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Simple Summary: Head and neck cancers (HNC) account for approximately 500,000 new cases of
tumors annually worldwide and are represented by upper aerodigestive tract malignant neoplasms,
which particularly arise in oral cavity, larynx, and pharynx tissues. Thus, due to the biological
diversity between the upper aerodigestive organs, and to the heterogeneity of risk factors associated
with their malignant transformation, HNC behavior, and prognosis seem to strongly vary according
to the tumor site. However, despite to the heterogeneity which characterizes head and neck tumors,
squamous cell carcinomas (SCC) represent the predominant histopathologic HNC subtype. In this
sense, it has been reported that SCC tumor biology is strongly associated with deregulations within
the extracellular matrix compartment. Accordingly, it has been shown that laminin plays a remarkable
role in the regulation of crucial events associated with head and neck squamous cell carcinomas
(HNSCC) progression, which opens the possibility that laminin may represent a convergence point
in HNSCC natural history.

Abstract: Head and neck squamous cell carcinomas (HNSCC) are among the most common and
lethal tumors worldwide, occurring mostly in oral cavity, pharynx, and larynx tissues. The squamous
epithelia homeostasis is supported by the extracellular matrix (ECM), and alterations in this com-
partment are crucial for cancer development and progression. Laminin is a fundamental component
of ECM, where it represents one of the main components of basement membrane (BM), and data
supporting its contribution to HNSCC genesis and progression has been vastly explored in oral cavity
squamous cell carcinoma. Laminin subtypes 111 (LN-111) and 332 (LN-332) are the main isoforms as-
sociated with malignant transformation, contributing to proliferation, adhesion, migration, invasion,
and metastasis, due to its involvement in the regulation of several pathways associated with HNSCC
carcinogenesis, including the activation of the EGFR/MAPK signaling pathway. Therefore, it draws
attention to the possibility that laminin may represent a convergence point in HNSCC natural history,
and an attractive potential therapeutic target for these tumors.

Keywords: head and neck cancer; oral cancer; pharyngeal cancer; laryngeal cancer; extracellular
matrix; laminin; Laminin-111; Laminin-332; Laminin γ2; LAMC2

1. Introduction

Head and neck cancer (HNC) are among the most common and lethal tumors world-
wide, affecting mostly men and populations from low- and middle-income countries [1,2].
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The great majority of HNC originate from the squamous cells lining the mucosal epithelium
in head and neck sites, being collectively named head and neck squamous cell carcinomas
(HNSCC). The head and neck anatomical sites more frequently affected by the development
of HNSCC are the oral cavity, pharynx, and larynx [3,4]. Together, these three anatomical
sites congregate the vast majority of HNSCC cases and the major number of deaths, as
previously estimated [1,5] and summarized in Table 1.

Table 1. Estimated numbers of new cases and deaths per year worldwide for the most common types of head and neck
squamous cell carcinomas.

Type of Head and Neck Squamous
Cell Carcinoma New Cases per Year Worldwide [1,5] Deaths per Year Worldwide [1,5]

Oral Cavity Squamous Cell Carcinoma 355,000/male-to-female incidence ratio of 2:1 177,000
Pharyngeal Squamous Cell Carcinoma 302,000 159,000
Laryngeal Squamous Cell Carcinoma 177,000/male-to-female incidence ratio of 7:1 95,000

The main risk factors associated with these tumors are tobacco smoking and alcohol
consumption [6]. Additionally, viral infections caused by Human Papilloma Virus (HPV)
and Epstein Barr Virus (EBV) are highly associated with oropharynx and nasopharynx
development, respectively [6].

HNSCC presents poor prognosis since most patients are diagnosed presenting advanced-
stage tumors [7]. HNSCC treatment protocols can include surgery, radiotherapy, chemother-
apy, targeted therapy, or a combination of treatments, depending on the location and stage
of the tumor, patient age, and health condition [8]. The high incidence and lethality of these
tumors, together with their poor prognosis, draw attention to need for deeper understanding
their biology to identify potential biomarkers and therapeutic strategies to improve patient
management and survival.

Molecular characterization of HNSCC has shown a great heterogeneity in molecular
alterations present in these tumors, not only because of the different sites analyzed together,
but also because of the low frequency of specific genetic alterations, even when a specific
site is considered [9]. This characteristic hampers the development of target therapies
based on the genetic alterations present in the neoplastic cells. However, numerous
studies have shown the fundamental role of the extracellular matrix (ECM) during cancer
development and progression, as well as its potential as therapeutic targets [10–12]. In fact,
the relevance of ECM to cancer progression and treatment has long been established and is
originated from the observation that an increase in ECM deposition occurs in the evolution
of malignant neoplasms and is associated with poor patient prognosis and treatment
resistance [13].

