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Effects of nutritional status on the L-arginine–nitric oxide path-
way in platelets from hemodialysis patients.

Background. Malnutrition is a common feature in chronic
renal failure and adversely affects patient morbidity and mor-
tality. We here investigate the effects of nutritional status on the
L-arginine–nitric oxide signaling pathway and platelet function
in chronic renal failure patients on regular hemodialysis.

Methods. Platelet aggregation was correlated with plasma
amino acid profiles, L-arginine transport, and nitric oxide syn-
thase (NOS) activity determined by conversion of L-[3H]-
arginine to L-[3H]-citrulline and accumulation of intracellular
cyclic guanosine monophospate (cGMP) in platelets from mal-
nourished and well-nourished chronic renal failure patients on
regular hemodialysis (N = 78).

Results. Transport of L-arginine (pmol/109cells/min) via y+ L
system was increased in well-nourished (104 ± 15) compared to
controls (57 ± 11) or malnourished chronic renal failure patients
(55 ± 13). Basal NOS activity (pmol/108cells) was enhanced in
well-nourished chronic renal failure patients (0.51 ± 0.01) com-
pared to controls (0.18 ± 0.01) or malnourished chronic renal
failure patients (0.08 ± 0.03). In addition, basal cGMP levels are
elevated in platelets from well-nourished chronic renal failure
compared to malnourished uremic patients. Platelet aggrega-
tion induced by collagen is impaired in well-nourished chronic
renal failure patients compared to malnourished patients and
controls. Plasma L-arginine levels are reduced in chronic renal
failure patients and even lower in malnourished patients.

Conclusion. Our findings provide the first evidence that
L-arginine transport via the high affinity system y+ L and ni-
tric oxide synthesis are only stimulated in platelets from well-
nourished chronic renal failure patients, leading to impaired
platelet aggregation. The absence of this adaptive response in
the L-arginine–nitric oxide pathway in platelets from malnour-
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ished chronic renal failure patients may account for the en-
hanced occurrence of thrombotic events in these patients.

Chronic renal failure is a complex syndrome charac-
terized by significant abnormalities such as endothelial
dysfunction, hypertension, elevation of circulating cy-
tokines and alteration of platelet function, and associated
with a disturbance in the L-arginine–nitric oxide pathway
[1–9]. Nitric oxide is an endogenous modulator with di-
verse biologic functions and is produced from the cationic
amino acid L-arginine by a family of nitric oxide synthases
(NOS) [10]. The majority of studies in animal models and
humans suggest that systemic production of nitric oxide is
increased in uremia, while inhibition of glomerular nitric
oxide is involved in the genesis of chronic renal failure [1–
8]. The prolonged bleeding time in uremic patients may be
the consequence of increased nitric oxide synthesis, since
in animal models this haemostatic defect can be reversed
by infusions of the NOS inhibitor NG-monomethyl-L-
arginine (L-NMMA) [1, 2, 6].

Malnutrition is a frequent comorbid factor in chronic
renal failure patients and exacerbates cardiovascular
mortality in these patients [11–13]. Among the earliest in-
dications of nutritional deficiency are low concentrations
of plasma amino acids [14], including L-arginine. Several
studies have demonstrated that both reduced serum albu-
min concentration and low body mass index (BMI) are
strong predictors of cardiovascular mortality in uremic
patients [15–18]. Malnutrition in uremic patients results
in elevated levels of circulating cytokines, further exacer-
bating the oxidative and inflammatory milieu in uremia
[13, 17, 19–21].

Platelets possess both inducible NOS (iNOS) and en-
dothelial NOS (eNOS) and interact with endothelial cells
[22, 23]. L-arginine, nitric oxide, and nitric oxide donors
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inhibit, while L-NMMA potentiates platelet aggregation
[22, 24]. Platelet NOS is activated during platelet adhe-
sion to collagen and aggregation induced by adenosine
diphophosphate (ADP), collagen, and arachidonic acid
[22, 24, 25].

Our group has demonstrated that, unlike red blood
cells and leukocytes [26], L-arginine is transported only
by system y+ L in human platelets [27], although there are
reports of a weaker activity of system y+ in these cells [28].
System y+ L mediates high-affinity, Na+-independent
cationic and Na+-dependent neutral amino acid trans-
port [26]. Molecular studies indicated that y+ LAT and
4F2hc combine to induce y+ L system activity [29, 30].
Similar to endothelial cells, L-arginine transport via sys-
tem y+ L in platelets is rate-limiting for the generation of
nitric oxide [31, 32].

