the expression value of this prognostic gene-pattern signature was used in clustering LSCC samples in
the investigation set of samples, resulting in two groups with significative differences in prognosis.
Cluster 1 contained samples from patients who presented better prognosis (median survival 129.4
months) than patients grouped in Cluster 2 (median survival 14.10 months) (p = 0.0002, Harzard Ratio
(HR) = 45.41, 95% confidence interval (CI) = 6.19−333.0) (Figure 1A). Applying this gene set to TCGA
data, three clusters of LSCC samples were observed. Cluster 3 showed a five-year survival rate of
36.3%, presenting a significative worse prognosis than samples from Clusters 1 and 2, which possessed
a five-year survival rate of 65.4% (Figure 1B).

The ROC (receiving operating characteristic) curve analysis with all 24 genes applied to TCGA
validation set revealed area under curve (AUC) of 1.0 to detect LSCC patients with worse prognosis,
and the same result was observed when using as a minimal subset of 12 genes (ADH7, ALCAM,
CYP2C19, GBP6, LYPD6B, TPD52L1, ODC1, BTBD11, PTGR1, ME1, C12ORF75, and ACVR1). Further
analysis reducing the number of genes from the panel revealed that with three genes (ALCAM, GBP6,
and ME1) we could reach an accuracy of 0.97 (sensitivity of 94.7% and specificity of 93.1%). Further
reduction in the number of genes caused a significant loss of accuracy (Figure 1C,D).
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Figure 1. Laryngeal squamous cell carcinoma (LSCC) transcriptome analysis pointed out the gene
expression signature associated with prognosis. (A) Bayesian hierarchical clustering with the expression
of gene-pattern signature associated with LSCC prognosis was capable to segregate Brazilian National
Cancer Institute (INCA) LSCC samples into two clusters. Kaplan–Meier curve analysis shows prognosis
differences between LSCC samples according to gene-expression signature, with Cluster 1 samples
presenting a significative better prognosis than Cluster 2 samples. (B) Applying the gene-prognosis
panel to The Cancer Genome Atlas (TCGA) LSCC samples revealed three clusters from Bayesian
hierarchical clustering, and Cluster 3 presented a worse prognosis than samples from Clusters 1 and
2. In the heatmaps, each column represents an individual sample and each line represents a gene
expression. The red and green colors represent increased and decreased gene expression, respectively.
Groups were made according to 24 overexpressed gene expressions associated with prognosis. (C) The
12-gene-expression panel (ADH7, ALCAM, CYP2C19, GBP6, LYPD6B, TPD52L1, ODC1, BTBD11, PTGR1,
ME1, C12ORF75, and ACVR1) was capable to distinguish samples of Cluster 3, which presented worse
prognosis, from those from Clusters 1 and 2 with an AUC of 1.0. (D) A three-gene panel with ALCAM,
GBP6, and ME1 expression values showed similar results to those from 12-gene panel, showing AUC of
0.97, sensitivity 94.7%, and specificity 93.1%. Legend: HR, hazard ratio; CI, confidence interval; black
arrow represents the selected ROC curve point.
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Table 1. Overexpressed genes associated to LSCC prognosis in the validation set of samples.

Gene Symbol Official Full Name Log-Rank p-Value

ACOX1 acyl-CoA oxidase 1 0.007
ACVR1 activin A receptor type 1 0.007
ADH7 alcohol dehydrogenase 7 0.005

AGFG2 ArfGAP with FG repeats 2 0.010
ALCAM activated leukocyte cell adhesion molecule 0.007
BTBD11 BTB domain containing 11 0.003
C12orf75 chromosome 12 open reading frame 75 0.010
CDK14 cyclin dependent kinase 14 0.045

CYP2C19 cytochrome P450 family 2 subfamily C member 19 0.005
GBP6 guanylate binding protein family member 6 0.045
GLTP glycolipid transfer protein 0.045
GNG4 G protein subunit gamma 4 0.010
LOX lysyl oxidase 0.045

LYPD6B LY6/PLAUR domain containing 6B 0.013
ME1 malic enzyme 1 0.045

NPEPPS aminopeptidase puromycin sensitive 0.045
ODC1 ornithine decarboxylase 1 0.003
PMM1 Phosphomannomutase 1 0.016
PTGR1 prostaglandin reductase 1 0.000

SERPINA3 serpin family A member 3 0.045
ST3GAL4 ST3 beta-galactoside alpha-2,3-sialyltransferase 4 0.045
TPD52L1 tumor protein D52-like 1 0.045

