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Thyroid hormones play a wide range of important physiological activities in almost all organism. As changes in these hormones levels—
observed in hypothyroidism and hyperthyroidism—promote serious derangements of the cardiovascular system, it is important to know
their mechanisms of action. Although the classic genomic actions which are dependent on interaction with nuclear receptors to modulate
cardiac myocytes genes expression, there is growing evidence about T3 and T4-triggered nongenomic pathways, resulted from their
binding to plasma membrane, cytoplasm, or mitocondrial receptors that leads to a rapidly regulation of cardiac functions. Interestingly
both actions converge to amplify thyroid hormone effects on cardiovascular system. T3 and T4 nongenomic actions modify inotropic and
chronotropic effects, cardiac action potential duration, cardiac growth, and myocyte shape by protein translation through protein kinases-
dependent signaling cascades, which include PKA, PKC, PI3K, and MAPK, and changes on ion channels and pumps activity. In respect to the
decreased systemic vascular resistance seen in hyperthyroidism, T3 appears to activate NOS or ATP-sensitive Kþ channels. In addition,
a novel biologically active T4-derived metabolite has been described, 3-iodothyronamine, T1AM, which also acts through membrane
receptors to mediate nongenomic cardiac effects. This metabolite influences the physiological manifestations of thyroid hormone actions
by inducing opposite effects from those stimulated by T3 and T4, such as negative inotropic and chronotropic effects. Therefore, beyond
genomic and nongenomic effects of thyroid hormones, it is crucial for there to be an equilibrium between T3 or T4 and T1AM levels for
maintaining cardiac homeostasis.
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The thyroid hormones, triiodothyronin (T3) and thyroxine
(T4), play crucial physiological roles in nearly all organism tissues
already studied (Oppenheimer et al., 1987). Although T4 is the
major secretion product of thyroid, T3 is responsible for most
of the biological effects ascribed to thyroid hormones, including
the negative-feedback system over the thyrotropin-releasing
hormone (TRH) and thyroid-stimulating hormone (TSH)
secretion by the hypothalamus and pituitary, respectively
(Shupnik and Ridgway, 1987).

Two specific iodothyronine deiodinases (D1 and D2) found
in different tissues, convert T4 to T3 by 50-monodeiodination
(Köhrle, 2000; Sabatino et al., 2005). This wide distribution
leads to controversial data in the literature about the main
T3 source. While thyroid is described as the major source of
circulating T3 in rats (Chanoine et al., 1993), peripheral tissues
are considered the main source of T3 in humans, being 80%
provided by D1 activity (Engler and Burger, 1984; Sabatino et al.,
2005). Among the human tissues, kidney, liver, adrenal gland,
intestine, skeletal muscle, thyroid, and heart display a significant
amount of D1, indicating their critical role in thyroid hormone
homeostasis and consequently in the thyroid hormone action
(Sabatino et al., 2001, 2005; Gereben et al., 2008). In the heart,
the occurrence of both deiodinases reflects the necessity of
supplying this organ with T3, evidencing its relevance to cardiac
function (Sabatino et al., 2001, 2005). In human serum, T4 levels
are about 100 times higher than T3. Although it is difficult to
measure T3 and T4 content in human hearts, there are a few
reports in the literature showing that T3 cardiac concentrations
in rats and mice range from 4.5 to 6 ng/tissue g, while T4 cardiac
concentrations range from 1.6 to 2 ng/tissue g (Trivieri et al.,
2006; Liu et al., 2008). This slight difference between T3 and T4

levels in hearts when compared to serum, demonstrates the
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importance of T4 local conversion to T3. Indeed, some heart
diseases induce local tissue hypothyroidism by altering cardiac
thyroid hormone metabolism via the D1 and D2 deiodinases,
whose activities appear to be exceptionally low in the heart
(Gereben et al., 2008). Besides D1 and D2, there is a third
monodeiodinase, D3, that catalyzes the T4 conversion to
reverse-T3 (rT3) and the T3 conversion to diiodothyronine (T2)
by 5-monodeiodination and thereby terminating thyroid
hormone action (Sabatino et al., 2005; Gereben et al., 2008).

