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Simple Summary: The HPV oncoproteins E6 and E7 can modulate the expression and activity of the
maintenance DNA methyltransferase 1, suggesting that HPV carcinogenic mechanisms may include
aberrant DNA methylation. Some studies previously proposed both gene-associated DNA methylation
signatures and a global hypermethylation profile in HPV-positive head and neck cancer, but the
validation of such signatures and a more detailed analysis of the methylation profile of transposable
elements (TEs) in oropharyngeal squamous cell carcinoma (OPSCC) are still missing. TEs account
for approximately 50% of the human genome and their hypomethylation and reactivation have been
consistently reported in cancer, usually being associated with worse prognosis. Based on this, this
study aimed at validating a previously established 5-CpG methylation signature in FFPE OPSCC from
a middle-income population, in which the frequency of HPV infection is only 6.1%, and dissecting the
methylation profile of TEs, focusing on their impact on gene expression and overall survival.

Abstract: HPV oncoproteins can modulate DNMT1 expression and activity, and previous studies
have reported both gene-specific and global DNA methylation alterations according to HPV status
in head and neck cancer. However, validation of these findings and a more detailed analysis of the
transposable elements (TEs) are still missing. Here we performed pyrosequencing to evaluate a 5-CpG
methylation signature and Line1 methylation in an oropharyngeal squamous cell carcinoma (OPSCC)
cohort. We further evaluated the methylation levels of the TEs, their correlation with gene expression
and their impact on overall survival (OS) using the TCGA cohort. In our dataset, the 5-CpG signature
distinguished HPV-positive and HPV-negative OPSCC with 66.67% sensitivity and 84.33% specificity.
Line1 methylation levels were higher in HPV-positive cases. In the TCGA cohort, Line1, Alu and
long terminal repeats (LTRs) showed hypermethylation in a frequency of 60.5%, 58.9% and 92.3%,
respectively. ZNF541 and CCNL1 higher expression was observed in HPV-positive OPSCC, correlated
with lower methylation levels of promoter-associated Alu and LTR, respectively, and independently
associated with better OS. Based on our findings, we may conclude that a 5-CpG methylation signature
can discriminate OPSCC according to HPV status with high accuracy and TEs are differentially
methylated and may regulate gene expression in HPV-positive OPSCC.

Keywords: oropharyngeal squamous cell carcinoma; HPV; DNA methylation; transposable elements;
gene expression; overall survival
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1. Introduction

Head and neck squamous cell carcinomas (HNSCC) comprise aggressive malignant
neoplasms often late diagnosed with already high local invasion and metastatic dissemina-
tion [1,2]. However, given the awareness that Human Papillomavirus (HPV) infection is an
important etiological factor correlating with a better therapeutic response and prognosis
compared to the HPV-negative counterpart (mostly related to tobacco and alcohol), an
in-depth investigation of the most relevant infection-related molecular signatures may
provide new opportunities for early diagnosis and targeted therapeutic interventions [3].
HPV-positive HNSCC already represents an epidemic in high-income countries, while in
low- and middle-income countries the numbers are expected to increase [4–7].

HPVs are known double-strand DNA tumor viruses, with a tropism for the basal layer
of squamous epithelia, in which the completion of the viral life cycle is highly coordinated
with the host keratinocyte differentiation program [8]. Among the more than 200 existing
HPVs, high-risk genotype (such as HPV16 and HPV18) persistent infections progress into
cancer, and in the majority of HPV-driven carcinomas, type 16 is involved [9]. Most of the
HPV16-induced head and neck cancers affect the palatine tonsils, that often metastasize
to nearby lymph nodes [10,11]. Crucial in the pathogenesis of HPV-driven carcinomas is
the expression of early genes-encoded E6 and E7 oncoproteins which, by targeting host
cell tumor suppressors p53 and pRB, provide the infected keratinocyte with a growth
advantage, with enhanced proliferation rate, impaired apoptosis and progressive immune
evasion [12,13]. In addition, HPV E6 and E7 can also disrupt cancer-related gene expression
patterns by altering host cell transcriptional programs epigenetically, e.g., by modulating
DNA methyltransferase activity [14].

