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Abstract 

Background: Interaction between malignant cells and immune cells that reside within the tumor microenvironment 
(TME) modulate different aspects of tumor development and progression. Recent works showed the importance of 
miRNA-containing extracellular vesicles in this crosstalk.

Methods: Interested in understanding the interplay between melanoma and immune-related TME cells, we char-
acterized the TCGA’s metastatic melanoma samples according to their tumor microenvironment profiles, HLA-I 
neoepitopes, transcriptome profile and classified them into three groups. Moreover, we combined our results with 
melanoma single-cell gene expression and public miRNA data to better characterize the regulatory network of circu-
lating miRNAs and their targets related to immune evasion and microenvironment response.

Results: The group associated with a worse prognosis showed phenotypic characteristics that favor immune eva-
sion, including a strong signature of suppressor cells and less stable neoantigen:HLA-I complexes. Conversely, the 
group with better prognosis was marked by enrichment in lymphocyte and MHC signatures. By analyzing publicly 
available melanoma single-cell RNA and microvesicle microRNAs sequencing data we identified circulating micro-
RNAs potentially involved in the crosstalk between tumor and TME cells. Candidate miRNA/target gene pairs with 
previously reported roles in tumor progression and immune escape mechanisms were further investigated and dem-
onstrated to impact patient’s overall survival not only in melanoma but across different tumor types.

Conclusion: Our results underscore the impact of tumor-microenvironment interactions on disease outcomes and 
reveal potential non-invasive biomarkers of prognosis and treatment response.
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Background
Metastatic melanoma is a very aggressive and lethal dis-
ease. The high metastatic capacity and therapy resistance 
indicate a poor prognosis, such that the survival rate of 
advanced melanoma patients is approximately  one year 
and most patients succumb to the disease within 
three  years of diagnosis [1]. The use of targeted- and 
immunotherapies is expected to increase patient survival, 
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however, most melanoma patients continue to present 
poor prognosis due to therapy resistance, mainly after 
metastasis [1, 2]. Therefore, there is a need for studies 
dissecting melanoma biology, its pathogenesis, and rela-
tionship with the immune system that could aid the iden-
tification of new treatment strategies. Numerous studies 
have confirmed that tumor progression and recurrence 
are shaped by the tumor microenvironment (TME) [3, 4] 
besides the genetic changes inherent to the cancer cells. 
During melanomagenesis, both tumor cell prolifera-
tion and apoptosis are shaped by the activity of immune 
cells [5]. In this process called immunoediting [6], the 
features that suppress the cytotoxic immune infiltrate 
and promote tumor survival are positively selected. The 
understanding of these mechanisms has been crucial for 
treatment improvement and for the development of new 
immunotherapy strategies. Although immunotherapy 
approaches targeting CTLA-4 and PD-1 have been suc-
cessful for melanoma and other cancer types [7], mean-
ingful clinical responses have only been observed for a 
subset of patients. The observed variation in treatment 
efficacy has been related to heterogeneity in the compo-
sition of immune cells among individual tumors as well 
as the tumor mutation burden and expression of immune 
checkpoint molecules, but these factors alone can-
not accurately predict a successful outcome of patients 
treated with immune checkpoint blockade [8, 9].

In this sense, many efforts have been made in order to 
characterize the composition of major immune cell sub-
sets present in the TME. The T and B cell receptor (TCR 
and BCR) repertoire, the neo-antigenic immune targets 
[10–13] and, more recently, finer definitions of the fre-
quency of immune cell subsets in tumors have revealed 
important molecular heterogeneities that are not intrin-
sic to the melanoma cells, but extend to the associated 
tumor components that shape the tumor microenviron-
ment [14].

Besides characterizing the TME composition and the 
molecular alterations in tumors, it is crucial to under-
stand how cancer cells and the surrounding neighbor 
cells are communicating to promote a favorable tumor 
growth niche. This crosstalk can occur indirectly, as for 
example through the release, by the tumor cells, of extra-
cellular vesicles (EVs) containing oncogenic proteins, 
microRNAs (miRNA), messenger RNAs (mRNA) and 
DNA that are absorbed by the surrounding fibroblasts, 
immune, and endothelial cells altering their behavior in 
favor of tumor progression and metastasis [5], and vice 
versa. miRNAs from melanoma-derived exosomes have 
been implicated in the activation of cancer-associated 
fibroblasts (CAFs), in epithelial to mesenchymal transi-
tion, in neovascularization, and in the inhibition of the 
adjacent immune cell populations [15]. Some studies also 

suggest that circulating levels of certain miRNAs such 
as let-7a, mir-149, mir-211, and mir-191, are considered 
biomarkers of melanoma diagnosis and prognosis [16].

Although several mechanisms of immune evasion 
have been identified [17–19] and the effects of infiltrat-
ing immune cells on prognosis have been extensively 
reported for different tumor types [12, 13], the immune 
microenvironment diversity and the reciprocal interplay 
between melanoma and non-tumoral host cells shap-
ing the disease progression and patient’s outcome is not 
fully understood. Therefore, the understanding of the 
specific contributions of each cell type to tumor growth 
can be a step toward developing new therapeutic strate-
gies, predicting treatment resistance and avoiding selec-
tion of resistant populations. Because melanoma cells 
bear a peculiar immunogenic profile due to its higher 
mutational burden, melanoma tumors provide a suitable 
model to investigate the molecular crosstalk between 
cancer cells and cells of the immune system. Here, we 
undertook a large-scale, high-dimensional analysis of 
human metastatic melanoma samples, characterized 
the composition of the TME associated with impor-
tant tumor features, and identified potential miRNAs 
from tumor cells that can modulate the immune system 
and vice versa. The identified miRNAs impact not only 
the TME and survival of melanoma patients but also of 
patients diagnosed with other very common and lethal 
tumor types such as breast, lung, ovary and esophageal 
tumors.

Materials and methods
Data download and sample selection
Gene expression data (HTSeq FPKM and HTSeq counts), 
pathological and clinical information from the “The Can-
cer Genome Atlas—TCGA” (http://cance rgeno me.nih.
gov/) database portal were downloaded on  04/12/2018 
using the R environment package TCGAbiolinks [20], 
using the identifiers: metastatic melanoma—SKML, lung 
adenocarcinoma—LUAD, breast—BRCA, esophageal 
carcinoma—ESCA, and ovarian cancer—OV. We also 
downloaded the RNA-Seq reads from melanoma tumors 
from the dbGaP website, under phs000178.v10.p8, and 
the annotated vcf files of three variant calling programs 
(MuSE, Varscan2, and SomaticSniper) for each analyzed 
sample using the SRA toolkit. From 173 metastatic sam-
ples from which the TME cell types could be predicted 
(“Materials and methods”), we removed samples that 
presented less than 50% of tumor cells or more than 50% 
of lymphocyte infiltration according to the available his-
topathological information, samples identified by histol-
ogy as nevus and amelanotic melanoma, and samples 
annotated as “Primary Tumor” regarding the “submitted 
tumor location” field, totaling 164 samples (Additional 

http://cancergenome.nih.gov/
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file  1: Figure S1A). Details of all samples can be found 
in Additional file 1: Table S1. We also downloaded gene 
expression data from extracellular vesicles found in 
plasma samples of melanoma patients and healthy indi-
viduals [21]. The microarray pre-processed data (GEO 
accession: GSE100508) was downloaded using the GEO-
query bioconductor package [22], normalized and log2 
transformed. Mann–Whitney’s test was used to identify 
significant changes between groups (adjusted p < 0.05).