Among the different tissues, T3 has pivotal effects on the
heart and cardiovascular system, acting as an important
regulator of cardiac function and cardiovascular hemodynamics
through its direct action on the cardiac myocytes, vascular
smooth muscle cells (VSMCs), and endothelium (Klein and
Ojamaa, 2001; Biondi and Klein, 2004). This affirmation is based
on the fact that the increased or decreased thyroid hormone
levels exert significant derangements on the cardiovascular
system. While hyperthyroidism leads to an enhanced left
ventricular systolic and diastolic function, increased prevalence
of supraventricular tachyarrhythmias, ventricular hypertrophy,
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shortened action potential duration, hyperdynamic circulation
with increased cardiac output, heart rate, pulse pressure and
blood pressure and decreased vascular peripheral resistance,
opposite changes are related to hypothyroidism (Klein and
Ojamaa, 2001; Biondi and Klein, 2004). Most of these processes
are described to be mediated by the classic genomic mechanism
of steroid hormone action that takes days or months to be
effective, once dependent on gene transcription. However,
recent studies have shown that T3 also acts in minutes to hours
leading to changes in cardiac inotropism, chronotropism, and
hypertrophy through receptors placed in the membrane and at
other subcellular sites (Rudinger et al., 1984; Mylotte et al.,
1985; Craelius et al., 1990; Sakaguchi et al., 1996; Vassy et al.,
1997; Incerpi et al., 1999; Sun et al., 2000; Quesada et al., 2002;
Schmidt et al., 2002; Wang et al., 2003; Kuzman et al., 2005;
Kenessey and Ojamaa, 2006; Storey et al., 2006; Zinman et al.,
2006).

Since 1990, few works have been published concerning the
nongenomic cardiac effects. With a better understanding of
nonnuclear receptors, second messengers and effector
proteins involved on thyroid hormones nongenomic actions in
the cardiovascular system, there would be a greater chance to
find new targets for drugs to improve the cardiac function,
principally on hyper or hypothyroidism. Thus, this review will
briefly comment on the classic genomic effects of thyroid
hormones on the cardiovascular system and will focus on their
nongenomic effects in order to put together the important
findings in this field, to stimulate further studies in this area.

General Aspects of Genomic Signaling Pathways

Classically, T3 enters the cell membrane in a simple diffusion
way, as described for the steroidal hormones (Farach-Carson
and Davis, 2003), or via specific transport proteins such as an
energy-dependent carrier that partially depends on the Naþ

gradient (Everts et al., 1996), a Naþ-independent organic anion-
transporting polypeptide (OATP; Pizzagalli et al., 2002) or a
Naþ-independent monocarboxylate transporter 8 (MCT8;
Friesema et al., 2003). In the nucleus, T3 interacts with the
nuclear thyroid receptors (TR) a1, a2, b1, b2, and b3 (the last
one is confined to the hypothalamic/pituitary axis where it
mediates the negative regulation of TSH transcription) (Bassettt
et al., 2003). The hormone–receptor complex recognizes specific
thyroid responsive elements (TREs) in the promoters region of
T3-target genes, which, in combination with recruited cofactors,
act as specific transcriptional activators (linked to TRa1) or
repressors (linked to TRa2; Brent, 1994). The TRs can bind to
TREs as homodimers or heterodimers, commonly with retinoid
X receptor (RXR) (Brent, 1994; Bassettt et al., 2003; Farach-
Carson and Davis, 2003).

The TREs and the related target genes could be positively or,
to a lesser extent, negatively regulated by T3 (Miller et al., 2001).
In the first case, unligand TR shows a basal transcriptional
repression of the target gene expression due to the
recruitment of co-repressor proteins (like NCoR and SMRT),
while T3 binding leads to a conformational change in the
receptor structure, dissociation of the co-repressors, and
recruitment of co-activators (p160/SRC-1, p300/CBP and
Trip230) (Rosenfeld and Glass, 2001; Bassettt et al., 2003;
Farach-Carson and Davis, 2003). In the case of negative
regulated TREs, unligand TR mediate constitutive gene
expression and ligand binding (T3) induces active repression of
gene transcription via mechanisms that have not been precisely
clarified yet (Bassettt et al., 2003).

T3 responsiveness can further be altered by post-
translational modifications of TRs, such as phosphorylation (Lin
et al., 1992; Tzagarakis-Foster and Privalsky, 1998). It has been
already shown that the TRs binding to TREs in the absence of T3

could be triggered by kinases, suggesting that phosphorylation
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could participate in TR-mediated regulation of gene
transcription (Lin et al., 1992; Tzagarakis-Foster and Privalsky,
1998).