DNA methylation is an epigenetic mechanism of gene expression control, and its
dysregulation has been largely reported in cancer [15–17]. DNA methylation reactions are
catalyzed by DNMTs, which in humans include four different enzymes [18]. DNMT3L
lacks catalytic activity, while DNMT3A and 3B are classified as de novo DNMTs, by their
capacity of methylating previously unmethylated CpG sites [18]. DNMT1, contrarily, is
responsible for the maintenance of DNA methylation marks in the newly synthesized
strand during DNA replication [18]. Both E6 and E7 oncoproteins affect the expression of
DNMT1 (either through complex formation with E7 or as a consequence of E6-induced
p53 suppression), but also of DNMT3A and DNMT3B [19–23]. As we recently showed,
DNA methylation signatures are capable of discriminating HPV-positive and HPV-negative
HNSCC, and given the different prognosis, a thorough investigation of potentially useful
biomarkers allowing more effective therapeutic approaches is essential [24,25].

Although some studies reported a genome-wide hypermethylation profile based on
the evaluation of transposable elements (TEs) [22,26–28], we showed that, in an analysis di-
rected to gene regions, hypomethylation is more common in HPV-positive tumors relative
to HPV-negative counterparts (58% and 65%, when considering differentially methylated
positions and regions, respectively) [24]. This led to the identification of a 5-CpG methyla-
tion signature able to discriminate tumors according to HPV status, but the accuracy of
this signature to identify HPV-driven carcinogenesis in specific tissues was not tested due
to limited sample sizes.

Another important aspect yet to be investigated is the extension of the genome-wide
hypermethylation profile reported in HPV-positive tumors. So far, degenerate assays
for assessing Line and Alu elements methylation levels have been applied, highlighting
the need for a more detailed evaluation of which TEs are dysregulated. This is especially
relevant, since global hypomethylation was already associated with genomic instability and
relapse in HNSCC [27,28], representing a promising biomarker. Furthermore, transposable
elements also include the so-far neglected in HSCNC Long Terminal Repeat (LTR) elements,
whose relevance for tumor development is starting to be unveiled [29].

In the present study, we were interested in evaluating gene-specific and global DNA
methylation differences in OPSCC according to HPV status. We validated the previously
proposed 5-CpG methylation signature of HPV infection in oropharyngeal squamous cell
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carcinoma (OPSCC) and confirmed the hypermethylation of Line1 TE in HPV-positive
tumors. This led us to further dissect the methylation status of TEs, showing that, although
hypermethylation is in general more common, hypomethylation is also observed. Finally,
the methylation levels of gene-associated TEs were correlated with mRNA expression and
impact patients overall survival, independently of HPV status.

2. Materials and Methods
2.1. OPSCC Cohort

In this study, a previously characterized [7] OPSCC cohort from the Brazilian National
Cancer Institute (INCA, Rio de Janeiro, Brazil) was used. Briefly, 346 patients with a
confirmed diagnosis of OPSCC between 1999–2010 were included and tumor samples were
collected before any treatment. Patients’ clinical and sociodemographic information was
retrieved from medical records. The median follow-up of the patients was 10.75 months.
Tumor specimens were formalin-fixed and paraffin-embedded (FFPE) and representative
samples from each individual were evaluated by two independent pathologists. HPV
status was considered positive when a strong p16, with diffuse nuclear and cytoplas-
mic staining in more than 70% of the tumor cells (determined by immunohistochemistry,
IHC) was observed, and HPV16 E6 DNA was detected by quantitative-PCR (qPCR). Only
samples positive for the two techniques were considered HPV-positive. All other combina-
tions, p16 negative/E6 negative, p16 positive/E6 negative, and p16 negative/E6 positive,
were considered HPV-negative. This study was approved by the local Ethics Committee
(60480316.0.0000.5274).