ZDHHC13 zinc finger DHHC-type containing 13 0.010
ZNF750 zinc finger protein 750 0.045

To validate the prognostic value of each individual gene present in the gene panel, we conducted
univariate survival analyses using LSCC data from TCGA, with ALCAM (p = 0.01), BTBD11 (p = 0.20),
LOX (p = 0.04), and LYPD6B (p = 0.16) being maintained for Cox regression multivariate analysis. Final
Cox regression model showed involved surgical margins (p = 0.001, HR = 4.11, 95% CI = 1.75–9.66),
and ALCAM expression (p = 0.010, HR = 2.74, 95% CI = 1.26–5.97) as independent prognostic factors
(Table 2; Figure 2A). The ALCAM gene overexpression association with prognosis was exclusive for
LSCC in the HNSCC TCGA data, and was not observed either when all HNSCC samples were analyzed
together (p = 0.97), or according to other specific sites (oral cavity (OCSCC), p = 0.34; and oropharyngeal
(OPSCC), p = 0.36) (Figure 2B–D).

Aiming to understand possible reasons behind overexpression of ALCAM, we also analyzed
ALCAM somatic alterations in the LSCC TCGA dataset. ALCAM was amplified in 11.8% of LSCC
samples, showing association with the expression levels (p = 0.018). Only one sample showed a
missense mutation, with unknown biological significance (Figure S1).

Table 2. Survival analyses pointed out ALCAM gene expression as independent prognostic factor
in LSCC.

Feature Categories
Univariate Analysis Multivariate Analysis

HR (95% CI) p Value HR (95% CI) p Value

LSCC TCGA Provisional Data (n = 110)
Age at diagnosis (years) >62 vs. <62 1.19 (0.67–2.12) 0.54

Tumor Stage III-IV vs. I-II 0.74 (0.31–1.77) 0.51
Tumor Differentiation G3 vs. G2 vs. G1 0.69 (0.43–1.12) 0.14 0.98 (0.34–2.82) 0.980
Perineural Invasion Yes vs. No 3.97 (1.67–9.47) 0.001 2.50 (0.92–6.73) 0.069

Surgical Margins Positive/Close vs. Negative 4.20 (1.79–9.83) 0.0009 4.11 (1.75–9.66) 0.001
ACOX1 High vs. Low 1.04 (0.59–1.85) 0.86
ACVR1 High vs. Low 1.26 (0.70–2.25) 0.43
ADH7 High vs. Low 1.05 (0.59–1.87) 0.84
AGFG2 High vs. Low 0.75 (0.42–1.33) 0.33
ALCAM High vs. Low 2.05 (1.13–3.69) 0.01 2.74 (1.26–5.97) 0.010
BTBD11 High vs. Low 1.44 (0.81–2.54) 0.20 2.26 (0.72–7.06) 0.158
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Table 2. Cont.

Feature Categories
Univariate Analysis Multivariate Analysis

HR (95% CI) p Value HR (95% CI) p Value

C12ORF75 High vs. Low 1.04 (0.59–1.86) 0.87
CDK14 High vs. Low 0.92 (0.51–1.66) 0.78

CYP2C19 High vs. Low 1.23 (0.70–2.18) 0.45
GBP6 High vs. Low 1.09 (0.61–1.94) 0.75
GLTP High vs. Low 0.90 (0.51–1.61) 0.74
GNG4 High vs. Low 1.44 (0.81–2.54) 0.21
LOX High vs. Low 1.81 (1.01–3.24) 0.04 1.99 (0.66–6.02) 0.218

LYPD6B High vs. Low 0.65 (0.36–1.18) 0.16 0.60 (0.18–1.95) 0.402
ME1 High vs. Low 1.14 (0.64–2.02) 0.64

NPEPPS High vs. Low 1.16 (0.65–2.05) 0.60
ODC1 High vs. Low 1.38 (0.78–2.46) 0.26
PMM1 High vs. Low 1.21 (0.68–2.15) 0.49
PTGR1 High vs. Low 1.31 (0.74–2.33) 0.34

SERPINA3 High vs. Low 1.44 (0.39–1.23) 0.21
ST3GLA4 High vs. Low 0.80 (0.45–1.43) 0.46
TPD52L1 High vs. Low 0.85 (0.48–1.51) 0.59

ZDHHC13 High vs. Low 0.97 (0.55–1.71) 0.91
ZNF750 High vs. Low 0.90 (0.51–1.60) 0.73

Footnote: HR, hazard ratio; G1, G2, and G3 represent well, moderately, and poorly differentiated, respectively.