T3-altered gene expression mediate changes in inotropic
action, action potential duration and cardiac output

Myocyte contractile action depends on several factors, whose
changes modify the cardiac systolic and diastolic function and
consequently alter the cardiac output. Among these factors
there are the velocity of fiber shortening, changes in the
intracellular concentration of some ions like Ca2þ, Naþ, and Kþ

and the sympathetic tonus (Bassettt et al., 2003; Farach-Carson
and Davis, 2003). Therefore, alteration of cardiovascular
system-specific gene expression caused by thyroid hormones
and/or its metabolite activity (which will be discussed in the
nongenomic action section) could contribute to changes on
cardiac contractile function (Balkman et al., 1992; Bassettt et al.,
2003; Farach-Carson and Davis, 2003).

In this view, T3 treatment stimulates transcription of the a-
MHC gene and inhibits b-MHC mRNA production both in the
heart, leading to increased a/a myosin isoform and enhanced
cardiac contractility (a/a myosin isoform has higher ATPase
activity and increased velocity of fiber shortening than b/b
myosin isoform) (Balkman et al., 1992; Danzi et al., 2003). T3

upregulates the expression of the principal determinant of
muscle contractility, SERCA2 (the main responsible for
removing calcium from the cytosol) and downregulates
expression of phospholamban (an inhibitory SERCA regulator),
suggesting that induction of this ATPase may account for T3

enhancement of cardiac output by relaxing the heart more
rapidly (lusitropic effect) (Kiss et al., 1994; He et al., 1997;
Shenoy et al., 2001; Pantos et al., 2007a).

The b1R number is also altered in the heart in the presence
of T3. It may be responsible, at least in part, for the enhanced
catecholamine sensitivity of b1R-coupled cardiac responses in
the hyperthyroidism state (Williams et al., 1977; Tse et al.,
1980). Decreased levels of Gi in ventricular cells exposed to T3

may also contribute to the increased b-adrenergic sensitivity
(Carvalho-Bianco et al., 2004).

Alterations in ion transporters expression by T3 are also
described. These includes upregulation (Kim et al., 1987) or
downregulation of L-type Ca2þ channels, despite an
increased Ca2þ current (Watanabe et al., 2005), upregulation of
(Naþ/Kþ) ATPase (Philipson and Edelman, 1977; Orlowski and
Lingrel, 1990; Kamitani et al., 1992; Forini et al., 2004), and
controversial regulation of Kþ channels with downregulation of
a specific subunit of the delayed rectifier Kþ channels (Shimoni,
1999) in contrast with upregulation of voltage-gated Kþ

channels (Fiset et al., 1997). In addition, opposite results shows
that T3 increase the Naþ/Ca2þ exchanger expression (Hojo
et al., 1997; Shenoy et al., 2001) while, in hypothyroidism,
an increase was observed in mRNA and protein levels of the
Naþ/Ca2þ exchanger (Boerth and Artman, 1996).

T3-altered genes expression mediate cardiac
hypertrophy

Thirty years have passed since Sanford et al. (1978) reported
that T3-induced cardiac hypertrophy is accompanied by a
predominant increase in protein synthesis with a minor
contribution from reduced protein degradation.

There are also indirect T3-induced hypertrophy mechanisms
that require activation of other systems, like the renin-
angiotensin system (RAS) (Diniz et al., 2007). In this view, it was
reported that the cardiac hypertrophy observed in
hyperthyroid groups is related to enhanced cardiac levels of
renin and angiotensin II (Ang II) without involving the
sympathetic nervous system (Kobori et al., 1997) and with the
local RAS playing the primary role in the development of
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hyperthyroidism-induced cardiac hypertrophy (Kobori et al.,
1999). It seems that increases in TGFb1 levels are involved, at
least in part, in the Ang II-mediated T3-induced cardiac
hypertrophy (Diniz et al., 2007). In agreement with these
results, treatment with angiotensin type 1 receptor (AT1)
antagonists or angiotensin converting enzyme (ACE) inhibitors
has been shown to attenuate thyroid hormones-promoted
cardiac hypertrophy (Kobori et al., 1997; Pantos et al., 2005).
Recent evidence indicates that intracellular Ca2þ overload may
be the link between RAS and thyroid hormones (Su et al., 2008).