2.2. DNA Methylation Analyses

DNA extraction was performed and quality and quantity were assessed as previously
described [7]. A total of 500 ng of genomic DNA were treated with sodium bisulfite (EpiTect
Bisulfite Kit, Qiagen, Hilden, Germany) according to the manufacturer’s instructions. PCR
reactions were performed to amplify the regions of interest using Platinum Taq DNA
Polymerase (Invitrogen). PCR conditions as well as primer sequences can be found in
Supplementary Materials Table S1.

After confirming amplification by amplicon visualization in 2% agarose gels, PCR
products were pyrosequenced using PyroMark Gold Q96 Reagents (Qiagen) in a PyroMark
Q96 ID system (Qiagen, Hilden, Germany). Sequencing primers can be found in Table S1.
After the reaction, intensity peaks were converted to numerical values, and the methylation
level of each CpG site was calculated. For the 5-CpG methylation signature, the mean
methylation of the 5 CpGs analyzed (marked in bold red in Table S1) was calculated for
each sample. For Line1 analysis, 5 CpG sites were assessed and the methylation levels of
this TE for each patient are represented as the mean of all sites.

2.3. TCGA Data

Data from The Cancer Genome Atlas (TCGA) patients of the TCGA-HNSC project
were retrieved. Only patients with tumors in the tonsils, base of the tongue, and oropharynx
were included, totalizing 79 cases. HPV status was determined according to http://
firebrowse.org/ (last accessed 10 August 2020). Patient’s clinical and sociodemographic
characteristics and CCNL1 amplification status were downloaded from cBioPortal (last
accessed 7 April 2021). The median follow-up of the patients was 19.78 months in this
cohort.

Expression data generated by RNA-sequencing, and methylation data generated by
microarray (Infinium Human Methylation 450 K BeadChip) were obtained with the TC-
GAbiolinks package (v2.16.1). Normalized expression data was downloaded as fragments
per kilobase million (FPKM). The raw methylation data (.idats files) were processed with
the ChAMP package (v2.18.2), and the following filters were applied to remove bad quality
probes: low quality probes (detection p-value > 0.05), cross-reactive and polymorphic

http://firebrowse.org/
http://firebrowse.org/


Cancers 2021, 13, 3621 4 of 16

probes [30]. Then, color adjustments (Lumi [31]) and normalization (BMIQ method) were
applied.

2.4. Methylation Prediction of Repetitive Elements and Methylation Difference Analysis

The prediction analysis of the methylation levels of the transposable elements was per-
formed with the REMP package (Repetitive Element Methylation Prediction, v1.12.0) [32]
using the methylation beta values. The database for annotating repetitive elements (Line1,
Alu and LTRs) was created with the initREMP function, with the UCSC data source and
hg19 as the reference genome. Methylation values were preprocessed using the grooMethy
function, default settings. The prediction of the elements was made by Random Forest
method, with a window of 1000 bp and seed of 777. After prediction, we applied a quality
filter on the elements (rempTrim function) of 1.7 and elements with a missing rate in at
least 20% of the samples were removed. The methylation levels of the elements were
then calculated considering elements with at least two predicted CpG methylation values
(rempAggregate function).

The differential methylation analysis of the TEs between HPV-positive and HPV-
negative tumors was carried out for each type of element independently with the limma
package (v3.44.3) using the methylation M-value of the elements. The adjustment for
multiple tests was made by the Benjamini–Hochberg FDR (BH) method.

2.5. Statistical Analyses

Statistical analyses were run in an R environment or in GraphPad Prism 5 software
(GraphPad Software, San Diego, CA, USA). The correlation between the methylation levels
of the TEs mapped to promoter regions and the expression of the associated genes was
performed by Spearman’s test. Comparisons between groups were performed using the
Mann−Whitney test. When necessary, p-value adjustment was performed by the BH
method. All these analyses were made with base (v4.0.5) and stats (v4.0.5) R packages.