ECM includes the interstitial matrix and the basement membrane (BM) [14]. Although
the interstitial matrix is composed of polysaccharides and fibrous proteins that fill the spaces
between cells and acts as a sort of buffer against mechanical stresses and strains placed on the
ECM [14], BM are sheet-like specialized ECM regions that surround most animal tissues [15].
BM functions are quite diverse, not only involving physical roles such as anchoring the
epithelium, but also maintaining tissue integrity and acting by storing growth factors and
cytokines, functioning as a bridge between physical forces and biochemical signaling [15].
The main components of BM are laminins, collagen IV, nidogens and the proteoglycans
perlecan and agrine [15]. Defects in BM assembly or composition result in a multitude
of human diseases. Moreover, although traditionally viewed as a protective structure to
defend tissues against cancer spread and invasion, BM dysregulation is a hallmark of many
cancers [16]. BM degradation by proteases, specifically matrix metalloproteinases (MMP -1,
-3, -7, -9, -10, -12, -13 and -19) produced by tumor cells, such as carcinoma, is also followed
by the production of their own array of molecules, used as substrates for cancer cell invasion
and proliferation. Although tumor-derived BM molecules do not form a similar network
as those from normal tissues, there are striking intramolecular interactions followed by
dynamic modification occurring in the newly formed BM that are crucial in supporting
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cancer development [16]. In this sense, laminins are glycoproteins of high molecular weight
(approximately 400 to 900 KDa) found in the BM of several epithelial tissues and are
presented in the shape of a cross or T, formed by three interlaced chains called α, β and
γ. They were first identified in Engelbreth–Holm–Swarm sarcoma, a tumor that produces
large amounts of basement membrane [17]. Laminins are known to directly regulate crucial
biological events associated with morphogenesis, such as proliferation, adhesion, migration,
angiogenesis, and survival. However, alterations in laminin expression pattern as well as
activity are associated with pathological events, for instance the carcinogenic process, since
they can modulate key cellular processes thus influencing different cellular behaviors [18,19],
thus increasing their relevance as a prominent therapeutic target [18]. In addition, several
studies have shown that the alterations in laminin expression pattern and activity in tumor
tissues are associated with patient outcomes, such as tumor invasiveness and poor prognosis,
revealing its potential as prognosis biomarker [20,21].

This review will particularly focus on an important component of the BM, laminin,
exploring its role in HNSCC carcinogenesis and offering possibilities for its use as a target
therapy for patients with these tumors.

2. Laminin and Squamous Cell Carcinomas

In vertebrates there are five types of α chains (α1–5), three types of β chains (β1–3) and
three types of γ chains (γ1–3). The three-dimensional arrangement of these chains forms
two to three short arms, in their N-terminal region, a small portion of each of the chains,
and a single long arm formed by the intertwining of most part of the three chains. The
short arms of each chain are formed by the globular domains in addition to the laminin
epidermal-growth factor-like domains [22–24]. On the other hand, the long arm forms
only a single domain, called laminin coiled-coil domain. The C-terminal region in the long
arm has five globular domains originating from the α chain, called the laminin globular
domain [24–27]. In total, 18 different laminin isoforms have been found so far and they are
named according to the composition of their chains. For example, the best-studied laminin
is laminin-111 (LN-111) composed of the α1, β1, and γ1 chains [24].

Laminins can bind to several proteins; however, its four main transmembrane re-
ceptors are integrins, dystroglycan, syndecans, and Lutheran blood group glycoprotein.
Laminin binding to these receptors is mediated mainly by the laminin globular domains.
Integrins are the most studied laminin receptors. They are heteromeric membrane proteins
composed of two subunits, α and β. So far, 24 integrins have been identified in mammals
and α1β1, α2β1, α3β1, α6β1, α6β4, α7β1, α9β1, and αvβ3 function as laminin receptors
(for a more in-depth review, see reference [28]).

Although the literature shows that all laminin isoforms are associated with carcino-
genesis, most of the studies indicates that laminin 332 (LN-332) is the one most associated
with malignant transformation of squamous tumors [21]. In fact, in normal stratified
squamous mucosa, LN-332 expression is associated with epithelial-stromal connection
where it exerts a vital role on the maintenance of the cohesion between the BM and these
compartments [29].

LN-332 expression has been shown to correlate well with tumor invasiveness [30,31]
and poor patient prognosis in different squamous cell carcinomas [31,32]. Overall, tumors
overexpressing LN-332 normally arise from tissue sites where LN-332 was physiologically
present, although there are some exceptions, such as decreases in LN-332 expression in basal
cell carcinomas [33] or in breast and prostate cancers [34,35], tissues known to express LN-
332 in physiological situations. Nonetheless, the molecules which compose this “aberrant”
BM can interact with LN-332 and, consequently, contribute to squamous cell carcinomas
development [21]. In this sense, the carcinogenic role mediated by LN-332 primarily occurs
due to its bind to the integrins α3β1 and α6β4, during focal adhesion and anchoring pro-
cess, respectively [36,37]. However, besides the relevance of adhesion/migration process to
tumorigenesis, which are associated with the well-established interaction between LN-332
and integrins α3β1 and α6β4, it seems that the activation of EGFR and PI3K signaling
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pathways by LN-332 proteolytic fragments also play a central role in squamous cell carcino-
mas development [38,39]. Nevertheless, γ2 chain, as a single subunit, may also favor the
adhesion of epithelial cells, since γ2 chain secretion is necessary for the incorporation of
LN-332 into the BM [40]. Furthermore, Ogawa and colleagues demonstrated that the short
arm of γ2 chain can induce cell adhesion by preventing the phosphorylation of β4 integrin,
through a mechanism that involves the binding of γ2 chain to Syndecan-1 [41]. Ultimately,
the key role played by LN-332 in epithelia homeostasis is also observed in squamous tissue
malignization, where its functions are not restricted only to the assembly of BM, but also
comprises the regulation of signaling pathways associated with adhesion, migration, and
growth of malignant cells.