In addition, it has been reported that new components of the
RAS, which act as a counter-regulatory mechanism for the main
axis ACE/Ang II/ AT1, such as Angiotensin-(1–7) [Ang-(1–7)], its
receptor Mas and angiotensin-converting enzyme-2 (ACE2),
also have their levels altered accordingly to the thyroid status.
It was observed that cardiac levels of Ang-(1–7) and Mas are
increased in thyroid hormone-induced cardiac hypertrophy,
suggesting that ACE2/Ang-(1–7)/Mas may be acting as a
counter-regulatory mechanism during the myocardial
hypertrophy stimulated by thyroid hormones (Barreto-Chaves
et al., 2010).

General Vision of Nongenomic Signaling Pathway

The mechanism of action of thyroid hormones has been
described to begin in the cell nucleus and to require
participation of specific receptor proteins in the nuclear
compartment. Otherwise, some actions of thyroid hormones
have now been assumed to involve novel extranuclear
mechanisms in a variety of cells (Bassettt et al., 2003;
Farach-Carson and Davis, 2003). T3 actions that: (i) do not
require the formation of a nuclear complex containing T3

and TR, (ii) are completely independent of new mRNA
transcription and protein synthesis, and (iii) occur within
seconds to minutes, are refered as nongenomic effects
(Farach-Carson and Davis, 2003).

The nongenomic actions of thyroid hormones are dependent
on the activation of plasma membrane receptor(s) or
subcellular located receptor(s), mainly found at the cytoplasm,
nucleus, and mitochondria (Bassettt et al., 2003; Farach-Carson
and Davis, 2003; Saelim et al., 2004). Although the cell surface
receptor(s) for thyroid hormone has not been sequenced or
cloned yet, it has been suggested that this receptor could be
distinct from the nuclear one (Bassettt et al., 2003; Farach-
Carson and Davis, 2003). It appears to be located on integrin
aVb3, a heterodimer protein that interacts both with
extracellular matrix proteins and thyroid hormones (Bergh
et al., 2005). The Arg-Gly-Asp (RGD) recognition site in this
integrin is critical for the thyroid hormone binding (Bergh et al.,
2005; Cody et al., 2007). Other molecules like stilbene
resveratrol (Lin et al., 2006, 2008) and dihydrotestosterone
(Lin et al., 2009a) also bind to this integrin in the vicinity of the
RGD domain (Davis et al., 2009). At first, it was believed that
there was a single site capable for binding T3 or T4 in the integrin
receptor at or near the RGD domain. However, Lin et al.
(2009b) suggested that the hormone-binding domain is
constituted of two binding sites. One site solely binds T3 and
activates the phosphatidylinositol 3-kinase (PI3K) pathway
leading to cytoplasm-to-nucleus shuttling of TRa1 and into
transcription of the hypoxia-inducible factor-1a gene. The
second site binds both T3 and T4 and appears to trigger PKC,
Ras, Raf1, and MEK, resulting in tyrosine phosphorylation,
activation, and nuclear translocation of MAPK (ERK1/2) that in
turns: (i) interacts with TR, resulting in a MAPK/TR complex
that binds, and phosphorylates p53 leading to a decreased
transcriptional activity of this suppressor protein oncogene
(Shih et al., 2001; Bassettt et al., 2003; Lin et al., 2007, 2008); and
(ii) phosphorylates STAT1, STAT3 (Lin et al., 1999; Bassettt
et al., 2003), and the cytoplasmic TRb1 (Cao et al., 2009) that
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translocate to nucleus for activation of gene transcription (Lin
et al., 1999; Bassettt et al., 2003; Cao et al., 2009; Davis et al.,
2009). These MAPK (ERK1/2)-mediated nongenomic effects of
thyroid hormones induce angiogenesis (Davis et al., 2004; Bergh
et al., 2005) and tumor cell proliferation (Hiroi et al., 2006; Lin
et al., 2009b), while the PI3K pathway is not linked to cell
proliferation, but to trafficking of different intracellular proteins
(Lin et al., 2009b). The translocation of cytoplasmic TRa1 and
TRb1 to nucleus suggests that genomic and nongenomic effects
of thyroid hormones may act together to potentiate each
other—this point will be better discussed in the next section. In
hepatocytes, T4 is also thought to induce DAG formation in a
biphasic manner: first dependent on the PLC activity, and
subsequentialy through a PKC-dependent activation of PLD
(Kavok et al., 2001).

In rat alveolar epithelial cells, there is a cytoplasmic TRb1,
which interacts with T3, but apparently not with T4, to activate
the PI3K pathway. As a result, a stimulation of the (Naþ/
Kþ)ATPase activity is detected, accompanied by an augment of
its insertion at the plasma membrane (Lei et al., 2004). Recently,
it was shown that MAPK (ERK1/2) activation precedes the
stimulation of the PI3K pathway (Lei et al., 2008) suggesting the
involvement of the cell integrin aVb3 receptor once it is
capable of activating both MAPK (ERK1/2) and PI3K (Lin et al.,
2009b).