Survival analyses were performed with survival (v3.2-3) and plotted with survminer
(v0.4.7) packages. For survival analyses based on gene expression, the upregulated and
downregulated expression groups were determined using the median expression value
for each gene in all samples. Samples with expression > median were considered up-
regulated and samples with expression ≤ median were downregulated. Following the
same approach, for the survival analysis based on Line1 methylation, hypomethylated
(≤median methylation levels in all samples) and hypermethylated (>median methylation
levels in all samples) cases were defined. For the estimative of univariate survival, the
Kaplan−Meier survival curve was used, and statistical significance was calculated by the
log-rank test. Multivariate Cox regression was applied to adjust survival for HPV status.
Statistical significance was defined when p < 0.05.

3. Results
3.1. HPV Infection Is Associated with a Specific DNA Methylation Signature and Global
Methylation in OPSCC

In this study, we used a previously characterized cohort of OPSCC patients that
showed a low frequency of HPV-positive cases (6.1%), assessed by both p16 IHC and HPV
DNA detection by qPCR [7]. Our data show that the mean methylation levels of 5 CpG
sites located at B3GALT6-SDF4, SYCP2-FAM217B, and HLTF-HLTF-AS1 loci [24] are lower
in HPV-positive relative to HPV-negative tumors (median of 60.62% vs. 78.07%, p < 0.001,
Figure 1A). The DNA methylation levels of each CpG site composing the signature are
shown in Figure S1. After applying the previously suggested DNA methylation cut-off
(<75%) [24], this 5-CpG signature was able to discriminate OPSCC according to HPV status
with 80.95% sensitivity and 61.2% specificity. Since the methylation cut-off was previously
determined in HNSCC in general, and the sample source differed from the present study
(fresh-frozen and FFPE, respectively), we applied a receiver operating characteristic (ROC)
curve analysis to test new cut-offs in our experimental settings (Figure 1B). This analysis
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showed that with a DNA methylation cut-off of 62.85%, the methylation signature was
able to discriminate the groups with 66.67% sensitivity and 84.33% specificity (p = 0.0001,
Figure 1B).
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Figure 1. DNA methylation signatures of HPV-positive OPSCC. (A) Boxplot showing the mean methylation of 5 CpG sites
in B3GALT6-SDF4, SYCP2-FAM217B, and HLTF-HLTF-AS1 loci assessed by pyrosequencing in HPV-positive (n = 21) and
HPV-negative (n = 134) OPSCC. (B) Receiver operating characteristic (ROC) curve showing the best DNA methylation
cut-off of the 5-CpG signature to distinguish HPV-positive and HPV-negative OPSCC. (C) Boxplot showing the methylation
levels of Line1 transposable element assessed by pyrosequencing in HPV-positive (n = 21) and HPV-negative (n = 325)
OPSCC.

Apart from gene-specific signatures, HPV infection was also previously associated
with global methylation dysregulation [22,26–28]. To test this hypothesis, we assessed
Line1 methylation in our sample set. Figure 1C shows that Line1 methylation levels are
higher in HPV-positive relative to HPV-negative OPSCC (median of 64.89% vs. 55.47%,
p < 0.0001, Figure 1C). However, overall survival (OS) of the cases did not differ according
to Line1 methylation levels (Figure S2).

Although Line1 elements have been assessed as a proxy of global methylation, other
transposable elements also represent an important percentage of the human genome,
including Alu and LTRs. These elements can be found both in intergenic and intragenic
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regions, and their methylation levels may impact prognosis. Based on this, we next
evaluated the methylation levels of all these elements in OPSCC.