Tumor microenvironment
The log transformed normalized RNA-Seq counts by 
DESeq2 [23] were used in CIBERSORT [10] with default 
parameters to infer the TME-associated immune cell 
types of each metastasis sample. The program is based 
on a deconvolution algorithm that infers relative frequen-
cies of 22 immune cell types from its own gene signature. 
TME inferences with a p-value lower than 0.05 were kept 
for subsequent analysis. To confirm the CIBERSORT 
predictions, we used the same data in xCell [11], a soft-
ware-based on gene set enrichment analysis to identify 
a variety of TME population signatures. Scores were fil-
tered for p-value lower than 0.05 and the median for 
each cell population by group was calculated. Although 
focused on identifying TME composition, xCell and CIB-
ERSORT use different mathematical approaches and 
gene signatures to identify TME cell types.

Clusterization and group identification
Samples were grouped by non-supervised hierarchi-
cal clustering using the hclust function according to the 
immune cell type fractions predicted with CIBERSORT. 
Distance was measured as 1 − Pearson correlation coef-
ficient. The closest samples were clustered using a height 
of 0.4 for the cutree function. Only groups of 20 or more 
components were considered. Bootstrap analysis was 
performed using the package “fpc: Flexible Procedures 
for Clustering” [24], yielding clusterwise Jaccard boot-
strap means for each group. The “clusterboot” function 
was used with the following parameters: B = 10,000, 
bootmethod = “boot”, cluster method = disthclustCBI, 
k = 5, cut = “number”, method = “average”.

Survival analysis
To identify miRNAs and mRNAs that could potentially 
influence the differences observed in the survival rates 
of patients grouped according to TME predictions, 
the normalized expression levels of each differentially 
expressed miRNAs and mRNAs were used to classify 
samples in groups. Survival rates of patients expressing 
lower levels of a specific gene than the average expres-
sion (“Low”) were compared to those with the expression 
greater than or equal to the average expression (“High”). 

Time intervals used for survival analysis were corrected 
to account only for metastatic disease, starting at the sub-
mission of the metastatic specimen and ending on the 
last follow up or death [25]. The R packages for survival 
analysis “survival” and “survminer” were used to obtain 
the Kaplan–Meier 5-year survival curves and the log-
rank test was used to compare survival estimates across 
different groups. Hazard Ratio (HR) and 95% confidence 
intervals (CIs) were based on maximum likelihood esti-
mates for each covariate using a Cox regression model.

Differentially expressed genes and enriched pathways
The miRNA and total RNA sequencing raw counts were 
normalized and genes differentially expressed between 
groups were tested using DESeq2 [23]. Adjusted p-value 
(Benjamini–Hochberg) equal or lower than 0.05 for 
miRNA and 0.001 for total RNA were considered as sig-
nificant. Unsupervised clustering was performed using 
1 −  Pearson correlation coefficient. The GSEA analysis 
was performed considering all DEGs on the WebGestalt 
online platform [26] using the REACTOME database to 
obtain relevant biological pathways with an FDR < 0.05.

miRNA/mRNA pairs and interactions
Associations between differentially expressed miRNAs 
(DEM) and cell type signatures were evaluated by Pear-
son correlations matrix, using p ≤ 0.05 and abs(r) ≥ 0.4 
as cut-offs. The miRNAs targets were obtained using the 
R environment package multmiR [27]. We considered 
as miRNA targets the genes detected in at least one of 
the databases available in the package and that were not 
annotated as “weak” in the “support_type” field by miR-
TarBase. The potential miRNA targets were further fil-
tered to keep only those presenting a significant negative 
Pearson correlation (r ≤ −  0.4, p ≤ 0.05). Possible circu-
lating miRNAs were also identified with the SpidermiR 
package [28], gathering information from the miRandola 
database [29]. miRNAs potentially derived from mela-
noma cells were identified by analyzing their expression 
in the melanoma cell lines data deposited in the CCLE 
database [30]. Analysis of publicly available single-cell 
RNASeq (SCRS) melanoma data [14] was used to iden-
tify the putative cell of origin of the identified targets, 
where genes with a median of expression greater than 
the second quartile observed when considering all genes 
expressed in this cell type were classified as potentially 
expressed by that cell type.

Mutation analysis and neoepitope prediction
To ensure the accuracy of variant calling for down-
stream steps, we kept only single nucleotide variants 
called by VarScan2 and at least another variant caller 
(MuSE or SomaticSniper). The insertions and deletions 
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were obtained only from the VarScan2 vcf file. To iden-
tify neoepitopes, we filtered the variants to keep only 
coding change mutations present in genes expressed 
in the analyzed samples (FPKM greater than the lower 
quartile when considering all genes of the same sam-
ple). HLA-I typing was performed with Optitype v.1.3.1 
[31] and served as input to netMHCpan 4.0 predictions 
[32] together with the filtered vcf files. Peptides listed as 
strong binders (%Rank < 0.500) were called neoepitopes. 
The KD comparison across groups considered the 
median KD for all predicted neoepitopes per sample 
excluding outliers. Genes of the antigen processing and 
presentation pathway were obtained from the KEGG 
database [33] (Additional file 1: Table S2) and only muta-
tions annotated by Variant Effect Predictor as with high 
or moderate impact and as with  damaging/deleterious 
impact predicted by SIFT and Polyphen were considered. 
Mutational signature was performed using deconstruct-
Sigs package with hg38 [34].

TCR and BCR repertoire
The T-cell receptor (TCR) and B-cell receptor (BCR) 
sequences were obtained using MiXCR 2.1.11 [35] with 
standard options, excluding out of frame sequences 
and premature stop codons. Sequences from which 
the immunoglobulin isotype was not  identified were 
excluded. BCR/Ig representation was calculated mul-
tiplying each Ig isotype clone count by their respective 
read count (frequency).