In neurons and astroglial cells, there was also demonstrated a
cytoplasmatic truncated thyroid hormone receptor isoform
(TRa-derived polypeptide—TRDa1) that has T4 or reverse T3

(r T3) as ligands and is insensitive to T3. The result of this binding
is a remodeling of the intracellular actin pattern that supports
cell motility, required for the normal development of the
central nervous system (Leonard et al., 1994; Farwell et al.,
2006).

T3-mediated nongenomic signaling pathways involved in
inotropic action, action potential duration and cardiac
output

Nongenomic actions of T3 in the heart (summarized in Fig. 1)
have been described on membrane ion transporters localized at
the plasma membrane, in the cytoplasm and in cellular
organelles, through mechanisms that involve distinct signaling
cascades with further activation of protein kinases (Bassettt
et al., 2003; Farach-Carson and Davis, 2003).

Schmidt et al. (2002) showed that T3 enhanced myocardial
contractility and reduced systemic vascular resistance in normal
adult males within 3 min, evidencing a nongenomic mechanism
of thyroid hormone in vivo. In addition, it was demonstrated
that thyroid hormones restore to basal, elevated intracellular
calcium concentration, and also delayed its intracellular
elevation. These actions lead to an improvement of
myocardium function and to the prevention of intracellular
calcium overload through the activation of b-adrenergic
receptors coupled to the AMPc/PKA signaling pathway that
results in the enhancement of SERCA2 activity (Zinman et al.,
2006). Together with the fact that T3 upregulates the
expression of SERCA2 and downregulates the expression of
phospholamban, it seems that this is an example of interface
between genomic and nongenomic actions of T3 that converge
to amplify its effects on cardiac contractility and output.

In accordance, a study by Mylotte et al. (1985)
demonstrated that the myocardial plasma membrane Ca2þ-
ATPase (responsible for Ca2þ extrusion on the plasma
membrane) is also involved in the thyroid hormone-enhanced
cardiac output since this pump is activated in response to T4

through a PKC-dependent transducing pathway (Mylotte et
al., 1985; Enyedi et al., 1996). Besides the greater plasma
membrane Ca2þ-ATPase-mediated Ca2þ efflux, there is also
an increased Ca2þ influx due to an amplified L-type Ca2þ



Fig. 1. Aschemeofthethyroidhormones,T3 andT4,nongenomiccardiacactions, includingpossiblereceptors forbinding, thesignalingeffectors
involved, the target actions and the final cardiac effects.

24 A X E L B A N D E T A L .
current through the activation of the adenylate cyclase
cascade by thyroid hormones (Watanabe et al., 2005). By the
way, T3 could enhance the cardiac contractility through an
indirect nongenomic manner, which is dependent on action
potential duration. Acute T3 exposure increases Naþ influx
via tetrodotoxin-sensitive inward Naþ current and thereby
stimulates the reverse-mode of Naþ/Ca2þ exchanger (Wang
et al., 2003). This action results in increasing the intracellular
Ca2þ content. Although this leads to a positive inotropic
effect, it can also contribute to the development of Ca2þ-
mediated atrial tachy-dysrythmias that were usually
attributed to chronic genomic effects of elevated T3 on the
atrial muscle (Wang et al., 2003). Recently, it was observed
that thyroid hormone administration immediately after the
induction of myocardial infarction in rats improves cardiac
contractility by reducing the expression of PKCe and PKCa
and increasing the expression of HSP70 in the myocardium
(Pantos et al., 2007a). As PKCe has been involved in the
inhibition of the L-type Ca2þ channel in hearts (Hu et al., 2000),
its suppression by thyroid hormones (Pantos et al., 2007a;
Mitasikova et al., 2009) would potentiate the activation of Ca2þ