3.2. Transposable Elements Are Differentially Methylated According to HPV Status in OPSCC

We extracted DNA methylation information of TEs from TCGA OPSCC cohort and
compared each individual element according to HPV status. Our data show that a total
of 172 TEs are differentially methylated in HPV-positive relative to HPV-negative tumors
(BH adjusted p-value ≤ 0.01), with hypermethylation being more commonly observed in
HPV-positive cases. The frequency, however, varied according to TE type (Figure 2A), for
Alu and Line1 a similar proportion of hypermethylated elements was observed (58.9% and
60.5%, respectively), while for LTRs this proportion was higher (92.3%).
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Figure 2. Transposable elements are differentially methylated in OPSCC according to HPV status. (A) Volcano plots showing
the Line1, Alu and LTR elements differentially methylated in HPV-positive relative to HPV-negative OPSCC. The X-axis
shows the mean beta value differences (mean methylation delta) between groups and the Y-axis shows the -Log Benjamini-
Hochberg (BH) adjusted p-values. Red dots represent elements with BH adjusted p-value ≤ 0.01. (B) Chromosomal
distribution and (C) genomic region distribution of hypermethylated (red) and hypomethylated (blue) Line1, Alu and LTR
elements in HPV-positive relative to HPV-negative OPSCC. The same TE may encompass more than one genomic region.

Differentially methylated TEs were not individually enriched in any specific chro-
mosome (Figure 2B). The stratification by genomic region reproduced the overall profile,
with most of the elements showing hypermethylation in HPV-positive OPSCC in any
given region (Figure 2C). The exceptions were Alu elements located in coding sequences
and Line1 elements located in promoters (up to 2000 bp from transcription start sites),
with 56.9% and 57.1% of the differentially methylated elements showing hypomethylation,
respectively (Figure 2C). Alu, Line1 and LTR mapped to intergenic regions were mostly
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hypermethylated in HPV-positive relative to HPV-negative tumors (75%, 62.5% and 100%,
respectively).

3.3. The Methylation Levels of Transposable Elements Mapped to Promoter Regions Are Correlated
with Expression and Prognosis

Figure 3A shows the methylation profile of TEs mapped to promoter regions. Since
this analysis indicated a heterogeneous profile among HPV-positive cases, we performed
unsupervised clustering of these tumors (Figure S3). Although two DNA methylation
clusters were identified, they were not associated with age, tobacco smoking, tumor stage
or location.

We next evaluated whether DNA methylation alterations in TEs mapped to promoters
were associated with gene expression. For Alu elements, the methylation levels of 13 out
of 32 elements (40.6%) showed a significant correlation with the mRNA expression of the
associated gene (Figure 3A). The correlation was inverse for SNORD99, SLC44A2, ZNF541,
NNMT, ZNF622 and TSPAN10, and positive for ACOT7, TCAMP1, SPACA4, SLC45A4,
GPLD1 and CRACD. From a total of six differentially methylated Line1 elements mapped
to promoter regions, two (33.3%) showed a significant correlation with gene expression,
being inverse for TCEAL7 and positive for NOTCH4 (Figure 3A). The methylation levels of
LTR elements were also significantly correlated with expression in 26.7% of the genes (4
out of 15) (Figure 3A). The correlation was inverse for CCNL1, MYOM3 and MFAP2, and
positive for TMEM67.

Figure 3B shows the expression of those genes that showed a significant correlation
with TEs methylation levels, according to HPV status in TCGA OPSCC cohort. Downregu-
lated and hypermethylated genes in HPV-positive versus HPV-negative OPSCC included
TCEAL7, NNMT, TSPAN10, ZNF622, MYOM3 and MFAP2. ACOT7 was also downregu-
lated, but its promoter was hypomethylated in HPV-positive cases. Among the upregulated
genes, SLC44A2, ZNF541 and CCNL1 were also hypomethylated, while SPACA4, CRACD,
SLC45A4, GPLD1, TCAMP1 and TMEM67 were hypermethylated (Figure 3B). The correla-
tion plots between DNA methylation and mRNA expression for CCNL1 and ZNF541 are
shown in Figure S4.

