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Importance: Non-invasive techniques for retrieving ocular surface cells from babies
infected by zika virus (ZIKV) during the gestational period remain to be determined.

Objectives: The aim of this study was to describe an optimized impression
cytology method for the isolation of viable cells from Zika infected babies with
and without Congenital Zika Syndrome (CZS) in satisfactory amount and quality to
enable easy adoption in the field and application in the context of genomic and
molecular approaches.

Design, Settings, and Participants: Ocular surface samples were obtained with a
hydrophilic nitrocellulose membrane (through optimized impression cytology method)
from twelve babies referred to the Pediatric Service of the Antonio Pedro Hospital,
Universidade Federal Fluminense (UFF), Niteroi, Rio de Janeiro, Brazil. After an
authorized written informed consent from the parents, samples were collected from both
eyes of 12 babies (4 babies with maternal ZIKV exposure during gestation and presence
of clinical signs which included ocular abnormalities and microcephaly; 4 babies with
maternal ZIKV exposure during gestation but no clinical signs; and 4 unaffected control
babies with negative PCR for Zika virus and without clinical signs). Cells were used
for microscopy analyses and evaluated for their suitability for downstream molecular
applications in transcriptomic and proteomic experiments.

Results: Our optimized impression cytology protocol enabled the capture of a
considerable number of viable cells. The microscopic features of the conjunctival
epithelial cells were described by both direct analysis of the membrane-attached cells
and analysis of cytospinned captured cells using several staining procedures. Epithelial
basal, polyhedral and goblet cells were clearly identified in all groups. All cases of ZIKV
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infected babies showed potential morphological alterations (cell keratinization, pyknosis,
karyolysis, anucleation, and vacuolization). Molecular approaches were also performed
in parallel. Genomic DNA and RNA were successfully isolated from all samples to enable
the establishment of transcriptomic and proteomic studies.

Conclusions and Relevance: Our method proved to be a suitable, fast, and non-
invasive tool to obtain ocular cell preparations from babies with and without Zika
infection. The method yielded sufficient cells for detailed morphological and molecular
analyses of samples. We discuss perspectives for the application of impression cytology
in the context of ZIKV studies in basic and clinical research.

Keywords: Congenital Zika Syndrome, neurodevelopmental disorders, ocular cells, molecular research, OMIC
studies

INTRODUCTION

Zika virus (ZIKV) is an arbovirus of the Flavivirus genus
first identified in Uganda – Zika forest, in 1947 (Dick et al.,
1952). The virus was detected in the Northeast Region of
Brazil in 2015 after an outbreak of cases of acute disease
(Cardoso et al., 2015; Zanluca et al., 2015). However, recent
studies indicate that the virus circulation in Brazil occurred
prior to this epidemic period (Faria et al., 2017; Massad et al.,
2017; Metsky et al., 2017; Passos et al., 2017). Congenital Zika
Syndrome (CZS) was identified due to the increased incidence
of congenital defects associated with ZIKV infection. This led
to clinical, epidemiological and experimental studies seeking to
address the association between congenital defects and ZIKV
infection. Furthermore, the World Health Organization (WHO)
recognized ZIKV and associated neurological complications as
a long-term public health challenge. A global strategic response
plan has been issued to enable detection, prevention, care
and support in affected areas (WHO, 2016). Studies were also
launched to advance the development of intervention, control,
and prevention strategies (Brazilian Ministry of Health, 2018).

Studies on CZS have predominantly involved analysis of
brain regions (Mlakar et al., 2016; Oliveira Melo et al., 2016;
Driggers et al., 2017; Krauer et al., 2017) but studies of the
ocular system have also been conducted. The studies documented
characteristic ocular lesions, such as pigment mottling, macular
atrophy, chorioretinal atrophy, horizontal nystagmus and optic
nerve hypoplasia and atrophy in the context of ZIKV infection
(de Paula Freitas et al., 2016; Ventura et al., 2016a,c; Fernandez
et al., 2017; Zin et al., 2017; Ventura and Ventura, 2018). Retinal
changes occur in about 30–40% of cases and anomalies of the
development of the eye may occur in several embryogenesis
stages such coloboma, and ocular structure, including eyelid,
cornea, iris, zonula, and ciliary body, choroid, retina and optic
nerve (Tzelikis et al., 2004; Ventura et al., 2016b). Moreover,
anterior ocular alteration associated with prenatal ZIKV infection
was observed in CZS newborns (de Paula Freitas et al., 2016,
2017a,b; Yepez et al., 2017). Consequently, screening and long-
term monitoring of ocular health are crucial to all children
with possible congenital ZIKV infection (Chimelli et al., 2018;
Lebov et al., 2018).