Figure 2. ALCAM overexpression confers worse prognosis to LSCC patients. (A) LSCC presenting
ALCAM low expression have a better prognosis than LSCC overexpressing ALCAM (p = 0.01, HR = 2.74,
95% CI 1.26–5.97). The association with prognosis seems to be specific to LSCC among HNSCC tumors.
ALCAM expression was not associated with prognosis analyzing all head and neck squamous cell
carcinoma (HNSCC) together (B) or separately, oral cavity (OCSCC) (C) and oropharnyngeal (OPSCC)
(D). Legend: Black line, ALCAM low expression; grey line, ALCAM high expression. Groups were
made according to ALCAM expression median value.

2.2. ALCAM Protein High Levels Was also Associated to LSCC Worse Prognosis

In order to validate the association between ALCAM overexpression and LSCC prognosis,
we evaluated ALCAM protein expression by immunohistochemistry in 44 LSCC samples (Figure 3A–L).
This analysis showed that 12 tumors (27.3%) had no ALCAM expression, while 32 (72.7%) presented
positive ALCAM immunostaining. The median percentage of positive staining cells was 20%,
and this value was used as cut-off for classifying samples with low or high ALCAM levels. In this
way, eight samples (25%) presented low ALCAM levels, and 24 (75%) tumors presented high
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expression. ALCAM immunostaining was restricted to cell membranes and presented a direct
correlation with ALCAM gene expression (r = 0.37, p = 0.029, 95% CI = 0.03–0.63) (Figure S2). ALCAM
protein immunohistochemical analysis confirmed the worse prognosis associated with ALCAM gene
overexpression. Patients with high ALCAM levels presented a lower median survival time (30.7
months) compared to those tumors showing low or negative ALCAM levels (137.9 months), and high
ALCAM protein levels was also an independent prognostic factor for LSCC (p= 0.04, HR = 2.31, 95%
CI = 1.03–5.28) (Figure 3M). No association was observed between ALCAM protein levels and LSCC
clinical-pathological characteristics.

Figure 3. ALCAM protein levels in LSCC and its association to prognosis. Representative micrographs
of ALCAM protein expression analysis by immunohistochemistry performed in 44 LSCC. In this
analysis, 27.3% of LSCC showed no ALCAM expression (A–C). Among ALCAM positive tumors, 25%
of samples showed expression in less than 20% of cells being categorized as low ALCAM expression
(D–F). LSCC samples with more than 20% of positive cells were categorized as high ALCAM expression
(G–L). (G–I) Representative LSCC with ALCAM staining in 70% of cells. (J–L) Representative LSCC
with ALCAM staining in 80% of cells. (M) LSCC presenting ALCAM protein low levels have a better
prognosis than LSCC overexpressing ALCAM protein (p = 0.04, HR = 2.31, 95% CI 1.03 – 5.28). (A,D,G,J)
grey bar represents scale 1 mm. (B,E,H,K) grey bar represents scale 400 µm, (C,F,I,L) grey bar represents
200 µm. Black line, ALCAM high levels; grey line, ALCAM low levels. Groups were made according
to ALCAM median value of positive cells.

3. Discussion

LSCC is one of the few tumors that have presented decreasing overall survival rates during the
past decades. Therefore, in this manuscript we developed a gene-expression panel that is strongly
associated with LSCC patient’s prognosis. Among the 24 genes that made the panel, ALCAM gene
and protein expression was shown to be an independent prognostic factor for LSCC.

Activated leukocyte cell adhesion molecule (ALCAM) gene is located at human chromosome
3q13.11 [20], and encodes a transmembrane glycoprotein, which acts in the cell–cell adhesion, either in
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homotypic (ALCAM–ALCAM) or in heterotypic (ALCAM–CD6) interactions between adjacent cells [21].
ALCAM expression could be detectable in a variety of tissues and cells under certain spatial and temporal
controls during development [14]. In homeostasis, homotypic ALCAM interactions could modulate
epithelial and endothelial cells’ interactions and neuronal guidance, while ALCAM–CD6 heterotypic
interaction shows physiological relevance in antigen presentation in immune cell adhesion [22–25].
Several studies show a role for CD6 as a co-stimulatory molecule in T-cell activation [26,27] and the
ALCAM–CD6 interaction was described as pivotal for antigen presentation [28,29]. Interestingly, it was
observed that the molecule I/F8 scFv induces ALCAM internalization and the conjugation between
I/F8 scFv and the saporin immunotoxin efficiently kill ALCAM-positive tumor cells selectively [30].
Additionally, vaccine-induced cytotoxic T-lymphocytes can recognize an epitope expressed by ALCAM
and this could be useful as a novel mechanism of induction of potent tumor-specific cellular responses
by mimotopes of tumor-associated carbohydrate antigens [31].