Finally, the association between the expression of these genes and overall survival
was assessed (Table S2). After adjustment for HPV status, patients with high ZNF541 or
CCNL1 expression showed a median OS of 68.4 months vs. 47 months in the group with
low expression (HR = 0.17, 95% CI 0.03–0.91 and HR = 0.34, 95% CI 0.13–0.93, respectively)
(Figure 3C, Table S2). Since CCNL1 amplification was previously associated with worse
outcomes in head and neck cancer [33], we evaluated whether this could explain the
differences we found in OPSCC. However, we did not observe a different frequency of
CCNL1 amplification according to HPV status (21% in HPV-negative and 18% in HPV-
positive) nor a significant impact of CCNL1 amplification on OS (Figure S5).
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Figure 3. Differentially methylated transposable elements located at promoter regions show a correlation with gene
expression and impact on prognosis. (A) Heatmap showing the unsupervised clustering of OPSCC TCGA samples
according to the DNA methylation profile of transposable elements located up to 2000 bp of transcription start sites
(promoter regions). Each line represents a transposable element and each column represents a sample. On the right, bar
plots show the correlation rho (Spearman test) between the methylation levels of the element and the expression of the
associated gene. Dark and light purple bars represent significant (BH adjusted p < 0.05) and nonsignificant correlations,
respectively. (B) Heatmap showing the clustering of OPSCC TCGA samples according to the expression levels of genes
correlated with the methylation levels of transposable elements in their promoter regions. Each line represents a transposable
element and each column represents a sample. On the right, boxplots showing the expression of each gene in HPV-positive
(dark pink) and HPV-negative (light pink) OPSCC. * Genes differentially expressed according to HPV status (BH adjusted
p < 0.05). (C) Kaplan−Meier curves showing the overall survival of OPSCC patients from TCGA cohort according to the
expression of ZNF541 and CCNL1. High and low expression were defined according to the median expression of each gene
in all samples.

4. Discussion

HPV oncoproteins were shown to modulate DNMT1 levels [19,20,34] and some stud-
ies have been developed to identify HPV-associated alterations of DNA methylation in
cervical cancer [35–37]. This led to the design of gene panels whose methylation levels can
discriminate tumors from non-tumor tissues as well as predict preneoplastic lesions more
likely to progress, with high accuracy [35,38–40]. However, in head and neck cancer, the as-
sociation between HPV infection and DNA methylation aberration has been less explored,
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both genome-wide and in target genes. Although DNA methylation signatures of infection
and a global hypermethylation phenotype have been proposed in HNSCC [22,24–26,28],
the validation of these signatures, and a more detailed characterization of the affected
regions are still missing. Here we show that a previously proposed 5-CpG methylation
signature can discriminate HPV-positive and HPV-negative OPSCC from a population
with a low frequency of HPV positivity (which usually hampers biomarker sensitivity)
and using a different sample source. We also show that transposable elements are mostly
hypermethylated in HPV-positive relative to HPV-negative OPSCC. However, hypomethy-
lated TEs mapped to promoter regions lead to the upregulation of associated genes, with
an impact on OS, independent of HPV infection.