We reported previously that L-arginine transport into
blood cells is increased, while circulating plasma con-
centrations of L-arginine are reduced in chronic renal
failure patients [5, 25, 31, 33, 34]. However, these pre-
vious studies did not examine the nutritional status of
uremic patients. In the present study, we have exam-
ined the transport of L-arginine in platelets in both
well-nourished and malnourished chronic renal failure
patients on hemodialysis. Additionally, platelet function,
basal NOS activity and cyclic guanosine monophosphate
(cGMP) in platelets, inflammatory status, and plasma
concentrations of L-arginine and related amino acids
were investigated in these patients.

METHODS

Subjects

Seventy-eight chronic renal failure patients on
hemodialysis and 42 age-matched healthy volunteers
participated in the study (Table 1). No patient was on
antiplatelet treatment. Most hypertensive patients were
using converting enzyme inhibitors and b blockers with
only a small percentage on calcium channel blockers. Pa-
tients were treated for at least 6 months with hemodial-
ysis three times per week. Blood samples were drawn by
venipuncture before a 4-hour dialysis session. The exclu-
sion criteria were heart failure, infection, dyslipidemia,
and recent blood transfusion. The Pedro Ernesto Hospi-
tal Ethical Committee approved this work, and informed
consent was obtained from each of the patients.

Anthropometric measurement

Anthropometric measurements were performed us-
ing BMI [i.e., the ratio of postdialysis body weight (kg)
divided by height square (m2)]. BMI values less than
18.5 kg/m2 were considered malnutrition [35]. BMI was
16.7 ± 1 kg/m2 in malnourished uremic patients, 22 ±

Table 1. Characteristics of healthy controls and chronic renal failure
patients

Malnourished Well-nourished
Data Controls patients patients

Number of patients 42 36 42
Age years 54 ± 7 47 ± 13 54 ± 14
Gender male/female 26/16 24/12 27/15
Months on dialysis — 24 ± 16 22 ± 12
Dialysis session minutes — 240 ± 0 236 ± 6
Kt/V urea — 1.3 ± 0.13 1.3 ± 0.08
Hypertension — 28 37
Vasoactive drugs — 1.3 ± 0.13 1 ± 0.7
Body mass index 23 ± 3 16.7 ± 1a,b 22 ± 2
Albumin g/dL 4 ± 0.7 3.4 ± 0.6a,b 3.7 ± 0.2
Erythropoietin — 4421 ± 797 4285 ± 530

dose units/week
Hemoglobin g/dL 13 ± 7 10 ± 1.2a 10 ± 1.3a

Total cholesterol mg/dL 192 ± 5 163 ± 23 176 ± 28
Fibrinogen g/L 2.49 ± 0.8 3.47 ± 0.32a,b 4.46 ± 0.27a

aP < 0.05 vs. controls; bP < 0.05 vs. well-nourished patients.

2 kg/m2 in well-nourished uremic patients, and 23 ±
3 kg/m2 in controls.

L-(3H)-arginine influx in platelets

Venous blood sample was anticoagulated with a cit-
ric acid–dextrose anticoagulant (ACD) (mmol/L) (73.7
citric acid, 85.9 trisodium citrate, and 111 dextrose). As
described previously [27], plasma-rich plasma (PRP), ob-
tained by centrifugation (180g, 15 minutes) of whole
blood, was centrifuged at 800g for 15 minutes. Pellet
washed once with ACD was resuspended in Krebs’ buffer
(mmol/L) (119 NaCl, 4.6 KCl, 1.5 CaCl2, 1.2 NaH2PO4,
1.2 MgCl2, 15 NaHCO3, and 11 glucose, pH 7.4). Washed
platelets (1 × 109 platelets/mL) were incubated at 37◦C
and L-(3H)-arginine influx (1 to 50 lmol/L) measured
over 5 minutes. L-leucine (10 mmol/L), a substrate for sys-
tem y+ L, was used to resolve total L-arginine transport in
platelets into system y+ L and transport with diffusion ki-
netics. Transport was terminated by rapid centrifugation,
followed by two washes with Krebs’ buffer, recentrifu-
gation and lysis with Triton for b scintillation counting.
Platelets were counted using a Coulter counter.