The role of laminin in genesis and progression of the most frequently HNSCC affected
sites—oral cavity, pharynx, and larynx—is the focus of the present review and is discussed below.

3. Oral Cavity Squamous Cell Carcinomas and Laminin

Oral cavity squamous cell carcinomas (OCSCC) comprise tumors arising from different
anatomical sites, such as lips, oral tongue, floor of mouth, buccal mucosa, upper and lower
gums, retromolar trigone, and hard palate [42]. The main etiological factors associated with
OCSCC development are tobacco smoking and alcohol consumption, and in Asian countries,
betel nut and tobacco chewing have also been associated with these tumors [2,43,44]. Tumor
clinical stage at diagnosis greatly impacts on patient prognosis and, unfortunately, OCSCC
are usually detected at late stages, when metastasis is frequently detected, conferring poor
overall survival to patients [42].

In this sense, ECM seems to play an important role in oral cavity carcinogenesis [21],
and the importance of laminin in OCSCC natural history has been increasingly acknowl-
edged during recent decades. Initially, alterations in the expression pattern of distinct
laminin were observed in the malignant transformation, conferring an aberrant laminin
pattern in these tumors [45–47]. Indeed, this aberrant pattern of laminins expression was
associated with the worst OCSCC patient prognosis, with laminin overexpression being
associated with increased tumor size, presence of lymph node invasion, and treatment
resistance, among other parameters [48–50], indicating that the presence and deposition
pattern of LN-332 may be a potential prognosis marker [51–54].

However, due to the heterotrimeric structure of LN-332, its biological relevance in oral
cavity cancer progression seems to be more complex, since it is known that each subunit
possesses its own intrinsic activity [40]. To this extent, it has been consistently reported that
the aberrant levels of LN-332 γ2 chain are associated with the invasive phenotype of oral
cavity tumor cells, since early local invasion [55–57]. Furthermore, immunohistochemistry
and morphological analysis of oral cavity carcinomas have previously revealed that the LN-
332 γ2 chain is actively expressed in tumor-budding areas surrounded by myofibroblasts,
indicating that the γ2 chain may act as a mediator of the invasion process through stromal
compartment [58]. This is in accordance with the positive association between overexpression
of the LN-332 γ2 chain and decreased survival rates of OCSCC patients observed in the study
of Gasparoni and colleagues [59]. Furthermore, among a panel of 131 OCSCC prognosis
biomarker candidates, the gene that encodes the γ2 chain (LAMC2) was the one that presented
the best performance, being associated with the worst prognosis subtypes [60].

In addition to its prognosis potential, the LN-332 γ2 chain may also be useful as an
early diagnosis marker for OCSCC, since it has been shown that dysplastic cells from the
oral cavity display high levels of γ2 subunit [61]. Additionally, by using large-scale gene
expression analysis, Chen and colleagues showed that LAMC2 represents one of the most
promising genes to predict the onset of oral cavity squamous tumors [62].

The association between the expression of the LN-332 γ2 chain and the invasive and
metastatic processes of OCSCC has been reported not only by translational studies, but also
by functional analysis that showed that the expression of the γ2 chain is associated with
enhanced migration and invasion processes [18]. Contrarily, Yuen and colleagues observed
that the abrogation of γ2 chain expression was able to increase the invasive capacity of



Cancers 2021, 13, 1890 5 of 17

OCSCC cell lineages. Nevertheless, the mechanisms underlying this phenomenon was not
reported by the authors [63]. In accordance with Jourquin and colleagues, Oku et al. further
demonstrated that claudin-1 leads to an increase in the expression of matrix metallopro-
teinase 2 (MMP-2) and membrane type 1 matrix metalloproteinase (MT1-MMP), as well to
the cleavage rate of laminin γ2 chain by these proteases, inducing the invasive phenotype
of OCSCC cells [64]. Therefore, the role of the γ2 chain during the migration of malignant
oral cells seems to result from its different assembly modes: present in BM as part of LN-332
structure or as a single chain [65]. In this way, it is known that LN-332 binding to distinct
integrin complexes, such as α2β1, α3β1, and α6β4 during the anchoring of epithelial cells
represents a fundamental step in cell migration [66]. For instance, the binding of LN-332
to α3β1 integrin is a central event in cell–cell adhesion mediated by e-cadherin, which
culminates in the decrease of epithelial cells motility [67]. This is in accordance with the data
produced by Yuen and colleagues showing that the abrogation of γ2 chain expression could
weak cell–cell adhesion and, in turn, favor cell motility [63]. In addition, cell–cell adhesion
also represents a crucial regulator of γ2 chain activity, since the destabilization of tight
junction, because of claudin-1 silencing, can decrease the expression of metalloproteinases,
such as MT1-MMP and MMP-2, leading to the decrease of the cleavage and activation of γ2
chain [64]. Furthermore, the decrease of cell–cell adhesion due to the down-regulation of
e-cadherin expression during the epithelial–mesenchymal transition (EMT) also induces
the up-regulation of the γ2 chain and increases cellular migration [68]. Moreover, it is
already known that besides representing a mandatory step during EMT, the activation of
the transcription factor Snail is also able to down regulate the expression of claudin-1 [69].
Thus, the adhesion weakness promoted by the activation of Snail/EMT program seems to
be a central pathway involved in the regulation and activation of the γ2 chain, since this
pathway could play a dual regulation of γ2 chain expression/activation. This is because
low cadherin expression associated with the EMT program could induce overexpression of
the γ2 chain, while Snail activation during the EMT program may down regulate claudin-1
expression, which, in turn, culminates with a decrease in γ2 chain activation.