Molecular methodologies have been described to investigate
the association between ZIKV and neurological impairment
using induced pluripotent stem cells and embryonic stem cell
lines differentiated in neuroprogenitors, neurons, glial cells and
into the brain organoid structures (Chimelli et al., 2018; Lebov
et al., 2018). However, the use of non-invasive strategies to study
ocular cells in ZIKV-infected babies remains to be established.

Impression cytology of ocular cells is a non-invasive
method for external evaluation of ocular lesions (Egbert
et al., 1977; Rocha et al., 1999). This technique has been
developed since the discovery that cells from the eye outside
of the epithelial layer could be removed by filter membrane
application to evaluate various conditions of ocular surface
impairment (Tseng, 1985). This method has been applied to
anatomically locate the conjunctiva, quantify goblet cell density,
stage squamous metaplasia staging, differentiate bacterial,
viral, allergic, degenerative or tumor affections (Nelson and
Wright, 1984; Maskin and Bode, 1986; Paridaens et al., 1992;
Nolan et al., 1994; Dart, 1997).

Here we describe, for the first time, a reliable ocular
impression cytology protocol for different applications in the field
of ZIKV infection. Our method consists of isolation of viable
cells in satisfactory number and quality to enable application
in the context of genomic and molecular approaches. OMIC
technologies are high-throughput methodologies (Boja et al.,
2014) that have not yet been coupled with ocular analysis ZIKV
infected patients.

As an extension of the CNS, the eye displays similarities
to the brain and spinal cord related to anatomy, functionality,
response to damage, and immunology (Lleras-Forero and Streit,
2012; London et al., 2013). Moreover, the accessibility of the
eye makes it a suitable research tool, enabling the study of
processes in the CNS (London et al., 2013). Thus, we propose
an optimized and non-invasive alternative for obtaining ocular
cells from babies with ocular anomalies caused by ZIKV infection
during embryogenesis and its coupling with OMIC applications.
Considering the developmental ocular cells precursor origin from
neurogenic ectoderm (Lleras-Forero and Streit, 2012; London
et al., 2013), the well-documented ZIKV neurotropism with
an affinity for neural progenitor cells (Cugola et al., 2016; de
Noronha et al., 2016; Mlakar et al., 2016; Tang et al., 2016;
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van den Pol et al., 2017) and the maternal ZIKV exposure period
(weeks of gestation), the methodology presented here may
effectively monitor ZIKV impact on genomic and cellular aspects
during the life-course.

MATERIALS AND METHODS

Study Design and Ethic Aspects
Twelve babies referred to the Pediatric Service of the Antonio
Pedro Hospital, Universidade Federal Fluminense (UFF) were
included in this study. All children have been followed
by periodical ophthalmological examinations; samples were
obtained with an authorized written informed consent from
the parents. This study was approved by Universidade Federal
Fluminense Ethics Committee and followed the tenets and
guidelines of the Declaration of Helsinki.

Ocular surface samples were collected from both eyes
of eight babies according to the CZS diagnostic criteria
[Patients 1–4 (ZIKV/CZS) = maternal ZIKV exposure during
gestation and presence of clinical signs which included ocular
abnormalities and microcephaly; Patients 5–8 (asymptomatic
ZIKV) = maternal ZIKV exposure during gestation but no
clinical signs identified and four unaffected babies: patients
9–12 (control samples/CTRL) = negative PCR, without
clinical signs)].