Measurement of platelet NOS activity

Basal NOS activity was determined from the conver-
sion of L-[3H]-arginine to L-[3H]-citrulline [31]. Platelet
suspensions (1 × 108 platelets/mL) were incubated at
37◦C in the presence of L-[3H]-arginine (2 lCi/mL) plus
unlabeled L-arginine (1 lmol/L) for 45 minutes. All reac-
tions were stopped by rapid centrifugation (2000g, 15 sec-
onds), followed by two washes with Krebs’ buffer. The
platelet pellet was lysed with 0.1% Triton and applied to
a Dowex cation exchange resin column. L-[3H]-citrulline
was eluted with 2 mL water and radioactivity measured
by liquid scintillation counting.
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Assay of platelet cGMP levels

cGMP content was determined in washed platelets at
baseline using a commercial enzyme-linked immunosor-
bent assay (ELISA) method (Cayman Chemical Com-
pany, Ann Arbor, MI, USA). Briefly, washed platelets
(1 × 108/mL) were preincubated with 200 lmol/L
isobutylmethylxanthine (IBMX), a phosphodiesterase
inhibitor, for 30 minutes. Ice-cold perchloric acid (0.3
mol/L) was added to the platelet suspension, and the
platelets were lysed by sonication followed by rapid
freezing in liquid nitrogen. Cell debris was then pelleted
by centrifugation (2000g, 20 minutes). The supernatants
containing cGMP were collected and stored at −80◦C
until ready for assay using the ELISA method.

Platelet aggregation protocol

Platelet aggregation was evaluated on PRP by opti-
cal densitometry. Briefly, blood samples were anticoag-
ulated with 3.8% trisodium sodium and centrifuged at
180g for 15 minutes at room temperature. Platelet-poor
plasma (PPP) was obtained by centrifuging the leftover
blood at 800g for 10 minutes. The platelet concentra-
tion in PRP was adjusted with PPP to a constant count
of 2.5 × 108/mL. Aggregation was induced by colla-
gen (2 mg/L) and responses monitored for 5 minutes in
a four-channel aggregometer (Chrono-Log, Havertown,
PA, USA). Tests were performed at 37◦C with a stirring
speed of 900 rpm. Maximal aggregation was expressed in
percentage.

Determination of plasma levels of fibrinogen and tumor
necrosis factor-a (TNF-a)

Briefly, plasma samples were isolated. The concen-
tration of fibrinogen was measured by Clauss Method
and TNF-a levels were determined by ELISA method
(Amersham, Pittsburgh, PA, USA).

Measurement of plasma amino acid concentrations by
high-performance liquid chromatography (HPLC)

As described previously [33, 36], individual amino acids
were measured by reverse-phase HPLC, using the fluo-
rescence of the orthophthalaldehyde derivatives with an
automated sample processing device (Asted) (Anachem,
Luton, UK). The separation resolved all the known
plasma amino acids over a 45-minute analysis period.
Fluorescence was measured at 340 nm excitation and
440 emission wavelengths using a Jasco 4100 fluorimeter
(Jasco, Thermo Separation Products, Stone, UK).

Chemicals

All chemicals were purchased from Sigma Chemical
Co. (St. Louis, MO, USA) and were of the highest analytic
grade.

Statistics

Data are expressed as the means ± SEM of measure-
ments in number of control subjects or chronic renal fail-
ure patients. Statistical significance was determined at
P < 0.05 using one-way analysis of variance (ANOVA)
and post hoc Tukey tests (GraphPad Prism Program,
San Diego, CA, USA). Curves were fitted with Enzfit-
ter (Elsevier), with a nonlinear least squares fit to the
Michaelis-Menten equation.

RESULTS

Patient profile and biochemical and nutritional status

Malnourished chronic renal failure patients presented
with lower BMI index and albumin compared to well-
nourished patients and controls. Hemoglobin was re-
duced in the two groups of chronic renal failure patients.
Malnourished and well-nourished uremic patients did
not differ in relation to the use of vasoactive drugs. Fib-
rinogen plasma concentration was increased in eutrophic
compared with malnourished uremic patients. Control
patients had lower plasma fibrinogen levels when com-
pared to both groups of chronic renal failure patients (see
Table 1).