Moreover, the γ2 chain binding to EGFR may also represent a critical event during
tumor progression [12,70]. In this sense, it was already reported that the release of a fragment
called DIII after the degradation of the γ2 chain by MMP2 and MT1-MMP can bind to EGFR,
culminating not only in a positive regulation of cell motility, but also in the activation of the
MAPK pathway [38]. These data sound interesting since the overexpression of the γ2 chain
before the invasion of OCSCC tumors [55–57] is also associated with the proliferation of oral
malignant cells due to the triggering of the MAPK pathway by the γ2 chain DIII fragment. In
addition to confirming the relationship between EGFR/MAPK signaling pathways and γ2
chain expression, an elegant study produced by Degen and colleagues demonstrated that the
overexpression of the γ2 chain itself may force the activation of EGFR/MAPK signaling [70].
Moreover, functional analysis involving the inhibition of EGFR, by using siRNA approach
or its chemical blockage, reinforced the association between EGF pathway and γ2 chain
in tumor progression [20]. Therefore, since it was previously reported that amplification
of EGFR gene is associated with the overexpression of the γ2 chain in OCSCC [71], it is
reasonable to think that a loop mechanism may be involved in the aberrant expression of
the γ2 chain in OCSCC development. In this sense, the amplification of EGFR gene may
induce the expression of the γ2 chain that, in turn, would hyperactivate the EGFR/MAPK
signaling pathway, besides inducing migration and growth of malignant cells, also in a
feedback circuit, by increasing γ2 chain expression.

Lately, several studies have shown that the biology of HNSCC could be strongly
influenced by miRNAs [72]. In this sense, after identifying that the down-regulation of
miR-29s family represents a molecular signature associated with HNSCC, Kinoshita and
colleagues showed that γ2 chain is a target of miR-29s. The induction of miR-29s can
repress γ2 chain expression, reverting the invasive phenotype of HNSCC cell lines [73].
Furthermore, in a similar way, upon ectopic expression of miR-134 in OCSCC cell lines,
it was observed that the down-regulation of LAMC2 culminates in the inactivation of
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PI3K/AKT signaling [74], which seems to reinforce the involvement of γ2 chain in the
activation of MAPK pathway. Furthermore, it was reported that the long non-coding RNA
LINC00511 may act as a decoy to the miR-765 in the tongue squamous cell carcinoma
(TSCC), avoiding the negative regulation of LAMC2 expression by miR-765 as well the
malignant progression of TSCC cells [75]. Finally, it seems that the influence spectrum of γ2
chain in oral squamous tumor development is not limited to the regulation of malignant cell
behavior per se, since the release of extracellular vesicle enriched in the γ2 chain by OCSCC
cells is able to stimulate the lymphatic endothelial cells to promote the lymphangiogenesis,
which represents an important route during metastasis establishment [76].

Even though the main evidence points to the γ2 chain as a major player in OCSCC
development, some studies have revealed that α3 and β3 chains may also be involved in
the carcinogenesis of the oral cavity [77,78]. Moreover, despite the relevance of LN-332, the
identification of LN-111-derived peptides has reinforced the importance of laminin “active
fragments” in the biology of oral cavity cancers, since it was shown that the LN-111-derived
peptide, AG73, positively modulates the migration and invasion of OCSCC cell lines by
triggering an axis which involves syndecan-1 and β1 integrin receptors, as well as the
secretion of matrix metalloproteinase protein 9 (MMP-9) [79]. In addition, activation of β1
integrin, Src, and ERK 1/2 signaling pathways by LN-111-derived peptide C16 seems to be
essential for the invasion of OCSCC cells, due to the regulation of invadopodia activity [80].
The mechanisms through which laminin is involved in the OCSCC malignant phenotype
acquisition are summarized in Figure 1.
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Figure 1. Role of laminin in oral cavity squamous cell carcinomas (OCSCC) progression. The figure illustrates the main
mechanisms through which laminin is involved in OCSCC malignant phenotype acquisition. Up-regulation of the transcription
factor Snail activates epithelial–mesenchymal transition (EMT), and consequently e-cadherin down-regulation, which
enhances laminin 332 (LN-332) γ2 chain expression. Additionally, overexpression of claudin-1 leads to an increase in the
expression of matrix metalloproteinase 2 (MMP-2) and membrane type 1 (MT1)—MMP, as well as to the cleavage rate of
LN-332 (γ2) by these proteases, culminating in the migration and invasion of OCSCC. Also, EGFR gene amplification is
associated with overexpression of γ2 chain (LAM γ2) that, in turn, hyperactivates EGFR/MAPK signaling pathway and,
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in a feedback circuit, increases LAM γ2expression. Moreover, the secreted LN-332 (γ2) is cleaved by MMP2 and MT1-MMP,
generating the DIII fragment that can bind to EGFR, ending up in the activation of EGFR/MAPK pathway. Finally, the
activation of EGFR/MAPK signaling pathway enhances proliferation and invasion rates of OCSCC cells. Dotted arrows:
molecules secreted by OCSCC cells; solid arrows: activation of cellular events or intracellular signaling pathways; red
solid arrow: overexpressed molecules; red boxes: activated signaling pathways; blue boxes: cleavage by MT1-MMP.
BM = basement membrane.