Impression Cytology and Ocular Surface
Cells Capture
A local anesthetic (Proxymetacaine hydrochloride, 0.5%
w/v, eye drops, solution) was instilled into the eye before
obtaining the ocular surface samples. The samples were
collected with a sterilized 0.45 µm, 47 mm white plain
hydrophilic nitrocellulose membrane (Millipore Sigma R©,
catalog number HAWP047S0). Each circular membrane was
cut into four strips measuring 0.75 cm wide and 4.5 cm long
approximately (Figure 1).

The method here described does not use tweezers or
pediatric lid speculum for sample collection. A stem of the
membrane is used as a collection support. The strip ends
were rounded and bent at approximately 1 cm to facilitate
printing on the ocular surface and comprises the capture area
of ocular cells (Figure 1). The strip end was then pressed
on to the inferior bulbar conjunctiva for approximately 5 s.
The strip stem was discarded after the collection using sterile
scissors (Figure 1).

Cell Collection and Storage
The cell capture area of the filter membrane was immediately
placed in a 1.5 mL tube on ice containing 250 µL 1X
PBS (Phosphate Buffered Saline, pH7.4 – Thermo Fisher
Scientific, catalog number: 10010023). Tubes containing filter
membranes were rapidly vortexed to allow release of adhered
cells (Figure 1). Cell suspensions were then used for microscopy
analyses or aliquoted in 0.2 mL tubes and stored for
additional experiments.

Cell Analysis and Microscope Image
Acquisition
Cell Viability
Viability of the collected cells was determined by the trypan blue
exclusion test [9 µL of the suspension cells plus 1 µL of 0.4%
trypan blue solution (Thermo Fisher Scientific, catalog number:
15250061)]. Viable cells were counted in a Neubauer chamber.
Images were acquired using on Axio microscope with 20x/0.35
and 40x/0.55 Zeiss A-Plan objectives (Carl Zeiss, Jena, Germany1)
and Q-Capture PRO 7 software (Surrey, BC, Canada2).

Additionally, the cytospin procedure was used to concentrate
cells in suspension on a microscope slide. Cytocentrifuged
preparations (200 µL of cell suspension/slide) were obtained in a
Cytospin 4 Shandon (Thermo Scientific Corporation, Waltham,
MA, United States) at 800 rpm for 5 min at room temperature and
stained with LIVE/DEADTM viability/cytotoxicity kit (Thermo
Fisher Scientific, catalog number L3224) as the manufacturer’s
instructions. This kit contains a mixture of fluorescent stains
(calcein-AM and ethidium homodimer-1) which discriminates
live from dead cells by simultaneously staining with green-
fluorescent calcein-AM to indicate intracellular esterase activity
and red-fluorescent ethidium homodimer-1 to indicate loss
of plasma membrane integrity. Analyses were performed on
a fluorescence microscope (BX-60, Olympus, Melville, NY,
United States) using U-MWB FITC/Texas red filter (488–570 nm
excitation wavelengths), which allows simultaneous visualization
of both markers.

Cell Morphology
To evaluate microscopic features of the captured cells such
as morphological types and possible alterations we then used
another collection membrane directly stained with hematoxylin
and eosin after fixation for 10 min in a fixation solution (100 mL
of 70% ethanol, 5 mL of glacial acetic acid, and 5 mL of 37%
formaldehyde solution – all solutions are from Merck Millipore).
Samples were hydrated with distilled water for 5 min, immersed
in Harris’ hematoxylin for 2 min, washed with tap water for
15 min, counterstained with eosin for 30 s, washed with tap
water for 5 min, and then dehydrated in 70, 80, 95, and 100%
ethyl alcohol (rapid immersion for 5 s each). After these steps,
samples were immersed in xylene (10 successive immersions
for 5 min each) and mounted on slides cover-slipped using
Entellan mounting medium (Merck, Millipore). Images were
acquired on Axio microscope using 20x/0.35 and 40x/0.55 Zeiss
A-Plan objectives (Carl Zeiss, Jena, Germany, see text footnote
1) and Q-Capture PRO 7 software (Surrey, BC, Canada, see
text footnote 2).