P16 IHC is the most widely used biomarker in the context of HPV-associated car-
cinogenesis. In a recent meta-analysis, its sensitivity and specificity to detect cervical
intraepithelial neoplasia of grade 2 (CIN2+), 3 or worse (CIN3+) ranged from 82–86% and
49–71%, respectively [41]. When combined with Ki67 IHC, p16 showed a sensitivity of
75.2% to detected CIN2+, compared to 61.0% achieved by cytology alone [42]. In HNSCC,
p16 IHC sensitivity to detect HPV-positive cases is high (92%, 95% CI 82–97%), while its
specificity seems to be moderate (72%, 95% CI 45–89%) [43]. In OPSCC, p16 was able
to identify HPV-driven transformation with a sensitivity of 94% (95% CI 91–97%) and a
specificity of 83% (95% CI 78–88%) [44]. Although the sensitivity of the 5-CpG methylation
signature tested here was lower when compared to p16 IHC, we were able to reproduce the
previous results obtained in high-income populations [24] in a middle-income population,
in which the frequency of HPV-positive cases is more modest [7]. This was also the first
time this signature established in all HNSCC subsites was tested in OPSCC and FFPE sam-
ples. This is relevant because an optimal biomarker should perform well independently of
sample source or experimental assay. By assessing the methylation levels of a diagnostic
signature in paired exfoliated cells and FFPE biopsies from women referred to colposcopy,
Reuter and colleagues showed a correlation ranging from 0.379–0.550 between tests. FFPE
cut-off adjustments were also necessary to improve the signature accuracy [45]. Therefore,
the previously proposed HPV 5-CpG methylation signature is reproducible in OPSCC from
a population with a low frequency of HPV infection and in FFPE, a more easily available
source of tumor samples.

DNA methylation signatures have emerged as promising biomarkers in oncology
capable of measuring risk factor exposure [35,46,47], discriminating different types of pri-
mary tumors [48,49], predicting the progression of preneoplastic lesions [50,51], predicting
response to treatment and prognosis [35,52–54], and even detecting malignant tumors
years before conventional diagnosis [55]. Although different DNA methylation signatures
are usually assessed for different tissues and outcomes, a common feature of cancers is
global hypomethylation [17,56,57], in general associated with poor OS [58–61]. Therefore,
we also assessed this profile in our samples, and showed higher Line1 methylation levels
in HPV-positive relative to HPV-negative OPSCC, corroborating previous data [22,26–28].
Although we did not observe an association between Line1 methylation levels and OS, it is
important to mention that for the same population studied here, HPV was not associated
with prognosis, likely due to the high frequency of smokers [7].

The association between global DNA hypomethylation and poor prognosis is usually
linked to genomic instability [28,62–64]. Almost 50% of the human genome is composed
of transposable elements, which are silenced by hypermethylation in normal cells [65,66].
During transformation, TEs lose methylation, and are therefore reactivated, leading to their
mobilization [65,67]. Based on this, we evaluated whether the global hypermethylation
in HPV-positive relative to HPV-negative OPSCC assessed by Line1 methylation was
common to all TEs. In general, hypermethylation in HPV-positive tumors was observed
for Line1, Alu and LTR. The frequency, however, differed among these classes of TEs. LTRs,
which include the endogenous retrovirus (ERVs), showed the highest hypermethylation
proportion. ERV activation by demethylating agents was shown to induce viral mimicry
and, therefore, activate the immune response [68–70]. Since these elements were shown
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here to be widely hypermethylated in HPV-positive OPSCC, although speculative, this
might be a mechanism by which HPV guarantees immune escape.

Although the majority of TEs are mapped to intergenic regions, their participation in
regulating gene expression has been proposed [71]. Different mechanisms such as control
of transcription by DNA methylation, chromatin remodeling, recruitment of transcription
factors, generation of new isoforms, and even the regulation of translation put TEs as
relevant regulators of cell behavior [66,71]. As an example, Line1 methylation was already
associated with the regulation of the expression of genes with specialized functions, while
SINEs methylation regulated the expression of genes involved in housekeeping activities
in embryonic stem cells [72]. By assessing whether the methylation of these elements was
correlated with gene expression, we showed a significant correlation for about one third of
the genes analyzed. This was further corroborated by the differential expression of these
genes in HPV-positive relative to HPV-negative OPSCC. These results suggest that the
differential methylation of TEs according to HPV status may have an impact on tumor cells
that goes beyond genetic instability.

