Cancer Incidence Among Adolescents and Young Adults (15 to 29 Years) in Brazil

Nathalie V. Balmant, BA,* Rejane de Souza Reis, PhD, \dagger Julio F. Pinto Oliveira, MSc, \dagger Sima Ferman, MD, PhD, \dagger Marceli de Oliveira Santos, PhD, \dagger and Beatriz de Camargo, MD, PhD§

Abstract

Summary: The spectrum of cancers commonly found in adolescents and young adults (AYAs) differs from those in children and adults; therefore, the childhood classification is not appropriate for this population. Here we used a newly proposed classification system to reclassify cases of AYAs from Brazilian population-based cancer registries (PBCRs) in 5 geographic regions of Brazil. We aimed to describe the cancer incidence rates within this age group according to PBCR. Using the world population, incidence rates per million were analyzed in each diagnostic subgroup according to sex and age at diagnosis (15 to $19 \mathrm{y}, 20$ to 24 y , and 25 to 29 y). The median incidence rate was 232.31 per million for females and 218.07 per million for males. Incidence increased with age, with the highest rate observed for 25 - to 29 -year-olds in both sexes. Carcinomas, lymphomas, and skin tumors were most frequent among AYAs. High incidence rates of cervix-uterus carcinoma were observed in most PBCRs. AYAs present epidemiological characteristics that differ from those of children, reinforcing the need for a new classification. This study describes, for the first time, the cancer incidence rate in AYAs in Brazil, and we believe that our findings represent the Brazilian profile.

Key Words: cancer, adolescents, young adults, Brazil
(J Pediatr Hematol Oncol 2016;38:e88-e96)

There is an increasing cancer rate among adolescents and young adults (AYAs) from 15 to 29 years of age, and cancer is currently 2.7 times more common in this age group than in childhood. ${ }^{1}$ AYAs show a spectrum of cancers different from those commonly diagnosed among children and adults. Although leukemia is the most common childhood cancer, lymphomas are most frequent among 15 - to 29 -year-olds. In addition, among cancer

[^0]patients of 15 to 24 years of age, 17% are diagnosed with carcinoma. The most frequent include thyroid, testicular, and nasopharyngeal carcinomas, and melanoma, showing a primary site distribution different from that found in adults. ${ }^{2,3}$

Because of these differences, the international classification of childhood cancer is not appropriate for AYAs. ${ }^{4-6}$ Birch et al ${ }^{5}$ proposed a new classification for this age group revised by the World Health Organization for AYA according to ICD-O3. ${ }^{7}$ However, there is some study-to-study disagreement regarding the definition of adolescents and young adults. Various studies describe this age group as ranging from 15 to 24 or from 15 to 29 years of age, and more recently from 15 to 39 years of age. ${ }^{5,8-15}$ This discrepancy makes it difficult to directly compare the available information in the literature. Recently, we used the newly proposed classification system to reclassify cases within the age group of 15 to 29 years from Brazilian population-based cancer registries (PBCRs). ${ }^{5,6}$ The present study aimed to describe the incidence rate among adolescents and young adults based on data from 21 PBCRs in 5 geographic regions in Brazil.

MATERIALS AND METHODS

Data were obtained from 25 PBCRs covering 5 geographic regions of Brazil (North, Northeast, South, Southeast, and Middle-West). Four were excluded 3 because the data covered <3 years (Santos, Florianópolis, Campo Grande) and 1 (Campinas) because data were only available from 1991 to 1995. All 21 PBCRs meet the standard criteria recognized by International Agency for Research in Cancer. Table 1 show the period and population coverage for each PBCR. Tumors were reclassified using the histology-based classification scheme for adolescents and young adults proposed by Birch and colleagues and revised by World Health Organization in 2008 according to ICD-O3. ${ }^{5,7}$ Incidence rates per million were analyzed in each diagnostic subgroup according to sex and age at diagnosis (stratified into 3 groups: 15 to $19 \mathrm{y}, 20$ to 24 y , and 25 to 29 y). Age-adjusted incidence rates were estimated by a direct method using the world population proposed for groups of less than 30 years old. ${ }^{16}$ The median incidence rates were used to measure central tendency, to obtain an overall assessment of incidence rates. The 95% confidence intervals for incidence rates were calculated using Poisson approximation. Incidence trends were evaluated in 12 PBCR who had 8 years of consolidation on database. It was excluded for all the PBCR with rate value of zero. To identify significant changes in the trends for adolescents ages 1 to 19 incidence, the joinpoint regression analysis was performed; the annual average changes