Another cytocentrifuged preparation was also stained for
morphological analyses. For this, cell suspensions obtained as
above were fixed in 4% paraformaldehyde and cytocentrifuged
(Cytospin 4 Shandon, Thermo Scientific, 1200 rpm, 10 min).
Slides of captured cells (n = 3 patients for each group) were
prepared in quadruplicate. For each pair of slides, one was stained
with a Diff-Quik kit, as the standard procedure, and the other

1http://www.zeiss.com
2www.qimaging.com
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FIGURE 1 | Overview of the non-invasive strategy (impression cytology method) used to collect ocular cells from children with Congenital Zika Syndrome and
applied methodologies. (1) The eye as an extension of the central nervous system and ocular surface position of the cell collection. (2) Impression cytology was
optimized (without use of tweezers and pediatric lid speculum) for sample collection. The membrane model has a rounded apex and a long support base that
provides a correct positioning and safer method for the collection of baby ocular samples. (3) Methodologies applied to different studies of captured cells. Written
informed consent was obtained from the parents of this patient for the publication of this image.
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one with 0.5% toluidine blue O solution (Fisher Scientific) for
5 min. Cells were analyzed on a BX-60 Olympus microscope.
A total of 423 cells were randomly analyzed (n = 103 for control
group; n = 150 for ZIKV; n = 170 for ZIKV/CZS) for a qualitative
and quantitative evaluation of morphological alterations. The
one-way ANOVA followed by Tukey multiple comparisons test
were performed using GraphPad Prism version 6.00 for Windows
(GraphPad Software, La Jolla, CA, United States).

Molecular Analyses
To evaluate the integrity and quality of the genomic material
of captured ocular surface cells, DNA was isolated according to
QIAamp DNA mini kit (Qiagen, Valencia, CA, United States),
which is indicated for swabs, body fluids or washed cells.
Thereafter, we used a pair of primers to amplify a region
(exon 4) of the MECP2 gene that possess a significant role
in embryonic development. The forward: 5′- GGA AAG GAC
TGA AGA CCT GTA AG - 3′ and Reverse 5′- CTC CCT CCC
CTC GGT GTT TG - 3′ (fragment size = 372 pb) primers
were used and PCR conditions with modifications were applied
according to previous report (Monnerat et al., 2010). The PCR
was performed in a total volume of 25 µL, containing 100 ng
genomic DNA, 1 × PCR buffer (50 mM KCl, 10 mM Tris–
HCl [pH 8.3], 1.5 mM MgCl2), 0.05 mM dNTP, 1.88 pmol of
each primer, and 1.25U of the Platinum Taq DNA polymerase
(PlatinumTM Taq DNA polymerase, Catalog number: 10966026;
Thermo Fisher Scientific). Touchdown program was used in the
Veriti 96 Applied Biosystems PCR thermal cycler and all samples
were denatured at 95◦C for 2 min and 30 s, followed by: 25
cycles of 94◦C for 30 s, 65◦C for 30 s, and 72◦C for 1 min
45 s, followed by 10 cycles of 94◦C for 30 s, 51◦C for 30 s and
72◦C for 1 min 30 s then a final extension 72◦C for 5 min. For
each sample, 5 µL of the final PCR product was checked by 1%
agarose gel electrophoresis.

For transcriptomic experiments 9 µL of suspension
solution (after fast vortex of capture membrane; Figure 1)
containing a maximum number of 150 cells that could be
processed for RNAseq (Expert Single Cell Sequencing Services -
SingulOmics, 2018; Novogene, 2018) including cDNA synthesis
and amplification, library preparation, sequencing (10 million
paired-end reads) and data analysis. Here, total RNA quality
assessment was performed using the 2100 Bioanalyzer (Agilent,
2018), a microfluidic platform for the electrophoretic separation
of biomolecules that is useful for identifying contaminated and
degraded RNA (Figures 4, 6). For proteomics experiments
proteins can be extracted from the membrane, digested with
trypsin and analyzed in a data-dependent manner by nanoflow
liquid chromatography coupled to high accuracy and resolution
mass spectrometry (Orbitrap Fusion tribrid, Thermo Fisher).