ALCAM seems to characterize cancer stem cells (CSC) in some tumors and ALCAM was highly
expressed in intestinal stem cell niche, with an association to intestinal carcinoma progression,
including benign and metastatic tumors [32]. Subpopulation of nonsmall cell lung cancer (NSCLC)
triple-positive for EPCAM, ALCAM, and CD44 possessed CSC characteristics, including being
highly proliferative, having greater clonogenicity, ability for self-renewal through spheroid formation,
and chemoresistance [33]. Recently, ALCAM-E3 ligase-mediated degradation was associated with
CSC features’ regulation in HNSCC cells [34]. Besides, ALCAM membrane expression was considered
a CSC marker in OCSCC-derived cell lines [35]. We are going to carry out in vitro analysis with LSCC
cell lineages to try to understand the role of ALCAM overexpression in LSCC prognosis.

The long arm of chromosome 3, which presents the ALCAM gene, is a classically amplified
genomic region in squamous carcinomas, particularly in esophageal squamous cell carcinoma
and HNSCC [10,11]. However, only 12% of LSCC samples presented ALCAM copy number
gain/amplification associated with its overexpression, suggesting that further mechanisms, such as
DNA methylation, already shown to be associated with ALCAM overexpression in breast tumors [36],
may also be associated with this deregulation in LSCC.

Although our data pointed out ALCAM gene expression association only with the prognosis
of LSCC patients among HNSCC, our study was the only one that evaluated this marker in
the larynx exclusively. In other HNSCC studies, ALCAM protein overexpression, evaluated by
immunohistochemistry, was already related as an independent prognostic factor for OCSCC, associated
with the sonic hedgehog signaling pathway [37], or Epidermal Growth Factor Receptor (EGFR)
activation [38], in the Chinese population. In a similar way, ALCAM protein level was described as
potential biomarkers for predicting tumor behavior and prognosis of salivary gland tumor in Iranian
patients [39]. Recently, Clauditz et al. [40] evaluated the ALCAM protein expression in HNSCC,
including LSCC samples, combining in the same group of samples laryngeal and hypopharyngeal
tumors, and observed a discordant result to our findings, being ALCAM expression mainly cytoplasmic,
and not associated with the prognosis of LSCC patients.

Recently, studies have proposed the potential use of gene-expression signature to measure the
prognosis of LSCC patients, employing both protein-coding and -noncoding genes. Concerning
protein-coding genes, a panel of 26 hypoxia-related genes was associated with the improvement of
hypoxia-modifying treatment in laryngeal cancer [41], and the expression of 18 inflammatory-associated
genes was capable to distinguish LSCC samples according to prognosis with AUC of 0.61 [42]. A panel
of two long noncoding RNAs was also associated with LSCC prognosis presenting AUC of 0.69 [43].
The limited number of studies that propose biomarkers for LSCC prognosis reflects in only one clinical
trial recruiting LSCC patients according to a biomarker, aiming to block PD1/PD-L1 interaction.

Although our transcriptomic analysis was conducted in a limited number of samples, it was one
of the few studies that evaluated exclusively LSCC, separate from the large HNSCC group. Moreover,
our data exposed the prognostic value of the gene panel and ALCAM in both Brazilian and TCGA
samples. Besides the prognostic value of ALCAM expression measurement, our study pointed out
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a valuable prognostic gene-expression signature, which shows high power to discriminated LSCC
samples regarding their patient’s outcome (12-genes signature AUC 1.00, 3-genes signature ROC 0.97),
which can improve the treatment option and patient monitoring, aiming to improve treatment response.