Results
Clinical outcome of melanoma patients is impacted 
by the immune‑related tumor microenvironment
In order to characterize human metastatic melanoma 
samples according to their associated immune phe-
notypes, we inferred the tumor microenvironment 
(TME)-associated immune cell populations [10] of 164 
metastatic samples from The Cancer Genome Atlas 

(TCGA) database (Additional file  1: Table  S1). This 
allowed the identification of three major groups con-
taining at least 20 samples each: G1 (pink) with 37 sam-
ples, G2 (green) with 57 samples, and G3 (orange) with 
65 samples (Fig. 1a). Bootstrapping showed that G2 and 
G3 were highly stable clusters, with a clusterwise Jaccard 
bootstrap mean of 0.56 for G1, 0.75 for G2, and 0.84 for 
G3. Five samples did not cluster within any of the groups 
and were excluded from the subsequent analysis (white 
labels, Fig. 1a).

According to the TME predictions, G1 samples are 
enriched in naïve, memory and plasma B cells, and 
depleted in resting natural killer (NK) cells; G2 samples 
are enriched in CD8+ T cells, monocytes, and mac-
rophages M1; and G3 samples are enriched in M0 mac-
rophages and depleted in plasma cells, CD8+ T cells, 
memory activated CD4+ T cells, follicular T helper cells, 
activated NK cells, monocytes, and resting dendritic cells 
(p ≤ 0.05, Mann–Whitney test—MW) (Fig. 1a and Addi-
tional file 1: Figure S1A). Regarding the histopathological 
characteristics, G1 samples present a higher percent-
age of tumor cells and, conversely, a small percentage 
of stromal cells when compared to G2 and G3 samples 
(Additional file  1: Figure S1B). Compared to G1  sam-
ples,  samples in G3 have more necrotic cells and  sam-
ples in G2 have more lymphocyte infiltration (Additional 
file  1: Figure S1B). Importantly, all samples selected for 
the analysis had > 50% of tumor cells.

The TCGA consortium has previously classified 
melanomas in four molecular subtypes based on their 
genomic profiles (BRAF, RAS, NF1, and triple wild-
type), three transcriptional subclasses based on their 
gene expression signatures (Immune, Keratin, MITF-
low) and four methylation clusters based on their 
methylation patterns (CpG island-methylated, hyper-
methylated, hypo-methylated and normal-like) [36]. 
We did not find any association between the immune-
related groups described here and the molecular 

(See figure on next page.)
Fig. 1 Metastatic melanomas can be distinguished according to their immune-related tumor microenvironment. a Hierarchical clustering of 
metastatic melanoma samples according to their predicted infiltrated immune cell populations. Samples were labeled according to their molecular 
subtypes, anatomical location and mutation status of the main driver genes. The dotted red line represents the cutoff for group assignment 
indicated in the label (G1—pink, G2—green, G3—orange) or no group (white) and values represent the mean clusterwise Jaccard bootstrap values 
calculated to confirm cluster stability, with 0.75 or higher pointing to stable clusters. b Kaplan–Meier curves for 5-year overall survival rates and Cox’s 
proportional hazards ratios of melanoma patients according to their TME-based classification. The log-rank test was used to analyze the difference 
in survival curves between the groups. Global p = 0.038. **p = 0.01 (Log-rank test for G2 versus G3). c Forest plot representing the survival hazard 
ratio of relative fractions, divided in quartiles, for each immune cell type using all samples of the three groups. d T-cell receptor (TCR) clone count (in 
log scale) per TCR chain. e Inverse Simpson diversity index of combined TCR chains. f B-cell receptor (BCR) representation (in log scale) considering 
immunoglobulins (Ig) isotypes. BCR representation was calculated by multiplying clonotype count by the correspondent read counts. g Inverse 
Simpson diversity index of combined BCR chains. MW test was used for mean comparisons: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. 
h Circus plot showing differentially expressed chemokines between G2 and G3 linked to their respective target TME population. Chemokines 
upregulated in G3 are represented in orange and those upregulated in G2 are in green
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subtypes (Fisher’s exact test p = 0.4) or the methylation 
profiles identified (Fisher’s exact test p = 0.12) (Fig.  1a 
and Additional file 1: Table S1) [36]. However, regard-
ing the transcriptomic classification of melanomas, we 
found that G3 was enriched with metastatic melanoma 
samples classified into the MITF-low subclass whereas 

melanomas clustered into the Immune subclass were 
more present among G1 and G2 (Fisher’s exact test 
p = 2.51e−06).

To confirm the identified TME profiles of each group, 
we validated our findings using an alternative gene signa-
ture-based approach [11] (Additional file 1: Figure S1C). 
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We performed non-supervised clustering of the TME 
populations using the median of the population signa-
ture predicted for each group. Five different B-cell types, 
CD4+ T naive cell type and non-immune cell types such 
as microvascular endothelial cells showed a strong asso-
ciation with G1. G2 showed a strong signature of all T 
cell subpopulations, such as CD8+, regulatory T (Treg), 
Th1 and Th2 cells along with macrophages and basophils. 
Finally, G3 showed a strong signature of non-immune cell 
types such as smooth muscle cells, pericytes, neurons, 
and mesenchymal stem cells. Although this alternative 
approach does not cover the M0 macrophage signature, 
the presence of a weaker signature of other immune cell 
types in G3 and the overlap between the immune cell 
populations predicted by the two different approaches 
present in G1 and G2 confirm our initial classification 
into three distinct immune-related groups.

To investigate whether different TME compositions 
correlate with clinical outcome, we next assessed the 
overall survival of melanoma patients grouped accord-
ing to our TME-based classification (Fig.  1b). Patients 
clustered in G2 (green line) showed significantly better 
overall survival than G3 patients (orange line) (p = 0.01, 
log-rank test, Hazard Ratio (HR) = 0.49, confidence inter-
val (CI) .95 = 0.28–0.85). G1 patients’ overall survival did 
not differ from the other two groups. To better account 
for the impact of specific immune cell types on survival, 
we calculated the Hazard Ratio (HR) of the relative frac-
tions of each cell type population divided into quartiles 
(Fig. 1c). We identified poorer HR related to the presence 
of memory B cells (p = 0.002, log-rank test, HR = 2.54, 
CI.95 = 1.41–4.6) and M0 macrophages (p < 0.001, log-
rank test, HR = 1.78, CI.95 = 1.31–2.4), which are both 
immune cell types highly represented in G1 and G3, 
respectively. In addition, we analyzed the correlation 
among the different predicted immune cell types in all 
samples combined (Additional file  1: Figure S2A). This 
revealed several connections between cells that could 
potentially impact tumor growth and help explain the 
observed prognosis. Examples include a positive cor-
relation between Treg cells and memory B cells or M0 
macrophages (r = 0.47 and r = 0.56, respectively, p ≤ 0.05, 
Pearson correlation test—PCT) and a strong negative 
correlation between CD8+ T cells and M0 macrophages 
(r = −  0.41, p ≤ 0.05, PCT). Most cell types were posi-
tively correlated, of which the correlation between neu-
trophils and activated mast cells was the highest observed 
(r = 0.65, p ≤ 0.05, PCT), followed by CD4+ memory 
resting T cells and M2 macrophages (r = 0.62, p ≤ 0.05, 
PCT), and CD8+ T cells and CD4+ memory activated T 
cells (r = 0.61, p ≤ 0.05, PCT). Since we observed a signifi-
cant difference between the overall survival of G2 and G3 
patients, we next investigated which immune cell types 

better discriminate these groups by calculating the point-
biserial correlation coefficient (Additional file  1: Figure 
S2B). We observed that monocytes were better correlated 
to G2 (r = 0.29, p ≤ 0.05, PCT), and M0 macrophages to 
G3 samples (r = −  0.27, p ≤ 0.05, PCT). Also, a strong 
and significant negative correlation between these two 
cell populations was observed (r = − 0.59, p ≤ 0.05, PCT).