RESULTS

Clinical Aspects
Samples were collected from both eyes of eight boys and four
girls’ babies with 21 months median age (Table 1). ZIKV infected
babies according to the CZS diagnostic criteria (four babies with

positive PCR for Zika virus in gestation and presence of clinical
signs which included ocular abnormalities and microcephaly –
ZIKV infection predominantly in the first trimester), four babies
with positive PCR for Zika virus during gestation (occurring in
the second and third trimester) but no clinical signs identified and
four unaffected babies (control samples/negative PCR, without
clinical signs). All babies were absent of external eye disorder at
the time of sample collection. Other congenital infections such as
toxoplasmosis, rubella, CMV, HSV, syphilis, and HIV were ruled
out by serology.

Cell Visualization, Counting, Distribution,
and Morphological Aspects
Here we developed a membrane model for cell collection with a
rounded apex and a long base of support that provided a correct
positioning for the capture time and for fixing and staining. We
used the membrane extremity as collection support not requiring
the use of tweezers and pediatric lid speculum (Figure 1). The
impression cytology with nitrocellulose membrane model we
developed here is effective for ocular surface cell capture. We
observed the presence of cells in all collection membranes. In only
9 µL of cell suspension after fast vortex (from an initial total of
250 µL), the number of cells retrieved ranged from 15 to ∼150
cells. Most cells remained attached to the membrane.

Cell viability evaluations by trypan blue test of captured
cell suspensions showed that most cells (> 95%) were viable
immediately after collection in all groups and different epithelial
and goblet cells were observed in Neubauer chamber. We
detected the presence of viable cells adhered to the collection
membrane (attached to the nitrocellulose fibers) 5 h after
application of impression cytology (Figure 2A).

Microscopic analysis of the stained membranes (Figure 2B),
showed presence of varying amounts of cells in all of them.
Individuals infected with ZIKV (Figures 2B1,B2) showed
apparently more cells attached to the membrane when compared
with control subjects (Figures 2B3,B4). Some impression
areas stained more intensely likely due to multilayering
of the cells. The morphologic evaluation was impaired in
these regions. Of note, we observed that the eyes with
excessive tearing had worse yields in terms of the number
of captured cells; however, the differences were not large
and this did not affect the viability of the preparations for
downstream procedures.

Morphological cell analyses were performed after
cytospinning the cell suspensions which facilitated adhesion of
the cells on the slides and resulted in enhanced visualization of
cell features (Figure 3). The following cell types, characteristic
of the conjunctiva, were identified in all groups: epithelial basal
cells, epithelial polyhedral cells and goblet cells (Figure 3A).
Epithelial cells of the basal layer were seen individually
or in small clusters, with a round to oval shape and a
central nucleus and scant cytoplasm (Figures 3B,C). Basal
cells stained more strongly compared to other epithelial
cells. Intermediate and more superficial epithelial cells were
recognized by their polyhedral and abundant cytoplasm with
a small and central nucleus (Figures 3D,E). Goblet cells were
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TABLE 1 | Clinical data.

Subject’s ID Gender Status (ZIKV exposition
during gestation)

Status (for
microcephaly)

Vision
impairment

Ocular alteration Age at samples
collection (in months)

Maternal ZIKV infection
symptoms and PCR

#1 M Exposed Affected Yes. Bilaterally Bilateral optic discs hypoplasia, abnormal
ocular pigment deposition and macular atrophy

21 1◦ trimester (8th week of
gestation)

#2 M Exposed Affected Yes. Bilaterally Increased optic disc excavation, macular
pigment mottling and absent foveal reflex

22 1◦ trimester (9th week
of gestation)

#3 M Exposed Affected Yes. Bilaterally Increased optic disc excavation 19 1◦ trimester (10th week of
gestation)

#4 F Exposed Affected Yes. Bilaterally Right eye: Optic disc pallor, paramacular
atrophy, abnormal ocular pigment deposition
and absent foveal reflex; Left Eye: Optic disc
pallor and foveal reflex reduction