Thus, the involvement of laminin in the progression of OCSCC, through the modula-
tion of key signaling pathways and its consequent impact on crucial cellular mechanisms
such as EMT, migration, and invasion is quite clear and justifies its envisagement as a
potential therapeutic target.

4. Pharyngeal Squamous Cell Carcinomas and Laminin

Pharyngeal tumors comprise neoplasms originating from nasopharynx, oropharynx,
and hypopharynx. Nasopharyngeal cancers are the most common among them, accounting
for approximately 40% of the pharyngeal tumors, whereas oropharyngeal tumors represent
around 30% of them, as well as hypopharyngeal cancers [1]. The great majority of oropha-
ryngeal and hypopharyngeal tumors are squamous cell carcinomas whose development is
associated with heavy tobacco and alcohol consumption [81,82]. Another important risk
factor associated with the development of oropharyngeal squamous cell carcinomas (OP-
SCC) is the infection caused by HPV. In recent decades, the incidence of OPSCC associated
with tobacco and alcohol abuse has declined gradually worldwide, due to anti-tobacco
policies, while the incidence of OPSCC associated with HPV infection is increasing [82].
Similarly, nasopharyngeal tumors are mostly represented by squamous cell carcinomas
(NPSCC), nevertheless, the main risk factor associated with their development is the infec-
tion with EBV [83,84]. Thus, despite the differences in their site of origin and associated risk
factors, pharyngeal tumors are mostly squamous cell carcinomas and, thus, associated with
aberrant BM deposition and loss of its structural and functional integrity. Alteration in the
expression or deposition of laminin has been extensively investigated as markers of loss of
integrity of the BM. In NPSCC, as cited previously, most of the tumors are associated with
EBV infection [85–87], and part of its transforming potential occurs through the expression
of LMP1 oncoprotein. This protein induces cell motility and invasion by activating several
different signaling pathways and MMPs, among others. In this sense, induced LMP1
infection in a NPSCC cell line triggered LAMC2 overexpression, as well as that of integrin
α6 [88], suggesting that the development of NPSCC is linked to laminin presence. Further-
more, the ectopic expression of the viral oncogenes LMP1, LMP2a, and LMP2b in a normal
keratinocyte cell line enhanced epithelial thickness and vacuolization. Additionally, upon
ectopic expression of LMP1, LMP2a, and LMP2b, LN-332, whose expression is normally
restricted to the basal layer of normal keratinocytes, is strongly detected in the suprabasal
layers. This phenomenon is also observed for integrin α6, β4, α3, α5, β1 and other cell
adhesion molecules [89], suggesting that EBV infection leads to an altered cell adhesion
molecule expression in keratinocytes, compatible with nasopharyngeal carcinomas, and
that alteration in laminin is tightly involved in this process.

Additionally, epigenetic alterations are also involved in the differential expression of
laminin in NPSCC. Sengupta and colleagues reported a significant up-regulation of LN-332
γ1 chain, as well as seven types of collagen, in nasopharyngeal carcinoma, when compared
to non-malignant nasopharyngeal epithelia. The mechanism underlying LN-332 γ1 chain
induction is the down-regulation of miR-29c, which specifically targets γ1 and different
collagens differentially expressed in NPSCC [90].

Alterations in laminin are also present in OPSCC. Ricci and coworkers demonstrated
that LN-332 is aberrantly expressed in oropharyngeal carcinomas. Specifically, while in
non-tumor oropharyngeal mucosa the expression of LN-111, LN-332 and collagen IV is
displayed as linear and continuous in the BM, in OPSCC this pattern shifts to irregular
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with loss of linear distribution and fragmentation. In addition, integrin distribution pattern
is also irregular and diffuse, being this molecule known for binding to LN-332. Importantly,
the observed disruption of basal lamina enhances the invasive and metastatic potential
of OPSCC [91], suggesting that the differential laminin expression pattern in tumors is
associated with patients’ worst prognosis.