Finally, we evaluated the frequency and diversity of T 
and B-cell receptors (TCR and BCR, respectively) as they 
correspond, at least in part, to the T and B lymphocyte 
populations observed. G1 and G2 presented higher num-
bers of unique alpha/beta chains clonotypes in the TCR 
repertoire (medians of 28.5 and 17, respectively) in com-
parison to G3 (median of 4 and p ≤ 0.0001 in both com-
parisons using MW test), but no significant difference was 
found between G1 and G2 (Fig. 1d). G2 also presented a 
greater variety of gamma chain clonotypes (median of 2) 
when compared to either G1 (median of 1; p = 0.011) or 
G3 (median of 0; p ≤ 4.9e10−6). The lymphocyte reper-
toire diversity, assessed by the inverse Simpson diversity 
index, was higher in G1 and G2 (p ≤ 9e10−8 for G1 and 
G2) compared to G3 (Fig.  1e). Higher TCR diversity in 
G1 and G2 supports the notion that more diverse anti-
gen collections are being recognized and contribute 
to explain the better outcome of G2 patients. We also 
analyzed the BCR repertoire and found a higher immu-
noglobulin A (IgA) representation in G1 (median of 15 
clones per sample; p ≤ 7.1e10−6) compared to G2 and 
G3 (median of 7 and 8, respectively) (Fig. 1f ). The same 
was also true for IgG clonotypes which were more rep-
resented in G1 (median of 35) in comparison to G2 
(p = 0.002, median of 30) and G3 (p = 0.0008, median of 
30). G3 presented higher IgM representation (median 
of 8) in comparison to G2 (median of 5, p = 0.027). The 
BCR diversity was also higher in G1 compared to G2 
and G3 (p ≤ 5.3e10−8) (Fig. 1g). In accordance with the 
variety of lymphocyte subpopulations, the expression 
of chemokines that recruit several of the G2-enriched 
immune cell populations was augmented in this group 
when compared to G3 (adjusted p-value ≤ 0.001), except 
for CCL5, which acts on neutrophils and endothelial cells 
(Fig.  1h). This lack of chemokine expression in G3 can 
explain, at least in part, the paucity of CD8+ T lympho-
cytes in these samples, a characteristic that underpins 
malignant development.

Phenotypic characteristics that favor immune evasion 
co‑occur in melanomas with worse prognosis
Besides avoiding the recruitment of inflammatory cells 
and lymphocytes to the TME, tumor cells can develop 
strategies to become “invisible” to the immune system 
or to inhibit effector responses. These strategies, based 
on distinct mechanisms of immune evasion, may have a 
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significant impact on clinical outcome of cancer patients. 
Therefore, we characterized different aspects of known 
immune evasion mechanisms in the TME-grouped mela-
noma samples.

First, we identified signatures of effector cells (EC), 
suppressor cells (SC), checkpoint molecules (CP) and 
major histocompatibility complex (MHC) expression in 
the three groups, which were previously shown to predict 
response to immune checkpoint blockade [19]. Weaker 
signatures of SC and CP were detected in G3 whereas 
a stronger signature of EC was observed in G1 and G2 
(Fig.  2a). These results reinforce that ongoing effector 
responses are more likely to occur in G1 and G2 and that 
suppressor mechanisms are of great importance in G3 
and could favor immune evasion.

Tumors with a higher mutation burden tend to gener-
ate more neoantigens and, thus, be more immunogenic 
[37]. We observed significantly higher numbers of somatic 
mutations per megabase (Mb) in G2 and G3 compared to 
G1 (p = 0.0069 and 0.00013, respectively, MW test, Fig. 2b). 
The median of exonic mutations per Mb was 60 for G1, 130 
for G2, and 187 for G3 (Additional file 1: Figure S3A) alike 
the intronic mutations (Additional file 1: Figure S3B). Simi-
larly, G2 and G3 samples presented more neoepitopes com-
pared to G1, of which the median was 51 for G1, 77 for G2 
and 120 for G3 (p = 0.026 and p = 0.0037, respectively; MW 
test, Fig. 2c). Despite observing no difference in neoepitope 
and mutation burden between G2 and G3, and based on 
the lower T and B cell diversity observed in G3 (Fig.  1e, 
g), we searched for features that could impact neoepitope 

Fig. 2 The composition of the tumor microenvironment reflects specific immunogenic features. a Immunophenoscore signatures of the TME-associated 
groups. Median values per group of signatures of suppressor cells (SC), checkpoint molecules (CP), MHC molecules and effector cells (EC) were Z-score 
transformed and compared. b Neoepitope counts (in log scale) predicted for each patient’s HLA-I allele. c Log values of somatic mutation burden per 
genome megabase (Mb). Only single nucleotide variants called by VarScan2 and at least one additional tool (MuSE or SomaticSniper) were considered. 
d Number of neoepitopes per group considering samples with/without deleterious mutations in genes belonging to the antigen processing and 
presentation pathway. e HLA-I binding affinity distribution of predicted neoepitopes among groups. For each sample, we used the median HLA-I binding 
affinity. Statistical analysis in b, c and e were performed by MW test: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. KD—dissociation constant for HLA-I binding in nM



Page 8 of 17Jorge et al. J Transl Med           (2020) 18:56 

processing and presentation and thus diminish the recog-
nition of a tumor cell. First, we searched for high impact 
mutations in genes belonging to the antigen processing and 
presentation pathway (Additional file 1: Table S2) and iden-
tified an increase in neoepitope burden according to the 
number of genes mutated in the pathway in a given sam-
ple (Fig. 2d and Additional file 1: Table S3). Two samples 
from G1 and two from G2 had one mutated gene on this 
pathway while nine samples from G3 presented at least one 
gene mutated. Within G3, samples bearing mutations on 
this pathway had increased neoepitope burden when com-
pared to the non-mutated samples (p = 0.022, MW test). 
No statistical test could be performed for G1 and G2 sam-
ples due to the small number of events.