27 1◦ trimester (8th week
of gestation)

#5 M Exposed Non-affected No – 21 2◦ trimester (18th week of
gestation)

#6 M Exposed Non-affected No – 20 2◦ trimester (16th week
of gestation)

#7 F Exposed Non-affected No – 24 3◦ trimester (33th week of
gestation)

#8 F Exposed Non-affected No – 24 3◦ trimester (24th week
of gestation)

#9 M Non-exposed Non-affected No – 9 –

#10 F Non-exposed Non-affected No – 21 –

#11 M Non-exposed Non-affected No – 24 –

#12 M Non-exposed Non-affected No – 19 –
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FIGURE 2 | Nitrocellulose membrane fibers impregnated by ocular surface cells from CZS patients (A,B1,B2) and uninfected controls (B3,B4). (A) Representative
live cells are shown by phase contrast (A1) and fluorescence microscopy (A2). An overlay of these two images is seen in panel (A3). Note in (A1) some fibers from
the nitrocellulose membrane on the cells (indicated by arrows). Viable cells fluoresce in bright green after staining with LIVE/DEAD R© cell viability/cytotoxicity assay.
Cells were imaged 5 h after collection. (B) Representative membranes directly stained with hematoxylin/eosin. Membrane-attached cells are indicated by
arrowheads in higher magnification in panels (B2) and (B3). Scale bars = 20 µm.

FIGURE 3 | Different ocular surface cells collected from impression cytology. (A) Human conjunctiva cell types pattern. Representative basal, polyhedral and goblet
cells from uninfected (B–D, F) and ZIKV-infected children asymptomatic (E,G) show normal morphology. Cytocentrifuge preparations were stained with Diff-Quik
(B,D,F) or toluidine blue (C,E,G). Scale bars = 20 µm.

identified by their typical morphology: an eccentric nucleus
and a pale cytoplasm in their apical region (Figures 3F,G).
When the groups were compared, morphological changes
(Figure 4A) significantly increased in cells collected from
ZIKV infected patients, predominantly in those with clinical
signs (CZS), compared to uninfected controls (Figure 4B).
These included nuclear and cytoplasmic alterations such
as mild to moderate keratinization (Figures 4A1–A4),
pyknosis (Figures 4A4,A5), karyolysis (Figures 4A2,A3),
anucleation (Figure 4A6) and cytoplasmic vacuolization
(Figures 4A7,A8). In addition live cells were imaged

by intense, uniform green fluorescence while dead cells
fluoresced orange-red after staining with a live/dead viability
kit (Figure 5).

Molecular Applications and Genomic
Analyses
Genomic DNA was successfully isolated from all samples.
The amount of genomic DNA ranged from 10 ng/µL to
as much as 70 ng/µL, with good integrity, and sufficient
for successful PCR reactions. A unique fragment of 372 bp
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FIGURE 4 | Morphological changes observed in ocular surface cells from ZIKV infected children asymptomatic (A1,A2) and CZS children (A3–A8). (A) Cell changes
included mild to moderate keratinization (A1–A4), pyknosis (A4,A5), karyolysis (A2,A3), anucleation (A6), and vacuolization (A7,A8). (B) Morphological changes
significantly increased in the infected groups. A total of 423 cells was analyzed and quantitated. ∗P = 0.01, ∗∗∗P = 0.0009. Cytocentrifuge preparations were stained
with Diff-Quik (A1–A4) or toluidine blue (A5–A8). Scale bars = 20 µm.