4. Materials and Methods

4.1. LSCC Samples

A total of 44 LSCC and paired nonmalignant surrounding mucosa (NSM, histopathologically
adjacent normal mucosa, 3 cm from tumor borders) samples were collected from 2008 to 2014 by the
Head and Neck Surgical Division of the Instituto Nacional de Câncer (INCA, Rio de Janeiro, Brazil)
from patients who had not undergone chemo- or radiotherapy treatment. Histopathological profiling
was evaluated by the Pathology Department of INCA. All patients signed an informed consent form,
and the project was approved by the institution’s Ethics Committee.

Among these set of LSCC and NSM samples, 14 LSCC and 12 NSM samples were randomly
selected (investigation set of samples) for transcriptome analysis. The first validation set to confirm
gene expression by qPCR and immunohistochemistry analysis were conducted with samples from
all 44 patients. A second validation set was composed by the Head and Neck provisional data from
TCGA consortium [10]. TCGA data were analyzed with the web-based software cBioPortal [44,45].
Patients’ clinical and pathological features are described in Table 3.

4.2. LSCC Gene-Expression Profiling

RNA of all samples was isolated from frozen tissue with the RNeasy Mini Kit (Qiagen, Inc,
Hilden, Germany). RNA of the investigation set of samples was converted to complementary DNA
(cDNA) with WT Expression Kit, biotinylated, and applied to GeneChip Human Exon 1.0 ST array
(Affymetrix, Inc., Santa Clara, CA, USA), as previously described [46]. The raw data were normalized
in the Expression Console software (Affymetrix) using the robust multi-array average (RMA) method.
Subsequent analysis of gene expression was carried out in R environment, using the limma package,
available from the Bioconductor project, to obtain quantitative expression levels for coding genes.
Differentially expressed genes (DEG) were classified by the following criteria: p < 0.05 and fold-change
expression cutoff |2.0|. Microarray data are available at Gene Expression Omnibus Accession Browser
(accession number GSE143224) [47–49].

4.3. Prognostic Gene-Pattern Signature

The prognostic value of all overexpressed genes was evaluated using the microarray data herein
performed. For this purpose, we analyzed each gene expression regarding its association with the
patient’s prognosis in the investigation set of samples. Higher and lower gene expression were defined,
using as cut-off the median expression value. Genes with log-rank p-value < 0.05 were used for
the Bayesian hierarchical clustering of both investigation and validation set of samples followed by
survival analysis between clusters of samples. Receiver-operating characteristic (ROC) curves and
the area under the ROC curve (AUC), as well as the sensitivity and specificity values, were used to
assess the feasibility of using messenger RNA (mRNA) expression levels as prognostic biomarkers for
LSCC patients. Initially, all prognostic-associated gene expressions were included in the ROC curve
analysis. Genes were removed from the ROC curve analysis following the backward stepwise method
regarding the gene individual AUC value, which resulted in a ROC curve with the lower number
of genes possessing significantly high AUC. Survival analyses, Bayesian clustering, and ROC curve
analyses were conducted in R using the survival packages, BHC and Epi, respectively [50–52].
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Table 3. Clinicopathological data of investigation and validation set of samples.

Feature
Brazilian Samples Investigation Set Validation Set

(n = 44) Brazilian Transcriptome (n = 14) TCGA Data (n = 110) p-Value # p-Value $

n % n % n (%)

Age (years) Median 62.5 58 62
0.81

0.43
Range 44-88 45–77 38–83

Gender
Male 42 95.45% 13 92.86% 91 82.73% 0.46 0.04

Female 2 4.55% 1 7.14% 19 17.27%
NA 0 0 0.00% 0 0.00%

Tumor Differentiation

Well 6 13.64% 1 7.14% 7 6.36%

0.25 0.03
Moderate 34 77.27% 12 85.71% 70 63.64%

Poor 4 9.09% 1 7.14% 29 26.36%
NA 0 0 0.00% 4 3.64%

Tumor Stage

I 3 6.82% 1 7.14% 2 1.82%

0.62 1.00
II 1 2.27% 1 7.14% 9 8.18%
III 7 15.91% 2 14.29% 19 17.27%
IV 31 70.45% 9 64.29% 80 72.73%

NA 2 4.55% 1 7.14% 0 0.00%

Lymph node metastasis
No 16 36.36% 3 21.43% 39 35.45% 0.35 0.70
Yes 26 59.09% 9 64.29% 52 47.27%
NA 2 4.55% 2 14.29% 19 17.27%

Perineural Invasion
Negative 29 65.91% 7 50.00% 45 40.91% 1.00 1.00
Positive 15 34.09% 4 28.57% 24 21.82%