channels.
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Acute effects of T3 were also observed in Naþ currents on
ventricular myocytes. The major effect seems to be a slowing of
current inactivation, where PKC is suggested to be involved
(Harris et al., 1991; Huang et al., 1999) as well as pertussis toxin-
sensitive G protein (Sen et al., 2002). This action may account
for the prolongation of the action potential that is observed
after acute addition of T3 (Craelius et al., 1990) and may
underlie once more, the propensity for arrhythmias in
hyperthyroidism. However, Sakaguchi et al. (1996) found
that T3 acutely infused to guinea pig ventricular cells enhances
the inward rectifier Kþ current. If this effect persists, it would in
part explain the abbreviation of the action potential seen in
chronic hyperthyroid conditions (Felzen et al., 1989). This
shortened action potential duration could also be attributed to
an acute T3 effect on voltage-dependent Kþ channels (Sun et al.,
2000). It seems that the cytoplasmic receptor TRb2 regulates
the activity of these Kþ channels in the plasma membrane
through a PI3K/Rac GTPase-dependent mechanism (Storey
et al., 2002, 2006). In other words, it means that this receptor
is effective to transduce a rapid signaling in a way that
does not require the nucleus or binding to DNA (Storey et al.,
2006).
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T3 acutely stimulates the Naþ/Hþ exchanger in rabbit heart
(Doohan et al., 1997), an effect that could be dependent on the
MAPK (ERK1/2) (Gekle et al., 2001; D’Arezzo et al., 2004), on
the PKC activity as seen in rat skeletal muscle (Incerpi et al.,
1999) or even on PI3K activity as observed in Naþ/Hþ

exchanger in chick embryo hepatocytes (Incerpi et al., 2002).
This T3-activated Naþ uptake through Naþ/Hþ exchanger
seems to negatively contribute to myocyte survival since
inhibition of this antiporter in the heart has been shown to
improve myocyte survival in the setting of ischemia (Avkiran,
1999). However, conversely to the Naþ uptake by Naþ/Hþ

exchanger, Doohan et al. (1997) have observed that T3

enhances (Naþ/Kþ)ATPase activity and Naþ efflux, which
would avoid the increase in intracellular Naþ concentrations, as
well as its deleterious effects. The T3-induced stimulation of
(Naþ/Kþ)ATPase activity occurs both by PI3K/PKB pathway
(Lei et al., 2004) and by MAPK (Lei et al., 2008) in adult rat
epithelial alveolar cells, and therefore this cascade may also be
activated on cardiomyocytes. The positive genomic
(upregulation of (Naþ/Kþ)ATPase expression) and
nongenomic effect of T3 on the Naþ pump in myocytes can be
considered synergistic effects that, once more, show the
interface between genomic and nongenomic actions.

T3-mediated nongenomic signaling pathways to change
cell surface proteins

On T3-altered gene expression section it was reported that the
increase inb1R number in the plasma membrane was a result of
protein synthesis. However, other studies using chick
embryonic ventricular myocytes showed that the b1R density
was slightly enhanced only 2 h after T3 addition, this action being
blocked by colchicines, which suggests the involvement of
microtubules and that T3 is also able to enhance the myocyte
sensitivity to catecholamines by nongenomic mechanisms
(Vassy et al., 1997).

T3-mediated nongenomic signaling pathways involved in
hypertrophy, cardiac development and remodeling

The activation of the PI3K/Akt/mTOR pathway by IGF-1 has
been implicated in determining heart size and physiologic
cardiac growth (Fujio et al., 2000). In this context, Kuzman et al.
(2005) demonstrated that T4 treatment promotes activation of
the Akt signaling pathway in a rat isolated myocyte preparation
that includes phosphorylation of mTOR and eNOS. Moreover,
Kenessey and Ojamaa (2006) also showed that a cardiomyocyte
culture treated with T3 rapidly activates PI3K (which appeared
to be linked with the cytoplasmic TRa1 through its p85a
subunit, independently of T3 binding) leading to Akt
phosphorylation that, in turns, translocates to the nucleus and
promoted mTOR phosphorylation. As mTOR is important to
regulate ribosomal biogenesis and protein translation, the
signaling pathway described in these studies may underlie at
least one of the nongenomic mechanisms by which T3 regulates
physiologic cardiac growth (Fig. 1). In accordance, it was
observed that mutations of TRs reported in many human
cancers allow a more effective binding of the mutated receptor
to p85a subunit of PI3K, enhancing the activation of PI3K
signaling that consequently results in increased cell
proliferation, motility, migration, and metastasis (Furuya et al.,
2009). A PI3K/Akt dependent cascade is also involved in the T3

role of switching titins (giant sarcomere proteins involved in
myocardial distensibility and mechanosignaling) during cardiac
development (Krüger et al., 2008). It was recently
demonstrated that the T3-induced activation of PI3K/Akt/
mTOR and the T3-induced cardiomyocyte hypertrophy were
completely abolished by using AT1 receptor siRNA (Diniz et al.,
2009). These results reinforce the contribution of the RAS in
mediating the hypertrophy promoted by T3.
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In rat neonatal cardiomyocytes, T3 was shown to induce
changes on myocyte shape and geometry improving remodeling
in failing hearts through the ERK pathway (Fig. 1). This cascade
did not require alterations of cell size or protein synthesis and
was independent of changes in the levels of phospho-Akt and
phospho-p38 MAPK (Pantos et al., 2007b).