L-arginine influx in platelets

Analysis of the nutritional status of chronic renal fail-
ure patients revealed that L-arginine transport via system
y+ L was increased primarily in well-nourished chronic
renal failure patients, with similar transport rates mea-
sured in controls and malnourished chronic renal fail-
ure patients (Fig. 1). The transport of L-arginine with
kinetics of diffusion was not different in chronic renal
failure patients (malnourished 0.25 ± 0.1 hour−1 and
well-nourished: 0.4 ± 0.1 hour−1) and controls (0.4 ±
0.1 hour−1).

Basal NOS activity and cGMP content in platelets

Basal NOS activity, assaying production of L-[3H]-
citrulline from L-[3H]-arginine was increased in platelets
from well-nourished chronic renal failure patients com-
pared with controls and malnourished chronic renal fail-
ure patients (Fig. 2A). Basal cGMP levels in platelets
were also enhanced in well-nourished chronic renal fail-
ure patients compared with controls and malnourished
chronic renal failure patients (Fig. 2B), confirming the
increase in NOS activity measured in platelets from well-
nourished patients.

Platelet aggregation

Platelet aggregation in response to collagen was signifi-
cantly impaired in eutrophic chronic renal failure patients
compared to malnourished patients and controls (Fig. 3).
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Fig. 1. Effects of malnutrition on L-arginine transport in platelets from chronic renal failure (CRF) patients on hemodialysis. Kinetics of L-arginine
transport in platelets isolated from age-matched, healthy controls (N = 8) and chronic renal failure patients on hemodialysis (N = 16). Vmax values
for system y+ L mediated L-arginine transport are shown. Data denote the mean ± SEM.

Plasma amino acid profile in well-nourished
versus malnourished uremic patients

Blood samples were separated into plasma for analy-
sis of amino acid levels. The results for L-arginine and
other amino acids are shown in Figure 4. Plasma L-
arginine concentrations were significantly lower in all
chronic renal failure patients (94 ± 8 lmol/L) compared
with controls (146 ± 14 lmol/L). The reduction in plasma
L-arginine levels was more pronounced in malnourished
(76 ± 12 lmol/L) compared to well-nourished chronic re-
nal failure patients (107 ± 8 lmol/L) (P < 0.05). Malnour-
ished patients also revealed a reduction of plasma L-lysine
concentration compared to well-nourished chronic re-
nal failure patients. Plasma concentrations of L-ornithine
were elevated in all chronic renal failure patients, while
L-citrulline concentrations were only increased in well-
nourished chronic renal failure patients compared with
controls and malnourished chronic renal failure patients
(Fig. 4).

TNF-a levels in well-nourished and malnourished uremic
patients

As shown in Figure 5, circulating TNF-a levels were
not significantly different in control and well-nourished
uremic patients. However, in uremic patients with mal-
nutrition TNF-a levels were significantly increased com-
pared to controls.

DISCUSSION

Cardiovascular disease is the major cause of death in
hemodialysis patients. Uremic malnutrition is closely as-
sociated with cardiovascular disease risk in chronic re-
nal failure patients. The present results provide the first
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Fig. 2. Effects of malnutrition on basal L-[3H]-citrulline production
(A) and cyclic guanosine monophosphate (cGMP) levels (B) in platelets
from age-matched, healthy controls (N = 6 to 8) and well-nourished
(N = 6 to 10) and malnourished (N = 6 to 8) chronic renal failure (CRF)
patients on hemodialysis. Data denote the mean ± SEM. NOS is nitric
oxide synthase.
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Fig. 3. Platelet aggregation in platelet-rich plasma induced by collagen. Platelets were obtained from age-matched, healthy controls (N = 8),
well-nourished (N = 8), and malnourished (N = 6) chronic renal failure patients (CRF) on hemodialysis. Data denote the means ± SEM.
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Fig. 4. Plasma amino acid concentrations in chronic renal failure (CRF) patients. High-performance liquid chromatography (HPLC) measurements
of amino acid concentrations in plasma from age-matched, healthy controls (N = 10) and well-nourished (N = 10) or malnourished (N = 10) chronic
renal failure patients on hemodialysis (N = 20). Data denote the means ± SEM.