FIGURE 5 | Representative viable and non-viable cells recovered from the
conjunctiva of children using an impression cytology method. Live cells
fluoresce green whereas dead cells with compromised membranes fluoresce
red-orange after staining with LIVE/DEAD cell viability/cytotoxicity assay.
Panels (A,D,G) are from uninfected patients; panels (B,E,H) are from ZIKV
patients (positive PCR during gestation and asymptomatic); panels (C,F,I) are
from CZS children (positive PCR with diagnosed clinical signs: ocular
abnormalities and microcephaly). Cells were imaged 5 h after collection. Scale
bars = 20 µm.

correspondent to partial region of exon 4 of the MECP2 gene was
detected in all samples (Figure 6). We also obtained whole and
viable cells in good quality for downstream applications using
transcriptomic, epigenetic, or proteomic approaches (Figure 6
and unpublished data). As an example, RNA preparations were
obtained and proceed with RNA-seq. Given the small number
of cells in some preps, we conducted whole transcriptome
PCR amplification prior to sequencing (Expert Single Cell
Sequencing Services - SingulOmics, 2018; Novogene, 2018).
Sufficient RNA and transcriptome libraries were obtained for
all samples. Transcriptomic and proteomic analysis revealed
differences between the controls and ZIKV exposed groups
(unpublished data).

DISCUSSION

Impression cytology has been shown to be a simple and
reproducible technique that can be successfully performed
in preterm or term infants (Agilent, 2018). However, the
methods previously described mostly used tweezers and/or
pediatric lid speculum for the collection of samples. Furthermore,
some authors have reported difficulties in obtaining adequate
samples of infants (Natadisastra et al., 1988; Kjolhede et al.,
1989; Hughes et al., 1997). Here we optimize for the first
time the technique for use in OMIC studies and discard
the use of invasive apparatus, enabling a safer and more
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FIGURE 6 | Molecular and “OMIC” research perspectives. (A) Electrophoresis in 1.5% agarose gel and the amplification of a 350 bp fragment correspondent to
amplicon four of the MECP2 gene in DNA of the ocular surface cells. (B) Quality and integrity RNA analysis. L = ladder, 1 and 2 = CZS children. (C) Quality control
libraries – comparative concentrations for positive control (of the used method) and healthy child (control sample of this study). Panels (B,C) were provided by
Singulomics©.

effective method for the collection of baby ocular samples. The
optimized protocols described here can be straightforwardly
performed with sufficient training and easily scaled for analyses
of larger clinical populations and under variety clinical
settings. The protocol is also ideal for implementation in
field conditions.

Ocular Surface Cells and Applications in
Zika Studies
Approximately 50% of children with CZS and microcephaly
present serious eye diseases (de Paula Freitas et al., 2016).
Furthermore, the ZIKV has the potential to survive for long
periods in ocular tissue and potentially cause outcomes that will
only be manifested later in life (Bandyopadhyay et al., 2018).
Considering the cellular tropism of ZIKV in the eye, ZIKV RNA
was detected in all eye regions, included analysis of the anterior
(cornea, iris, and lens) and posterior (neurosensory retina, retinal
pigment epithelium/choroid complex, and optic nerve) chambers
(Miner et al., 2016).

The human ocular surface, a specialized region derived
from neurogenic ectoderm which includes the corneal, limbal,
and conjunctival stratified epithelia, plays an essential role
in ocular system (reviewed in Gokuladhas et al., 2017).
Embryological development of the human ocular surface is a
complex process, which involves progenitor cellular interactions
between various ectodermal eye precursors and mesodermal-
derived tissues. Side by side interactions between the neural
ectoderm-derived optic vesicles, lens plaque, and facial/cranial
ectoderm form the progenitor corneal epithelium and the
pluripotential cells of the corneal limbus. Interactions between
the early neural tube and the adjacent ectoderm give rise
to the neural crest cells, which are a highly migratory and
multipotent cell population able to migrate between the lens
and presumptive corneal epithelium to form the corneal

endothelium, other epithelia of the ocular surface and the
stromal keratocytes in a highly dependent process. Innervation
of the corneal stroma and epithelium originates from the neural
crest- and ectodermal placode-derived trigeminal ganglion
(Tripathi and Tripathi, 1990; Barishak, 2001; Swamynathan,
2013; Dhouailly et al., 2014; Lwigale, 2015; Mizoguchi et al., 2015;
Forrester et al., 2016).