Another feature that impacts neoepitopes presentation 
is the predicted affinity between them and the Human 
Leukocyte Antigen I (HLA-I) alleles so that higher dis-
sociation constants (KD) account for lower stability of 
the neoepitope:HLA-I complex and therefore a less effi-
cient presentation. The median of neoepitope’s KD was 
calculated for each sample and compared among groups 
(Fig. 2e). Neoepitopes’s KD were higher in G3 compared 
to G2 (median of 149.5 nM and 126.9 nM, respectively; 
p = 0.042, MW test), supporting the idea that the immune 
evasion phenotype in G3 samples may also involve select-
ing less stable neoepitope:HLA-I complexes.

Mutational signatures are consequences of different etio-
logical agents that, in the process of mutational carcinogen-
esis, favor some specific DNA transversions and transitions 
[34] and these mutational signatures have been related to 
patient’s survival [38]. Therefore, we asked if the distinct 
mutational signatures were differentially represented across 
the immune-related groups. Two main mutational signa-
tures were identified across the groups: signature 7 (green) 
and 1A (pink), both corresponding to C>T transitions 
(Additional file 1: Figure S3C). Signature 7 is associated to 
ultraviolet radiation and previously described as related to 
melanoma, while signature 1A is broadly present among 
tumors [34]. We observed a similar mutational signature 
profile across the immune-related groups, suggesting that 
they can not be distinguished by genomic signatures.

Differential miRNA/mRNA expression profiles dictate 
the clinical outcome of melanoma patients
In order to better understand the complex gene regu-
latory network related to the differences observed in 
patients’ survival and  the immune evasion profiles of 
tumors, we compared the gene expression profiles of 
G2 and G3 samples. We identified 1783 differentially 
expressed genes (DEGs) (adjusted p ≤ 0.001) (Additional 
file 1: Figure S4A, B) and 93 differentially expressed miR-
NAs (DEM) (adjusted p ≤ 0.05) (Additional file 1: Figure 
S4C, D), of which 641 DEG and 34 DEM were up- and 

1142 DEG and 59 DEM were downregulated in G3 (worse 
prognosis). The top 20 DEGs comprise four upregulated 
(AL035610.1, ST8SIA5, NRXN1 and FAM131B) and 
16 downregulated (IFNG, TMEM155, RP11-109E24.1, 
CD8A, KLRK1, AC104820.2, FASLG, CCL4, GZMA, 
RP11-1094M14.8, AKAP5, RP11-1094M14.5, CLEC2D, 
TRGC2, CTC-303L1.1 and JAKMIP1) genes (Additional 
file 1: Table S4), while within the top 20 DEMs, 12 were 
upregulated (mir-206, mir-203a, mir-183, mir-205, mir-
6892, mir-675, mir-887, mir-200c, mir-375, mir-1-1, 
mir-1-2, mir-130b) and 8 were downregulated (mir-142, 
mir-7702, mir-342, mir-4494, mir-155, mir-4491, mir-
150, mir-6842) (Additional file 1: Table S5).

Gene Set Enrichment analysis (GSEA) revealed that 
the pathways enriched in G3 were involved in epithe-
lial cell processes such as Keratinization and Extracellular 
Matrix Organization (False Discovery Rate (FDR) < 0.001, 
test = Permutation test for both) (Additional file  1: Figure 
S4E). The enriched pathways in G2 participate in immune 
response processes such as Downstream TCR signal-
ing (FDR = 0.002, Permutation test), Interferon Signaling 
(FDR < 0.001, Permutation test), and Adaptive Immune 
System (FDR < 0.001, Permutation test). To analyze the 
potential impact of miRNA expression on the presence of 
each predicted cell type, analysis of the correlation of the 
DEMs and the predicted immune cell types was performed. 
A significantly negative correlation was found between 
miRNAs downregulated in G3 and M0 and M2 mac-
rophages, including mir-148a: macrophage M2 (r = − 0.4, 
p = 8.81e−06, PCT) and mir-29c: macrophage M0 correla-
tions (r = − 0.48, p = 7.68e−08, PCT) (Fig. 3a). Moreover, 
CD8+ T cell type, enriched in G2, was positively correlated 
to mir-142 and mir-7702 (r = 0.55 for both, p = 2.14e−10 
and p = 1.93e−10, respectively, PCT) as well as to other 11 
miRNAs. Dendritic resting cell type, decreased in G3, also 
correlated to mir-203a (r = 0.43, p = 1.57e−06, PCT) and 
mir-205 (r = 0.51, p = 7.16e−09, PCT).

In order to illustrate the relationship between miRNAs 
and the differences in gene expression in G2 versus G3, we 
determined miRNA-target gene (MTG) pairs. We identi-
fied 1111 DEGs predicted as targets of the DEMs (Fig. 3b), 
with 139 MTG pairs being negatively correlated, suggest-
ing differences in the canonical regulation of mRNAs by 
miRNAs between the groups. We then sought to identify 
the interactions between melanoma and TME cells that 
were most likely to occur. For that, we used a manually 
curated list of mRNAs and miRNAs putatively expressed 
by melanoma cells retrieved from the Cancer Cell Line 
Encyclopedia (CCLE) and a publicly available list of cir-
culating miRNA [29] and integrated this information into 
a gene expression network that shows the expression pat-
tern of each gene in G3 relative to G2 (Fig.  3c). A hun-
dred and thirteen MTG pairs (81%) involved putative 
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Fig. 3 Differentially expressed miRNA/mRNA (MTG) pairs impact the overall survival of melanoma patients. a Pearson correlation matrix between 
immune cell types and differentially expressed miRNAs (DEM). Only correlation with abs(r) ≥ 0.4 and p-value ≤ 0.05 are shown. The immune cell 
types enriched in G2 and the miRNAs upregulated in G2 are highlighted in green and those in G3 in orange. b Heat map showing the expression 
pattern of miRNAs and target genes among samples, which were hierarchical clustered using distance as 1 − Pearson correlation coefficient. Data 
represent RNA-seq normalized pseudocounts in log2 scale, z-score transformed by rows. c Network highlighting the interactions between MTG 
pairs. The putative circulating miRNAs reported by miRandola are identified as triangles and their targets as stars. Gene expression in melanoma 
cells was accessed in the CCLE database. Node colors represent the gene expression levels in G3 related to G2. All genes in the network labeled in 
italic have an impact on patients’ survival
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circulating miRNA produced by melanoma cells sug-
gesting that the DEMs are regulating the gene expression 
both at the intra- and intercellular levels. We also evalu-
ated the impact of the expression of each MTG pair on 
patients’ outcome. In total, we found 74 MTG pairs with 
a significant impact on overall survival (p ≤ 0.05, log-
rank test, Additional file 1: Figure S5). Of those, 12 pairs 
(mir-1296/GCH1, mir-1306/ZBP1, mir-1306/ICAM3, 
mir-1306/SEPT1, mir-142/NR2F6, mir-142/TRIM28, 
mir-142/ZNF74, mir-1914/HLA-F, mir-323a/PIM2, mir-
3619/CD74, mir-4736/ZNF74 and mir-342/PPM1F) did 
not involve potentially circulating miRNAs.