The interface between nongenomic and genomic actions of
thyroid hormones is also observed for cardiomyocyte growth
once it was recently reported that the long-term effects of
thyroid hormones on the expression of SERCA2, a- and
b-MHC and cardiomyocyte growth were reverted by using
specific inhibitors of ERK1/2, p38-MAPK, PKCd, and Akt
(Iordanidou et al., 2010).

T3-altered effects in the heart vasculature

The increase in cardiac output observed in hyperthyroidism is a
result of the combination of the increased cardiac function
(inotropic and chronotropic effects) and changes in the
cardiovascular hemodynamics (lowered systemic vascular
resistance and increased blood volume) (Klein and Ojamaa,
2001). Vargas et al. (1995) and Napoli et al. (2007) suggested
that reduced vascular resistance could be secondary to an
increased vascularity and/or to alterations in the vascular
control mechanisms that favor vasodilatation.

The precise mechanism of the decline in systemic vascular
resistance in hyperthyroidism is not known and there are some
contradicting results on this subject. Some authors suggest the
involvement of nitric oxide (NO), as nitric oxide synthase
(NOS) activity seems to be upregulated in tissues primarily
related to blood pressure control in hyperthyroid rats
(Quesada et al., 2002) and in VSMCs of rat aortas when exposed
to T3 (Carrillo-Sepúlveda et al., 2010). Indeed, it was recently
reported that the PI3K/Akt-signaling pathway plays a role in T3-
induced NO production by VSMCs (Carrillo-Sepúlveda et al.,
2010) and by endothelial cels (Hiroi et al., 2006) (Fig. 1).
Conversely, hypothyroidism, with reduced cardiac output, is
associated with impaired endothelium-dependent
vasodilatation (Delp et al., 1995; Moreno et al., 2003; Taddei et
al., 2003) and reduced aortic NOS activity (Quesada et al.,
2002).

It is also known that endothelial shear stress regulates the
expression of eNOS (Xiao et al., 1997) and maybe its increase
as a result of the augmented cardiac output, leads to a raise in
NO production. There are other factors that could contribute
to increased NOS activity, including a direct nongenomic effect
of T3 (Chakrabarti and Ray, 2000) or the increased release of
vasoactive molecules such as Ang II (Hennington et al., 1998)
or endothelin (Hirata et al., 1995), which are increased in
hyperthyroid rats, and are known to stimulate NO production
(Marchant et al., 1993; Singh et al., 1994).

There are evidences that the RAS plays an important role
in the development of hypertension derived from T4 chronic
treatment and NOS inhibition, once losartan (AT1 antagonist)
significantly attenuated this type of hypertension (Rodriguez-
Gomez et al., 2003). In a compensatory way, it seems that T3

may act as a negative regulator of the RAS, since it indirectly
(Ichiki et al., 1998) and directly (Fukuyama et al., 2003) inhibits
vascular AT1 expression.

Nevertheless, these studies, Yoneda et al. (1998) and
Ojamaa et al. (1996) showed that T3-induced vasodilatation is
independent of NO production. Furthermore, the participation
of cAMP and cGMP on vascular smooth muscle cell relaxation
was also excluded (Ojamaa et al., 1996). In isolated skeletal
muscle, glibenclamide decreased the effect of T3, implicating
ATP-sensitive Kþ channels in the mechanism of hormonal
action (Park et al., 1997) (Fig. 1). Thus, it seems suitable to
postulate that specific ion channels could be involved in the T3-
decreased coronary and systemic vascular resistance, probably
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via protein kinases that have been shown to be involved in T3 or
T4 nongenomic responses.