NA 2 4.55% 3 21.43% 41 37.27%

Involved Surgical Margin
Negative 33 75.0% 11 78.57% 81 73.64% 0.43 0.31

Positive/close 9 20.45% 3 21.43% 13 11.82%
NA 2 4.55% 0 0.00% 16 14.55%

Tobacco Smoking
Current/Former 36 81.82% 10 71.43% 101 91.82% 0.18 0.17

No 5 11.36% 2 14.29% 6 5.45%
NA 3 6.82% 2 14.29% 4 3.64%

Alcohol Consumption
Current/Former 31 70.45% 6 42.86% 39 35.45% 0.09 1.00

No 5 11.36% 4 28.57% 7 6.36%
NA 8 18.19% 6 42.86% 71 64.55%

# Feature comparison between Investigation Set and Validation Set. $ Feature comparison between Brazilian Samples and Validation Set.
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4.4. Gene-Expression Validation by Quantitative PCR

ALCAM expression was assessed by RT-qPCR. The cDNA of 44 paired LSCC
and NSM was synthesized with SuperScriptIITM Reverse Transcriptase (Invitrogen®) and
quantitative PCR was carried out with the Quantifast SYBR Green PCR kit (Qiagen) in a
Rotor-Gene 6000 thermal cycler (Qiagen). Gene expression quantification was performed
as previously described [53]. Specific oligonucleotides were used in the expression levels
analyses, as follows: ALCAM Forward 5′-AAGTGTGCAGTACGACGATGT-3′; ALCAM Reverse
5′-GGTTGCTTGAACACCTTGACT-3′; GAPDH Forward 5′ CAACAGCCTCAAGATCATCAGCAA
3′, GAPDH Reverse 5′ AGTGATGGCATGGACTGTGGTCAT 3′. RT-qPCR analyses were conducted
in triplicate, using TE-1 cells as positive control, whereas negative control reactions were performed
without cDNA.

4.5. Immunohistochemistry Analysis

Immunohistochemistry (IHC) was performed on 3-µm paraffin sections of all 44 LSCC cases.
For ALCAM antigen retrieval, sections were incubated in a steam oven while submerged in a trilogy
buffer solution (Cell Marque), for 30 min at 98 ◦C. Sections were then incubated with the primary
monoclonal antibodies against ALCAM (Sigma, St. Louis, MO, USA, HPA010926, working dilution
1:1000), for at least 12 h. Formalin-Fixed Paraffin-Embedded (FFPE) prostate carcinoma samples
served as positive control staining. As the negative control, the primary antibody was replaced by the
diluent solution. The detection system used was the NovoLinkTM Max Polymer Detection System
(Leica Biosystems, Wetzlar, Germany), following the protocol described by the manufacturer, using
diaminobenzidine as substrate (Dako). Sections were counterstained with Harris’ hematoxylin. Scored
cases were considered positive when at least 1% of epithelial cells were stained. LSCC samples were
categorized as low and high ALCAM protein expression using the median number of positive cells
as the cut-off. Samples with positive epithelial cells lower than median value were classified as low
ALCAM tumors and samples with positive epithelial cells equal or higher than median value were
classified as high ALCAM tumors.

4.6. ALCAM Somatic Alterations in LSCC

The frequency of ALCAM copy number alterations (CNA) and single nucleotides variants (SNV)
in LSCC were evaluated in the LSCC of TCGA using cBioportal software, through whole exome
sequencing and DNA microarray applying GISTIC 2.0 protocol [54], respectively.

4.7. Statistical Analyses

Differences in gene expression were evaluated using Kruskal–Wallis test, followed by Dunn’s
multiple comparison tests. Spearman’s rank correlation was used for assessing gene and protein
expression correlation. All analyses were performed with GraphPad Prism 5 software. In survival
analyses using TCGA data, univariate analysis was estimated by the Kaplan–Meier method and
log-rank test. Variables with p < 0.2 were selected for multivariate analysis. Finally, Cox regression was
applied with the stepwise forward method [55]. R environment using the survival package was used for
survival analyses. The same protocol of survival analysis was applied for immunohistochemistry data.

5. Conclusions

ALCAM gene and protein expression seems to be an independent prognosis biomarker to
LSCC patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/2/470/s1,
Figure S1: Somatic alterations in ALCAM gene; Figure S2: ALCAM expression correlation between quantitative
PCR (qPCR) and immunohistochemistry (IHC), Table S1: LSCC transcriptome differentially expressed genes list.
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