Due to Zika virus neurotropism to infect neural cells in
human embryonic development, the ocular cells obtained in
this study may represent an adequate model for the analysis of
molecular alterations resulting from ZIKV virus and neuronal
cells interaction. Moreover, since viral ZIKV RNA may be
present in ocular fluids (in tears and lacrimal glands) (Miner
et al., 2016; Swaminathan et al., 2016; Tan et al., 2017), and
ZIKV can infect human primary corneal epithelial cells (Singh
et al., 2019), in our study we provide for the first time a
methodology for cell capture with different perspectives of
application. For example, the technique is applicable to the
immunolocalization of a wide range of proteins, including
detection of ZIKV antigens; to viral analysis through Real Time
PCR and ultrastructural microscopy. Studies of the cellular
anatomy, physiology and molecular aspects of the ocular surface
are essential for understanding ZIKV-associated ocular and
neurologic disorders.

Despite their importance, many questions about the genetic
characteristics of conjunctival cells (mainly goblet cells) are
poorly studied and deserve further exploration (Gipson,
2016). Moreover, the molecular and morphological aspects
of human conjunctival stem cells also have not been clearly
elucidated (Hughes et al., 1997). Since ZIKV infection has
been related to central nervous system abnormalities, the
investigation of easily accessible and meaningful tissues is
crucial. The MECP2 gene, for instance, has been linked
to Rett syndrome and Angelman syndrome, X-linked
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mental retardation, neonatal encephalopathy (severe brain
dysfunction in males who live only into early childhood),
some cases of autism and systemic lupus erythematosus
(Online Mendelian Inheritance in Man [OMIM], 2018). Here,
with ocular surface cells, obtained non-invasively, we have
successfully standardized a molecular study protocol for the
MECP2 gene and can be optimized for several other molecular
studies involving other genes of interest investigating the ZIKV
and microcephaly association.

Molecular and cellular events, fundamental to embryological
development, postnatal maturation, and maintenance of the
ocular surface, are specifically regulated through advanced gene
expression mechanisms. Several studies suggest a significant
discrepancy between transcription and protein levels in specific
cells, indicating that mechanisms related to the regulation of
alternative splicing, transcript stability, translation efficiency,
protein stability also participate intrinsically in gene expression
(Morris et al., 2010; Dahan et al., 2011). With the introduction
of transcriptomic and proteomics tools, we can compare the
findings between the corresponding transcript and protein
levels. In this study, we showed cells to be viable both
for transcriptomic research via RNAseq technology and for
proteomic validation. The quality of the RNA and libraries
obtained in the study of transcriptome profiles is crucial for
generating accurate and informative results. Transcriptome
and proteomic profiling revealed differences between exposed
and controls babies. However, this work focuses objectively
on the detailed report of the methods performed to obtain
viable cells from infants exposed and not exposed to zika
virus with appropriate conditions for the establishment of
molecular and OMICs procedures. The large-scale data generated
from the different high throughput analyses (transcriptomics
and proteomics) are detailed in complementary and separate
studies (submitted).

The strategies used here enabled clear detection for the first
time of statistically significant morphological changes in cells
from ZIKV-infected patients such as cytoplasmic keratinization
and nuclear alterations as observed in other ocular disorders
using cytology impression approach (Singh et al., 2017). To this
date, this is the first study using an approach with perspectives
in morphological, molecular and “OMICs” research from ocular
samples captured by impression cytology of babies with CZS.
Studies of mechanisms involved in CZS in ocular cells require
rapid, highly reproducible, and accurate quantification and can
be successfully achieved with impression cytology. Ocular cell
surface capture offers a powerful model for studying the pathways
involved in ocular diseases associated with ZIKV.

CONCLUSION

The similarity of the eye to other parts of the central
nervous system makes it a viable model for studying biological
processes in health and CNS pathologies, like Congenital
Zika Syndrome. The impression cytology with nitrocellulose
membrane model developed and described in this study is
a safe and effective method for the collection of ocular

surface cells from babies. The sampling technique is easily
implemented in field conditions and can be applied to
morphological, molecular and “OMIC” analyses of Zika infected
patients. On the basis of the evidence described in this
study, ocular cell capture has substantial benefits as research
tools for central nervous system disorders, include Congenital
Zika Syndrome.
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