miRNA‑based intercellular communication in the TME 
impacts patient’s survival
Analysis of bulk tumor samples allowed us to identify 
potential miRNA-target genes but not to predict which 
cells within the tumor were expressing the miRNA or 
the target  gene. To refine these analyzes, we took advan-
tage of two publicly available datasets. First, we analyzed 
the candidate miRNA-target gene expression at a cellular 
level using Single Cell RNA-Seq (SCRS) data from mela-
noma tumors [14]. Second, we used a dataset consisting of 
miRNA expression profiles in extracellular vesicles isolated 
from the plasma of metastatic melanoma patients (hereaf-
ter referred to as bearer patients), healthy individuals, and 
R0-operated patients whose melanomas were surgically 
removed (with clear margin). The latter was subdivided 
into high relapse-risk and low relapse-risk based on tumor 
staging [21]. When combining these two datasets, we iden-
tified circulating miRNAs that are potentially expressed by 
TME cells and whose targets are mainly expressed in tumor 
cells, as well as miRNA potentially expressed by tumor cells 
that may affect gene expression in cells from the microenvi-
ronment. We further investigated the impact of these miR-
NAs in overall survival across different types of malignancy 
(Additional file  2). We describe below some examples to 
depict the potential role of circulating miRNAs in the inter-
play between the TME and malignant cells.

Circulating miRNAs potentially suppressing tumor growth
One of the strongest MTG pairs identified in our analysis 
with a significant impact on patients’ prognosis was mir-
150/HILPDA (Fig. 4a, b). The putative circulating mir-150 
was found to be downregulated in G3. Consistently, its 
potential target, the Hypoxia-inducible lipid droplet-asso-
ciated (HILPDA) gene, which encodes a protein related to 
intracellular lipid accumulation, was found to be upregu-
lated in the same group (Additional file  2). analysis of 
SCRS data revealed that HILPDA was mainly expressed 
in malignant cells (Fig. 4c). The average expression of the 
mature form of  hsa-miR-150-5p was lower in the extra-
cellular vesicles from bearer  patients (Log Fold Change 

(LFC): −  1.48, p = 0.001, MW test) when compared to 
healthy individuals (Fig.  4d). Interestingly, comparison of 
bearer and high-risk patients demonstrated a gain in hsa-
miR-150-5p expression after surgical removal of the mela-
noma (LFC: 0.62, p = 0.03, MW test), although expression 
was still lower than in healthy individuals (LFC: −  0.62, 
p = 0.03). Higher levels of mir-150 were also related to 
better survival in lung adenocarcinoma and ovarian can-
cer (p = 0.011, log-rank test, HR = 0.67, CI.95 = 0.49–0.91, 
and p = 0.021, log-rank test, HR = 0.72, CI.95 = 0.53–0.95 
respectively. Additional file  2). Altogether, these findings 
suggest that the release of hsa-miR-150-5p in EVs can be 
involved in the crosstalk between immune and tumor cells 
associated with suppression of tumor growth.

With similar characteristics, mir-342 was found to be 
downregulated in the group with worse prognosis, and its 
lower expression was associated with a worse overall sur-
vival in melanoma (p = 0.002, log-rank test, HR = 0.43, 
CI.95 = 0.25–0.75, Additional file  1: Figure S6) and 
breast carcinoma (p = 9.9e−04, log-rank test, HR = 0.51, 
CI.95 = 0.33–0.76, Additional file 2). Consistently, its target, 
the protein-coding gene PPM1F, of which higher expres-
sion was associated with a worse outcome (p = 0.033, log-
rank test, HR = 1.77, CI.95 = 0.25–0.75, Additional file  1: 
Figure S5), was found to be upregulated in G3 (Additional 
file 2) and expressed in several cell types according to the 
SCRS analysis, including malignant cells (Additional file 1: 
Figure S7). Although not described as circulating miRNA 
in our initial analysis, hsa-miR-342-3p was downregulated 
in EVs from bearer patients when compared to healthy 
individuals (LFC = − 0.80, p = 0.001, MW test). Similar to 
what was observed for hsa-miR-150-5p, an increase in the 
expression of hsa-miR-342-3p was detected in the plasma 
of both high- and low-risk melanoma survivors when com-
pared to metastatic melanoma patients (LFC = 0.61 and 
p = 0.004, LFC = 0.53 and p = 0.03, respectively, MW test, 
Additional file 1: Figure S8).

Circulating miRNAs potentially favoring tumor growth
We also identified miRNAs whose high expression were 
associated with worse outcome across at least three dif-
ferent tumor types, such as the putative circulating mir-
130b, which was up-regulated in the group with worse 
prognosis (LFC = 0.65, padj = 1.75e−03). Seven out of 15 
mir-130b targets identified among the DEGs were mainly 
expressed in non-malignant cells, such as T and B cells. 
(Additional file 2). Our independent analysis on the cir-
culating miRNA dataset showed that average expression 
of miR-130b-3p was higher in the plasma EVs of high-risk 
patients when compared to plasma samples from healthy 
individuals (LFC = 1.69, p = 0.03, MW test, Additional 
file 1: Figure S8) also indicating the putative tumor-pro-
moting role of this miRNA.
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The putative circulating mir-149, which poten-
tially regulates 39 targets of the 139 MTGs (Fig. 3c and 
Additional file  2), was upregulated in G3. Although 
the expression levels of mir-149 was  not significantly 

associated with survival (Fig.  5a), all of its targets were 
downregulated in G3 and their low expression lev-
els were associated with poor overall survival (Fig.  5b 
and Additional file  1: Figure S5). According to the 

Fig. 4 Putative TME-derived circulating miRNA associated with good prognosis in metastatic melanoma. Kaplan–Meier curves for 5-year overall 
survival rate of melanoma patients from G2 and G3 according to High (≥ average expression) or Low (< average expression) expression of a mir-150 
(p = 0.012, log-rank test) and b HILPDA (p = 0.045, log-rank test). c Violin plot showing the expression of HILPDA by cell type based on melanoma 
SCRS data. The malignant cell type was used as reference for MW test. d Boxplots of miR-150-5p expression levels (log 10 normalized beta values) 
in extracellular vesicles extracted from plasma samples. MW test was used to compare pairwise means from all groups. **p ≤ 0.01, ***p ≤ 0.001 and 
****p ≤ 0.0001