evidence in human platelets that stimulation of both L-
arginine transport via system y+ L and nitric oxide syn-
thesis is associated with reduced platelet aggregability
only in well-nourished chronic renal failure patients. The
absence of an adaptive increase in the L-arginine–nitric
oxide pathway in platelets from malnourished chronic re-
nal failure patients may account for the thrombotic events
in these patients. It is possible that the elevation in L-
arginine transport in chronic renal failure provides the
necessary supply of substrate for maintaining increased
systemic synthesis of nitric oxide in uremia [3, 5]. In-
creased nitric oxide production in uremic platelets may
be responsible for the inhibition of platelet aggregation
observed in well-nourished chronic renal failure patients.
It has been suggested that reduced platelet aggregation
serves as a protective mechanism against thrombosis in a

prothrombotic, uremic milieu. Indeed, uremic patients
receiving erythropoetin present with a significant im-
provement in platelet aggregation paralleled by an ac-
celerated atherosclerosis [5].

We previously reported systemic arterial hypertension
induces a disturbance in system y+ L transport activity
in human blood cells [7]. The present findings clearly
demonstrate that L-arginine transport via system y+ L is
activated in well-nourished chronic renal failure patients
with corresponding changes in NOS activity and cGMP
accumulation compared to malnourished chronic renal
failure patients or age-matched, healthy controls. As L-
arginine is the substrate for NOS, activation of L-arginine
transport via system y+ L in platelets from well-nourished
patients could provide the necessary substrate for sustain-
ing elevated nitric oxide production [22]. Up-regulation
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Fig. 5. Tumor necrosis factor-a (TNF-a) levels in plasma from control and chronic renal failure (CRF) patients. Data denote mean ± SEM of
measurements in controls (N = 6), well-nourished (N = 6), and malnourished (N = 6) uremic patients.

of systemic nitric oxide synthesis may serve as a pro-
tective mechanism against hemodynamic and hemostatic
disorders of uremia [3]. Alternatively, increased nitric ox-
ide produced by circulating platelets could sustain the
bleeding tendency, a well-known complication of uremia
[3, 27].

Although molecular studies have shown that associa-
tion of y+ LAT with 4F2hc induces system y+ L trans-
port activity [29, 30, 37], the mechanisms involved in the
regulation of this transport system have not been fully
investigated. The elevated plasma levels of TNF-a in mal-
nourished uremic patients (Fig. 5) are associated with di-
minished system y+ L activity. Whether there is a direct
link between platelet y+ L activity and TNF-a plasma
levels remains to be established. Moreover, we cannot
exclude the possibility that cytokines reduce y+ L activ-
ity in human platelets.

The intriguing observation that malnourished
hemodialysis patients do not exhibit an activation of
system y+ L or nitric oxide synthesis, highlights the im-
portance L-arginine availability [38] and may explain, in
part, the increased risk of cardiovascular morbidity and
mortality in this cohort of uremic patients. It is possible
that the profound alterations in amino acid metabolism
detected in malnourished uremic patients affect the
obligatory amino acid exchange mechanism for system
y+ L in platelets. It is well known that the uptake of the
amino acids by this transport system depends largely on
the intracellular substrate composition. Clinical experi-
ence indicates that bleeding and thrombotic tendencies
coexist in the general population of uremic patients
[39]. Thus, lack of activation of L-arginine uptake and
nitric oxide production in the subgroup of malnourished
patients may have clinical implications with respect to
the reported tendency to thrombosis in uremia.

Increased plasma L-citrulline levels are a common find-
ing in chronic renal failure patients [33], and this find-
ing has traditionally been associated with diminished
L-citrulline uptake and low production of L-arginine by
the failing kidney. However, as L-citrulline is the co-
product of L-arginine metabolism via NOS, elevated
L-citrulline levels are consistent with increased nitric ox-
ide production in well-nourished chronic renal failure pa-
tients [3].

CONCLUSION

The present study showed that L-arginine transport via
system y+ L in platelets was only up-regulated in well-
nourished uremic patients and associated with increased
nitric oxide production and reduced platelet aggregabil-
ity. The mechanisms involved in the modulation of system
y+ L by the nutritional status of uremic patients remains
to be elucidated and may provide insights into the patho-
physiology and potential interventions in uremia.
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