Among the hypermethylated and downregulated genes, TCEAL7 is a putative tumor
suppressor gene downregulated by DNA methylation in ovarian cancer [73]. It associates
with promoters containing MYC and NF-κB binding sites, such as cyclin D1 promoter, re-
pressing transcription. Therefore, TCEAL7 downregulation was proposed as an alternative
mechanism for the activation of MYC and NF-κB target genes [73,74]. NNMT upregulation
was already reported in oral squamous cell carcinoma [75], but its downregulation was as-
sociated with increased sensitivity to 5-fluorouracil in esophageal squamous cell carcinoma
cells [76]. In contrast, MFAP2 upregulation was reported in head and neck cancer [77] and
associated with poor prognosis in gastric and hepatocellular carcinomas [78,79]. Therefore,
the downregulation of these genes in HPV-positive relative to HPV-negative OPSCC may
contribute to the better prognosis and response to therapy observed in the first group of
patients. Although an association between ZNF622 and cancer has not been reported yet,
its role as an antiviral protein upon adenovirus infection was proposed [80]. Based on these
evidences, the dysregulation of gene expression via the differential methylation of TEs in
HPV-positive OPSCC may contribute to successful HPV infection and carcinogenicity, but
future studies are necessary to corroborate this hypothesis.

The expression of ZNF541 and CCNL1, both upregulated and hypomethylated in HPV-
positive cases, were associated with OS independently of HPV status. ZNF541 encodes
a zinc finger protein supposed to be a component of chromatin remodeling complexes
and previously suggested to play a role in the differential expression of genes according
to HPV status in cervical cancer tissues and cell lines [81]. CCNL1 encodes Cyclin L1
and its role as an oncogene in head and neck cancer by promoting cell cycle entry was
previously proposed [82]. The so far recognized mechanism behind CCNL1 overexpression
was gene amplification, which was associated with lymph node metastasis in HNSCC [33].
However, the expression differences we observed in OPSCC according to HPV status do
not seem to be associated with CCNL1 amplification, but with promoter-associated LTR
methylation, suggesting a new mechanism behind its transcriptional regulation. Recently,
CCNL1 promoter differential methylation was associated with platinum resistance in
ovarian cancer, but its impact on gene expression was not evaluated [83]. Therefore, our
results bring a new connection between HPV infection, TEs methylation, regulation of gene
expression and prognosis.

Finally, we also observed DNA methylation differences of promoter-associated TEs
within HPV-positive cases, but no significant associations with age, tobacco smoking,
tumor stage or location were found. However, the sample size included was limited and
other biological mechanisms not evaluated here might contribute to these differences.
For example, HPV integration was already associated with a specific DNA methylation
signature in HNSCC [84]. Future studies are necessary to explore whether HPV integration
also affects the methylation profile of transposable elements.
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5. Conclusions

Here we validated a previously proposed 5-CpG methylation signature of HPV infec-
tion. This signature was originally established in head and neck cancer from high-income
populations using snap frozen samples, and we were able to replicate the original findings
in OPSCC from a middle-income population (which shows a frequency of HPV positivity
of only 6.1%) using FFPE samples. We also showed that global methylation, estimated by
Line1 assessment, is higher in HPV-positive relative to HPV-negative OPSCC. This led us
to investigate the methylation profile of transposable elements in depth, showing that not
only Line1, but also Alu and LTRs are hypermethylated in HPV-positive cases. However,
the hypermethylation frequency varied according to TE class and genomic region. Finally,
we evaluated the correlation between the methylation levels of TEs mapped to promoter
regions and the expression of the associated genes, showing significant correlations for
approximately one third of the genes. Among those genes differentially expressed ac-
cording to HPV status, ZNF541 and CCNL1 (harboring Alu and LTR in their promoters,
respectively) higher expression was significantly associated with a better overall survival,
independent of HPV status.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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according to Line1 methylation. Figure S3: DNA methylation profile of TEs mapped to promoters in
HPV-positive OPSCC. Figure S4: Analysis of the correlation between the DNA methylation levels of
the transposable elements mapped to the promoters of CCNL1 and ZNF541 and the mRNA expression
of the associated genes in TCGA cohort. Figure S5: Kaplan−Meier plot showing the overall survival
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