Regarding hypopharynx squamous cell carcinoma (HPSCC), Frenette and coworkers
analyzed the involvement of laminin in the metastatic process. In this study, laminin
expression pattern was assessed in primary HPSCC, in recurrent or metastatic hypopha-
ryngeal carcinomas, and in non-malignant human keratinocytes. The authors did not
observe any significant differences in the levels of laminin expression in the different
samples evaluated, nevertheless, they observed that non-malignant keratinocytes secreted
lower levels of laminin when compared to tumor samples. Furthermore, HPSCC samples
secreted and shed most of the laminin produced and this phenomenon was positively
associated with the aggressiveness of the tumor [92]. Still in HPSCC, LN-332 expression
was evaluated in a set of samples and its presence was detected in over 90% of the HPSCC
investigated, being most of them classified as high LN-332 expression. Additionally, LN-
332 was predominantly present in the invasive front of the tumor mass and its expression
was positively associated with high infiltrative tumors and presence of vascular invasion.
Of note, these were poor prognosis parameters, negatively impacting HPSCC patient
overall survival. Finally, other tumor markers were evaluated in the same set of samples,
such as E-cadherin, β-catenin and IL-6, and none of them presented significant association
with patient clinicopathological parameters or prognosis [93].

Therefore, despite the scarce literature, the data produced so far points out to the
role of laminin in the development and/or progression of pharyngeal carcinomas, and
consequently, the impact on patient prognosis.

5. Laryngeal Squamous Cell Carcinoma and Laminin

Laryngeal tumors represent another very common HNC. Approximately 96% of laryn-
geal cancers are LSCC [94]. It has been reported that the incidence of LSCC is associated with
modern lifestyle factors, including smoking and alcohol consumptions [95]. Furthermore,
due to inefficient early diagnosis and prognosis methods, recurrence and metastasis remain
the principal causes of death from LSCC [96,97]. Therefore, it is of great importance to find
effective early diagnostic indicators and to establish more reliable treatment strategies for
LSCC. Among such strategies are the studies that investigate changes in BM. Although
early observations had considered BM as a protective structure against cancer spread and
metastasis [16], it is now accepted that BM role in cancer invasion and tumor development
is much more complex [98].

Modifications in BM structure, particularly those involved with its disorganization or
dissolution have been correlated with the biological course of tumors [99], including LSCC,
where loss of BM constituents, such as collagen VII in general, has been associated with
prognostic factors [100–102]. However, tumor cells can secrete their own BM molecules,
also used as substrates for invasion and proliferation [98]. One of these molecules is LN-332,
which has been shown to be highly expressed in several squamous tumors such as cuta-
neous, oral and LSCC [21,30–32,103]. Particularly for LSCC, Hagedorn and coworkers [102]
conducted a study using 26 different carcinomas staged between T1 and T4, with half pre-
senting lymph node metastasis and the majority with diffuse infiltration pattern as poorly
differentiated carcinoma. The authors observed the presence of LN-332 in the BM zone of
all cases evaluated as well as within tumor cells at the tumor invasion front, indicating a
disturbed synthesis and non-polarized distribution of LN-332. These observations agree
with Kainulainen et al. [50] and Matsui et al. [104] who also described high expression
of LN-332 in oral squamous cell carcinoma, at the tumor-stroma-interface. Although no
significant correlation between staining of LN-332 and other clinicopathological parameters
and/or prognostic significance could be established. Ricci et al. [91] demonstrated that
partial or intense fragmentation of the BM zone are followed by greater loss of the linear
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distribution of LN-332, which could be considered an additional marker of tumor aggres-
siveness with increasingly poor prognosis, although they also observed that oropharyngeal
carcinomas were found to spread and metastasize more rapidly than laryngeal carcinomas.

High levels of LN-332 could promote the proliferation of tumor cells expressing their
interacting integrin and/or non-integrin receptors and should also have a greater metastatic
capacity, especially when BM fragmentation exists [105]. It has been suggested that an
increase in LN-332 expression (particularly the γ2 chain) is associated with tumor invasion.
Pyke and collaborators [106] reported similar observations in colon adenocarcinoma, while
Nordermar et al. [32] examined 38 different patients with in situ squamous epithelial
carcinomas (CIS) of the larynx and observed that 100% of the CIS lesions that progressed
into invasive cancer were LN-332 γ2 chain positive, while only 37% that did not progress
to invasive carcinoma showed positivity. Thus, the LN-332 positive laryngeal CIS lesion
indicates a high risk of the progression to invasive cancer.

Apart from LN-332 γ2 chain overexpression, other studies have associated the 67-kDa
laminin receptor (LR), a nonintegrin receptor, with the metastatic phenotype and poor progno-
sis in a variety of tumors [107], including LSCC [108]. Zhou and coworkers [108] demonstrated
that the expression of LR positively and significantly correlated with the extent of differenti-
ation of LSCC, suggesting the role of this receptor in the proliferative process of this tumor.
Moreover, LSCC tumors with cervical metastases expressed higher amounts of LR when
compared to those without metastatic features, indicating that LR together with LN-332 could
play a critical role in the process of tumor invasion and metastasis. Finally, the authors also
speculated that blocking LR expression could be useful to inhibit LSCC tumor aggressiveness
at early stage and tested this hypothesis in vitro using a cell lineage derived from a previous
LSCC. They showed that the monoclonal antibody against LR inhibited the adhesion of cells to
laminin substrates and reduced the invasive capability of the cells to matrigels, suggesting that
LR may participate not only in cell migration but also in cell adhesion and matrix dissolution,
the three steps involved in tumor invasiveness. Indeed, other studies have shown the crucial
role of LR. It has been demonstrated that the binding of tumor cells to laminin induce cells
to increase production of LR mRNA [109]. Moreover, binding of LR to laminin induced the
secretion of BM degrading enzymes, such as type IV collagenase [110]. In addition, it has
been found that LR activated proteolytic enzymes and promoted tumor invasion after ECM
degradation [111].