3-Iodothyronamine (T1AM)

Besides, T4 deiodination to produce T3, it was recently
discovered that deiodination and decarboxylation of T4 could
generate a biologically active metabolite, T1AM, whose actions
are opposite to those induced by T4 or T3 (Scanlan et al., 2004).
The D1, D2, and D3 deiodinases involvement in thyronamine
biosynthesis has already been described (Piehl et al., 2008),
revealing once again their participation in thyroid hormone
balance that would implicate in thyroid hormones actions
(Gereben et al., 2008). This endogenously formed metabolite
was found in heart, brain, liver, and blood and activates a novel
aminergic system coupled to the trace amine-associated
receptor (TAAR), a member of the orphan GPCR-related
family (Scanlan et al., 2004; Zucchi et al., 2006; Frascarelli et al.,
2008). As there are nine TAAR subtypes (Lindemann et al.,
2005) and at least five were detected in rat heart tissue
(Chiellini et al., 2007), some experiments suggest that
iodothyronamine effects are not mediated solely by TAAR1
(Chiellini et al., 2007; Frascarelli et al., 2008) and possibly are
also mediated by TAAR8a, since it has already been shown
that this receptor is one of the TAAR subtypes preferentially
expressed in the cardiac tissue (Zucchi et al., 2006).

As this metabolite does not interact with nuclear thyroid
hormone receptors (Chiellini et al., 1998) but interact with
TAAR1, it has been hypothesized that cardiac T1AM influences
are also mediated via nongenomic effects (Fig. 2). It has been
Fig. 2. A scheme of the T1AM cardiac actions, including the
receptors, the signaling effectors, the target actions and the final
cardiac effects.
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demonstrated that T1AM reduces cardiac output, heart rate,
systolic pressure, and coronary flow in isolated heart
preparation within minutes (Chiellini et al., 2007). These effects
seem to be a result of the reduced amplitude and duration of the
calcium transient due to: (i) the abolishment of the L-type Ca2þ

current facilitation by membrane depolarization, (ii) the
reduced ryanodine binding in the sarcoplasmatic reticulum (SR)
calcium release channel, an effect that does not appear to be the
result of a direct interaction between T1AM and the SR channel,
(iii) the significant increase in Ca2þ leak, determined with the SR
channel closed and, (iv) the action potential prolongation by
reducing the transient outward current (Ito) and a background
current (Ik1; Ghelardoni et al., 2009).

Some studies proposed different signaling pathways to
explain these negative inotropic and chronotropic T1AM
effects. It was shown that a tyrosine kinase inhibitor remarkably
increases them, whereas a tyrosine phosphatase inhibitor
blocks them, suggesting that T1AM might induce the
dephosphorylation of critical tyrosine residues (Chiellini et al.,
2007). AMPc, PKA, PKC, calcium-calmodulin kinase II, PI3K, or
MAPK appears not to be involved in the T1AM cardiac effects
(Chiellini et al., 2007). However, Scanlan et al. (2004) previously
reported that recombinant rat, mouse, chimp, and human
TAAR1s heterologously expressed in HEK293 cells or Xenopus
oocytes, rapidly leads to stimulation of cAMP production when
exposed to T1AM. These apparently contradictory findings
might be explained by a localized increase in cAMP content—
that could activate signaling pathways able to reduce cardiac
inotropic and chronotropic state—or by activation of different
signaling pathways coupled to TAAR1 in a native cellular
environment. Furthermore, as previously mentioned, different
TAAR subtypes may account for the effects of T1AM in the
heart, such as TAAR8a (Zucchi et al., 2006; Chiellini et al.,
2007). In fact, the signaling pathways triggered by T1AM in
cardiomyocytes to result in modulation of cardiac function are
still not completely elucidated.

Future Perspectives

As we have shown in this review, thyroid hormones act via
different pathways to play physiological roles in the
cardiovascular system. Although general genomic effects have
been well described for years, some nongenomic effects have
been brought to scene and appear to converge and amplify
genomic thyroid hormone effects in the cardiovascular system.
Beyond genomic and nongenomic actions, thyroid hormones
are also metabolized to a newly recognized biological active
product, T1AM, which acts through an aminergic system to
trigger cardiovascular effects opposite to those described
for T3 and T4. Therefore, a balance between T3

or T1AM formation from T4 could trigger a fast or slow signal
transduction cascade resulting in an efficient mechanism of
maintaining cardiac homeostasis. Changes in this equilibrium
might contribute to the cardiovascular alterations that appear
concomitantly to thyroid disease. It seems that a more
complete elucidation of the effectors involved in T3, T4,
and T1AM pathways, as well as a better understanding of the
generation, distribution, and metabolic processing of this novel
endogenous metabolite will be of great importance as targets
for the treatment of cardiovascular diseases.
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