(See figure on next page.)
Fig. 5 Putative tumor-derived circulating miRNA that modulates the TME. Kaplan–Meier curves for 5-year overall survival rate of melanoma patients 
from G2 and G3 according to High (≥ average expression) or Low (< average expression) expression of a mir-149 (p = 0.16, log-rank test) and b 
NLRC5 (p = 0.0047, log-rank test). c Violin plot showing the expression of NLRC5 by cell type based on melanoma SCRS data. Asterisks inform on 
Mann–Whitney p values using the malignant cell type as reference. d Boxplots of the expression levels of mir-149, NLRC5 and genes involved in 
the antigen presentation pathway (TAP1, B2M, HLA-A/B/C) on G2 (green) and G3 (pink). Asterisks inform on Mann–Whitney test p values. *p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. e Kaplan–Meier curves for 5-year overall survival rate of melanoma patients from G2 and G3 according to 
High (≥ average expression) or Low (< average expression) expression of a mir-1914 (p = 0.39, log-rank test) and f HLA-F (p = 0.027, log-rank test). g 
Violin plot showing the expression of HLA-F by cell type based on melanoma SCRS data. The malignant cell type was used as reference for MW test. 
h Boxplots of miR-1914 expression levels (log 10 normalized beta values) in extracellular vesicles extracted from plasma samples. MW test was used 
to compare pairwise means from all groups. **p ≤ 0.01, ***p ≤ 0.001 and ****p ≤ 0.0001
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melanoma SCRS data, all mir-149 targets identified 
were expressed in lymphocytes, some of which were 
exclusively expressed in this cell type and include CD96, 
CD48, SLAMF7, FASLG, NUGGC  (Additional file  1: 
Figure S7) and NLRC5 (Fig.  5c). Interestingly, NLRC5 
encodes a transcription coactivator of genes involved in 
HLA class I presentation, such as TAP1, B2M and HLA-
A/B/C, all of which were downregulated in G3 (Fig. 5d), 
suggesting an immune evasion phenotype in G3 regu-
lated by mir-149. It is worth to note that, among these 
genes, only HLA-A/B could not be associated with poor 
prognosis (Additional file  1: Figure S5). Unfortunately, 
the restricted expression of hsa-miR-149-3p in only 
two bearer patients combined with the absence of other 
mature forms of miR-149 in the microarray chip pre-
vented us from assessing the differential expression of 
this miRNA in the EV dataset.

Another candidate MTG pair with a potential impact 
in the melanoma-TME crosstalk identified by our analy-
sis was mir-1914/HLA-F (Fig. 5e, f ). mir-1914 was upreg-
ulated in G3 (LFC = 1.12, padj = 1.17e−02) and was 
found to regulate four putative targets (Additional file 2). 
Low expression of one of them, HLA-F, was associated 
with a poor outcome (p = 0.027, log-rank test, HR = 0.55, 
CI.95 = 0.32–0.94) (Fig. 5f ). HLA-F codes for a non-clas-
sical HLA molecule that forms a heterodimer with B2M 
[39] and, although its expression was detected in several 
cell types, it was mainly enriched in TME cells including 
CAFs, NK and T cells (Fig.  5g). Moreover, high expres-
sion of hsa-miR-1914-3p was observed in EVs derived 
from melanoma bearer and high relapse risk patients 
(LFC = 2.63 and 1.54, p = 0.004 and 0.045, respectively, 
Wilcox test, Fig.  5h) when compared to healthy indi-
viduals. High levels of mir-1914 were also associated 
with worse survival in lung adenocarcinoma (p = 0.046, 
log-rank test, HR = 1.41, CI.95 = 1.004–1.96, Additional 
file 2).

Discussion
It has become clear that the tumor microenvironment 
composition is directly related to response to treatment, 
metastasis and patients’ survival. Several studies report 
the diversity of immune cell populations present in the 
tumor site and consider them as possible therapeutic 
targets [7, 40]. Due to the high cellular heterogeneity of 
tumors, different bioinformatics approaches have been 
developed to infer their composition based on molecular 
data. In this work, we applied two different deconvolu-
tion approaches to infer the TME composition of meta-
static melanoma samples and identified tumor groups 
with different TME profiles impacting patients’ overall 
survival. We also correlated the TME composition with 
the coding and non-coding gene expression profiles to 

identify possible interactions between melanoma cells 
and other cell types that compose the TME. Importantly, 
the differences observed were not related to the main 
molecular alterations found in melanoma cells as no clas-
sical mutation (BRAF, N/H/K-RAS, or NF1 mutations, 
nor triple wild-type) [36] was enriched in the above-
mentioned groups.

The TME enrichment results identified by the two 
approaches used here were overall concordant, even 
though each tool was trained with distinct groups of cell 
types. This allowed us to identify two highly stable groups 
bearing very distinct TME compositions and prognostic 
values, G2 and G3. The G1 group is composed of regional 
lymph node metastasis samples, supporting the enriched 
B-cell signature observed, and presented an interme-
diate outcome. Samples from G2, of which the patients 
showed better prognosis compared to those from G3, 
were enriched in tumor-infiltrating lymphocytes (TILs), 
especially CD8+ T cells, reinforcing their canonical role 
and association with improved survival. G2 samples were 
also enriched in CD4+ T memory cells, which were pre-
viously demonstrated to, among other functions, boost 
antitumor response by supporting the persistence of 
CD8+ T cells [41].

We also identified a subset of patients (G3 group) 
whose TME presented a stronger M0 macrophages sig-
nature and worse clinical outcome when compared 
to G2. A similar TME profile and clinical outcome was 
observed in ER-positive breast tumors [42, 43] but was 
not previously described for melanoma. However, since 
the M0 macrophage phenotype [10, 44] has not been 
previously described in vivo, it could be an exclusive phe-
notype observed only in in vitro assays. For this reason, 
we hypothesized that this M0 macrophage signature is 
possibly related to the presence of tissue-resident mac-
rophages or other immunosuppressive cellular popula-
tions not accounted in the deconvolution analysis, such 
as myeloid-derived suppressor cells (MDSC) or other 
regulatory macrophages, what could explain the worse 
overall survival in G3. Concordantly, the higher signa-
ture of suppressor cells observed in G3, which accounts 
for MDSC and Treg cells, support this hypothesis. Fur-
ther studies are required to assess the accuracy of this M0 
macrophage signature in vivo.

One way to reinforce the TME findings is to search for 
lymphocyte receptors (TCR and BCR) as they are exclu-
sive of T and Natural Killer T cells or B cells, respectively. 
The TCR and BCR repertoires seem to agree with the 
relative frequencies of T and B cells found in each group, 
as shown by the higher TCR chain clone count in G1 and 
G2, and BCRs in G1. These repertoires correspond to 
the different lymphocyte subtypes and account for about 
50% of the identified TME in those groups. However, 
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one limitation of analyzing bulk sequencing data is that 
it is not possible to identify the lymphocyte subtypes 
(e.g., Treg, CD8+) expressing these TCRs. The lower 
diversity index found in the G2 samples, when com-
pared to G1, could be associated to an ongoing tumor-
specific response in G2 represented by the expanded 
T  cell clones, which would increase the proportion of 
cells but not their diversity [45]. The higher representa-
tion of immunoglobulin in G1 corroborates the higher 
fraction of B cells found in the deconvolution analysis 
for this subgroup. The low BCR clonality found in meta-
static tumor samples from G3 compared to G1, associ-
ated with an increased IgM, may suggest that B cells in 
this group are unable to perform class switch and acquire 
new effector functions. For more accurate characteriza-
tion of TCR/BCR repertoires, deeper sequencing and 
longer reads than those available for the TCGA samples 
are required, limiting further receptor diversity analysis 
and clone count and impairing broader correlations with 
the TME deconvolution results.