Finally, we must emphasize that this research area still needs to be further investigated.
There are still some controversies, such as investigations that did not observe correlations
between laminin expression and increases in LSCC metastasis to the neck [112]. It is clear
that differences in ECM components and composition have a strong impact on LSCC
development and progression. Thus, it is necessary to increase investigations to go ahead
unraveling the mechanisms involved to help define possible targets for clinical intervention.

6. Laminin as a Therapeutic Target for HNSCC—Future Perspectives

The rising understanding of the mechanisms through which laminin enhances prolif-
eration, migration, and invasion of HNSCC cells, thus contributing to cancer progression,
indicates that its suppression may be an interesting therapeutic target for these tumors.

In this context, different strategies could be envisaged to generate potential laminin-based
anticancer therapy. For instance, antagonists/neutralizing antibodies could be a promising
strategy to block the “oncogenic” effects of laminin, as well as the development of recombinant
laminins able to elicit cellular adhesion, but not motility. Also, the generation of molecules
that promote the degradation of laminin in tumors could be an intriguing therapeutic strategy.
Clearly, one of the challenges of such approaches would be to direct the inhibition effects over
laminin expression and/or activity specifically to tumor cells, but not to the healthy ones.
Yet, considering HNSCC, LN-111 and LN-332 should be the preferential targets, since these
laminins seem to be the most involved with their progression. Of note, the use of a LN-332
antagonist antibody was already tested in skin squamous cell carcinomas (SSCC) demonstrat-
ing encouraging and anti-tumor specific results [113]. Additionally, the inhibition of LN-332
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expression and/or its functions in tumors, by using synthetic peptides or pharmaceutical
reagents, has been investigated and indicated promising outcomes [114–116].

In addition to direct target laminin, other molecules intrinsically involved in the
activation and/or function of laminin in HNSCC could also be the target of a potential
anti-laminin therapy. In this sense, the 37 kDa laminin receptor precursor (LRP)/67 kDa
high-affinity LR also represents an attractive target. LRP/LR is a transmembrane receptor
that presents high affinity to LN-111 [117], which is one of the main laminins involved
in head and neck carcinogenesis. LRP/LR is overexpressed in various cancer types [118]
and associated with enhanced tumor invasive potential [107]. Additionally, LR plays an
important role in LSCC carcinogenesis, as discussed above. Currently, there are patented
approaches targeting LRP/LR as anti-tumor therapy, such as monoclonal antibodies and
small interfering RNAs that have already demonstrated to be effective in preventing cell
adhesion, invasion and survival in different tumor types [119].

MMPs are also crucial for laminins activation and could also be suggested as an
interesting target for anti-laminin therapy. In fact, in recent decades, MMPs have been
suggested and evaluated as potential therapeutic target for distinct diseases due to their
crucial role in ECM remodeling, but without high success rate. The main reason for this
is the fact that there are 23 different MMPs in humans, sharing high structural homology
and substrate specificity overlap, but without functional redundancy. This means that
each MMP is unique concerning the effect caused on ECM properties [120]. Thus, MMPs
inhibitors usually affect more than one metalloproteinase, due to their structural homology,
generating undesired off-target effects. Nevertheless, in recent years, the knowledge of
MMPs activity has greatly improved, enabling the development of the next-generating
MMP inhibitors that are highly specific and capable of discriminating between homologous
MMPs. The next-generating of MMP inhibitors includes small molecules and antibody-
based inhibitors that unveil new potential anti-laminin therapeutic opportunities [121].

However, it seems that laminin may influence the therapeutic response to classical and
new treatment approaches, since it has been reported that laminin could play a key role
in chemotherapy and immunotherapy treatments. It was already reported that the ratio
between laminin 411 and laminin 511 may affect the migration and polarization of leukocytes
that, in turn, could disturb the shift from the immunotolerant to immunoreactive state, thus
indirectly impacting on immunotherapy response [122]. However, as previously discussed,
laminin 332 and its γ2 chain represent the main laminin subtype associated with natural
history of squamous tumors from head and neck [21]. In this way, the study performed by Ly
and colleagues shed some light on the mechanisms involved in the immune responsiveness
of anti-PD-1 therapy, since it clarifies the intimal association between TGF-β1 and LN-332
γ2 expression, in lung and esophageal cancer patients anti-PD-1 therapy escape, due to a
complex circuit which involve the triggering of c-Jun N-terminal kinase (JNK) and AP1 [123].
Moreover, these data seem to reinforce the relevance of the tumor microenvironment during
the therapeutic management, since they reveal that the immunosuppressive cytokine TGF-β1
released by cancer-associated fibroblasts (CAFs), was able to induce the overexpression of
LN-332 γ2 that, in turn, blocked the entering of T cells in the tumor tissue. This culminates
with poor response to immunotherapy mediated by PD-1 blockage. Finally, alterations in
the expression pattern of laminin after chemotherapeutic approach [124,125], may also reveal
its influence on this therapy, otherwise, no mechanism has been already described until the
present moment.

Finally, the feedback activation loop between LAMγ2 and EGFR signaling pathway in
OCSCC (summarized in Figure 1) points out the opportunity of using EGFR anti-tumor
target therapy as, or in combination with, an anti-laminin approach. Of note, one of the
few currently available molecular target therapies for HNSCC is the EGFR monoclonal
antibody, cetuximab. It works as a radiosensitizer and is employed alone or in combination
with chemotherapy. Nevertheless, cetuximab, and other EGFR target drugs, still do not
reach high efficiency rate for HNSCC treatment [118,126]. Considering the multimodal ther-
apeutic approach preconized for HNSCC, one could suggest that the addition of another
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molecular target capable of modulating EGFR/MAPK signaling pathway—laminin-based
therapy—could improve their efficacy and, thus, patient management and prognosis.

Taken together, this review summarizes the main data that leads to the proposition that
laminin is a feasible and potential therapeutic target to be further investigated and explored
for HNSCC patient treatment. Laminin has already been suggested as a key therapeutic
target for other tumor types [20,119,127], reinforcing its potential as anti-tumor therapy.

7. Conclusions

In this review, we discussed the clear contribution of laminin for the progression
of HNSCC, particularly for those of oral cavity, pharynx, and larynx. In this sense, the
aberrant expression of LN332 seems to represent the main characteristics which connect
the distinct head and neck squamous tumors, since several studies have been shown
that the LN332, and particularly its γ2 chain overexpression, are associated with tumor
progression of oral cavity, pharynx, and larynx tissues. However, in the development of
OCSCC, despite the relevance of LN332/γ2 chain expression, the biological fragments
which arise from the degradation not only from LN332 but also from LN111 may play a
remarkable role in the carcinogenesis of oral tissue. In fact, it was previously reported that
the laminin fragments activate EGFR/MAPK as well as PI3K/AKT signaling pathways,
consequently triggering crucial cellular mechanisms, such as EMT, migration, and invasion
(Figure 1). Although the scarce literature demonstrates that laminin is involved with the
progression of pharyngeal and laryngeal squamous cell carcinoma tumors towards a more
aggressive and invasive phenotype, the mechanisms underlying this phenomenon are not
yet reported, mainly because of limited in vitro and in vivo models currently available for
the study of these tumors. Nevertheless, based on tumor similarities, one could suggest that
similar signaling pathways may be modulated in pharyngeal and laryngeal squamous cell
carcinomas, representing common mechanisms by which laminin plays a role in HNSCC
progression. Therefore, the data discussed here draws attention to the possibility that
laminin may represent a convergence point in HNSCC natural history, and an attractive
potential therapeutic target for these tumors (Figure 2).
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Figure 2. Laminin involvement in head and neck squamous cell carcinomas (HNSCC) progression. Schematic representation
of HNSCC most frequent affected anatomical sites and summary of the already identified involvement of laminin in HNSCC,
pointing out its intervention potential in tumor’s natural history. Head and neck anatomical sites from where the squamous
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cell carcinomas discussed in this review arise are highlighted by a red frame. Secondary prevention is highlighted since the
aberrant expression pattern of laminin in HNSCC unveils a potential value of its use as early diagnosis biomarker. Likewise,
tertiary prevention is also highlighted since cleavage and activation of laminin trigger intracellular signaling pathways that
lead to the acquisition of a malignant phenotype and may represent a potential new therapeutic target. Additionally, cleavage
and activation of laminin are associated with patient outcome, indicating a potential value of its use as prognosis biomarker.
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HNC Head and Neck cancers
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HNSCC Head and neck squamous cell carcinomas
ECM Extracellular matrix
LN-111 Laminin subtype 111
LN-332 Laminin subtype 332
BM Basement membrane
EGF Epidermal-growth factor
EGFR Epidermal-growth factor
MAPK Mitogen-activated protein kinase
HPV Human papiloma virus
EBV Epstein Barr Virus
PI3K Phosphoinositide 3-kinase
OCSCC Oral cavity squamous cell carcinomas
MMP-2 matrix metalloproteinase 2
MT1-MMP membrane type 1 matrix metalloproteinase
EMT epithelial–mesenchymal transition
DIII γ2 chain fragment
TSCC tongue squamous cell carcinoma
AKT Protein kinase B
RNA Ribonucleic acid
MMP-9 matrix metalloproteinase 9
Src Proto-oncogene tyrosine-protein kinase Src
ERK 1/2 Extracellular signal-regulated kinases 1 and 2
OPSCC oropharyngeal squamous cell carcinomas
NPSCC nasopharyngeal squamous cell carcinomas
LMP1, 2a and 2b Latent membrane proteins 1, 2a and 2b
LAMC2 gene that encodes the γ2 chain
HPSCC hypopharyngeal squamous cell carcinomas
IL-6 Interleukin 6
LSCC Laryngeal squamous cell carcinomas
CIS in situ squamous epithelial carcinomas
LR Laminin receptor
SSCC Skin squamous cell carcinomas
LRP Laminin receptor precursor
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