It is well known that mutation and neoantigen bur-
den are positively correlated to immunogenicity [17], 
however, although G2 and G3 show similar mutation 
and neoepitope burden and share the same mutational 
signature profile, they present different immunogenic 
profiles. Four different findings suggested immune eva-
sion mechanisms in G3: [1] the stronger signature of 
checkpoint molecules which could induce T-cell exhaus-
tion or compromise leukocyte activation and impair the 
supported anti-tumor immune response [46]; the sup-
pression of antigen processing and presenting pathway, 
evidenced by [2] the higher dissociation constant (KD) 
of neoepitopes that diminishes antigen:HLA-I stability, 
which has been previously observed in other studies [47] 
and [3] the higher frequency of neoantigens in samples 
bearing mutations in the antigen processing and present-
ing pathway; [4] and downregulation of genes related to 
antigen presentation [17–19].

Altogether, our results point to an immunosuppressed 
group of tumors (G3) characterized by a less immuno-
genic landscape associated with a stronger signature of 
immunosuppressive molecules, enrichment of an M0 
macrophage signature, depletion of other immune cells 
signatures and limited TCR and BCR repertoires. Despite 
that, it is important to notice that no difference in lym-
phocyte infiltration from histopathological annotations 
was found between G2 and G3, suggesting a suppres-
sor phenotype rather than the absence of lymphocyte 
infiltration.

According to our findings, this immunosuppressive 
niche found in G3 is potentially regulated by miRNAs 
that can modulate the expression of important genes 
both at intracellular and intercellular levels through, 

in this last case, tumor-derived extracellular  vesicles as 
mediators of cell–cell communication. One example that 
potentially contributes to the immunosuppressive pheno-
type found in G3 is the highly expressed mir-149, which 
has already been reported as dysregulated in many types 
of cancer including melanoma, where its upregulation 
influences the expression of both oncogenes and tumor 
suppressor genes [48]. In this study, we showed that the 
inhibition of its target, NLRC5, interferes with neo-anti-
gen presentation, in agreement with other studies where 
it has been associated with immune evasion mechanisms 
and considered as a biomarker of immune surveillance 
[18].

Also favoring an immunosuppressive environment, we 
identified the circulating mir-1914 representing a puta-
tive player in the crosstalk between melanoma cells and 
the TME, regulating the expression of HLA-F. Although 
not directly involved in classical antigen presentation, 
HLA-F has been shown to cooperate in the cross pres-
entation of activated lymphocytes [49] and to interact 
with inhibitory Killers Ig-like receptors (KIR) that are 
expressed by T and NK cells [50]. The downregulation 
of HLA-F in the cell surface of TME cells and the con-
sequent decrease in the interaction with inhibitory KIR 
could increase the cytotoxic activity of NK towards CAF, 
T, and NK cells [50]. Based on that, we hypothesize that 
the release of mir-1914-containing EVs by melanoma 
cells could negatively modulate the expression of HLA-
F in leukocytes and other TME cells and consequently 
increase NK cytotoxic activity towards TME cells, what 
could explain the higher percentage of necrotic cells in 
G3.

In contrast, high levels of the mir-150 was associated 
with good prognosis in three tumor types and, in G2 mel-
anoma samples, it was highly correlated with the pres-
ence of CD8+ T cells. Consistent with our findings, this 
miRNA was previously reported to be highly expressed in 
B and T cells [51] and higher levels of mir-150 were found 
to inhibit proliferation, migration, and invasion of mela-
noma cells [52]. In accordance with our findings, mir-150 
has also been associated with better patient’s survival 
[52] and suggested as a potential metastatic melanoma 
biomarker [53], while the expression of one of its target 
in malignant cells, HILPDA, was shown to be induced 
by hypoxia and associated with tumor resistance to anti-
angiogenesis treatments [54]. Therefore, we hypothesize 
that mir-150 could be acting through lymphocyte-derived 
EVs to downregulate HILPDA expression in tumor cells. 
Similar to mir-150, we identified mir-342 as a potential 
marker of good prognosis in metastatic melanoma and 
breast carcinoma. This miRNA has already been reported 
as upregulated in metastatic melanomas compared to 
nevi and as a biomarker for post-recurrence survival in 
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melanoma [55]. Concordantly, one of its potential tar-
gets, PPM1F, has been reported to promote migration 
and invasion in breast cancer cells [56]. This is in line 
with our observation that PPM1F is expressed by malig-
nant cells in metastatic melanomas and its expression is 
associated with worse prognosis.

Others miRNAs with significant impact on  patient 
survival across different tumor types were also found to 
be differentially expressed in the EV external dataset, fur-
ther corroborating our findings of circulating miRNAs 
participating in the crosstalk between TME and malig-
nant cells and supporting their putative role as prognos-
tic biomarkers.

Conclusions
Our results support the existence of a crosstalk between 
the tumor microenvironment and melanoma cells, where 
gene expression in the tumor is modulated by miRNAs 
from TME and vice versa. They also suggest a role for 
circulating miRNAs in driving immune  evasion mecha-
nisms. Taking together, the results presented here shed 
light on the role of the melanoma immune microenvi-
ronment in the progression and evolution of the dis-
ease. It also highlights the need to characterize the gene 
expression profile in the TME subpopulations at the 
cellular level to better understand their gene expression 
regulation mechanisms and how they may influence each 
aspect of the melanoma microenvironment. Finally, this 
knowledge is valuable for the diagnosis and evaluation of 
treatment response, since one can directly determine cir-
culating tumor-derived molecules and whether a specific 
subpopulation has been ablated or altered by treatment.
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with a negative Pearson correlation coefficient of − 0.4 or less are listed. 
We also included information about the differential expression test, such 
as log fold change (LFC) and adjusted p-values (G3 related to G2) and 
about the survival log-rank test, such as hazard ratio (HR), confidence 

interval (CI) and p-value, for both target genes and miRNA that present 
impact on overall survival (High versus Low). We also indicate if the miR-
NAs were identified as circulating according to the miRandola database 
and putative cell of origin of the genes listed. MTG: miRNA-target gene. 
LFC: Log Fold Change. HR: Hazard Ratio. CI: Confidence Interval.
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