Regions	PBCR	Male	Female	Total	Average Annual
North	Belém (1999-2003)	1,244,631	1,380,946	2,625,577	525,115
	Manaus (2001-2005)	1,096,460	1,188,595	2,285,055	457,011
	Palmas (2006-2010)	127,776	140,833	268,609	53,721
	Roraima (2003-2005)	145,179	145,452	290,631	96,877
Northeast	Aracaju (2005-2009)	341,725	387,550	729,275	145,855
	Fortaleza (2002-2006)	1,489,960	1,692,215	3,182,175	636,435
	João Pessoa (2003-2007)	420,555	470,180	890,735	178,147
	Recife (2003-2007)	988,650	1,065,395	2,054,045	410,809
	Natal (2001-2005)	498,485	549,045	1,047,530	209,506
	Salvador (2001-2005)	1,864,460	2,061,235	3,925,695	785,139
	Teresina (2000-2002)	1,234,740	1,253,952	2,488,692	829,564
Middlewest	Cuiabá (2003-2007)	531,440	560,555	1,091,995	218,399
	Distrito Federal (1999-2002)	1,224,160	1,355,820	2,579,980	644,995
	Goiânia (2005-2009)	822,905	894,885	1,717,790	343,558
Southeast	Belo Horizonte (2001-2005)	1,578,330	1,681,000	3,259,330	651,866
	Grande Vitória (2004-2008)	1,031,560	1,073,385	2,104,945	420,989
	Jahu (2007-2011)	96,045	95,850	191,895	38,379
	Poços de Caldas (2007-2011)	93,444	92,401	185,845	37,169
	São Paulo (2006-2010)	25,809,780	26,100,770	51,910,550	10,382,110
Southeast	Curitiba (2004-2008)	1,119,975	1,160,840	2,280,815	456,163
	Porto Alegre (2002-2006)	876,090	899,360	1,775,450	355,090

PBCRs indicates population-based cancer registries.
(average annual percent change) were estimated. The best cut-point period for measuring the trends is described elsewhere (http://www.srab.cancer.gov/joinpoint). Significance was determined with the Monte Carlo Permutation method. ${ }^{17}$

RESULTS

The overall median age-adjusted incidence rates were 232.31 per million for females and 218.07 for males (Fig. 1).

The age-specific incidence rates increased with increasing age for all cancers (Table 2). Compared with males, females showed lowest incidence rates in the 15 to 19 years and 20 to 24 years. Among the age group 25- to 29 -year females had a higher incidence rate (Table 2). The highest ageadjusted incidence rates of lymphomas were seen in Goiania, with 63 cases per million. The lowest incidence rates were seen in Teresina (5 cases per million) and Curitiba (6 cases per million). The number of cases can be seen on

FIGURE 1. Distribution age-adjusted rate (per million) for cancers in adolescents and young adults ($15-29 \mathrm{y}$) in 21 Brazilian populationbased cancer registries (PBCR).

TABLE 2. Age-adjusted Incidence Rate (Per Million) of Cancers in Adolescents and Young Adults According to Age and Sex in 21 Brazilian PBCR

PBCR	Males						Females					
	15-19y		20-24 y		25-29 y		15-19 y		20-24 y		25-29 y	
	Rate	95\% CI										
North												
Belém (1999-2003)	147.19	(87.68-151.50)	194.01	(147.81-240.20)	248.99	(192.21-305.78)	87.09	(61.03-113.14)	122.08	(90.36-153.81)	292.20	(238.95-345.45)
Manaus (2001-2005)	157.82	(118.52-197.11)	164.29	(123.69-204.89)	194.10	(145.34-242.86)	117.78	(85.11-150.44)	155.47	(117.33-193.60)	389.91	(323.47-456.35)
Palmas (2006-2010)	168.00	(43.35-292.65)	66.01	(8.70-140.73)	126.65	(15.53-237.78)	146.20	(37.70-254.69)	160.20	(49.13-271.26)	166.12	(42.63-289.61)
Roraima (2003-2005)	36.24	(14.06-86.54)	143.72	(37.11-250.33)	123.61	(15.27-231.96)	36.27	(-14.10-86.65)	42.48	(-16.39-101.34)	154.36	(30.55-278.18)
Median	152.51		154.01		160.38		102.44		138.78		229.16	
Northeast												
Aracaju (2005-2009)	140.79	(75.63-205.95)	259.48	(166.44-352.51)	437.47	(305.51-569.93)	165.43	(97.75-233.10)	375.40	(271.16-479.64)	769.02	(607.32-930.71)
Fortaleza (2002-2006)	148.33	(116.41-180.25)	230.56	(188.15-272.98)	284.02	(233.40-334.65)	132.53	(103.82-161.24)	194.89	(158.57-231.22)	381.99	(327.64-436.33)
João Pessoa (2003-2007)	203.13	(132.72-273.53)	192.55	(121.16-263.95)	287.31	(190.59-384.03)	148.03	(89.92-206.14)	250.78	(172.98-328.59)	454.21	(342.88-565.55)
Recife (2003-2007)	128.97	(91.66-166.27)	187.66	(141.29-234.03)	241.04	(184.93-297.15)	233.51	(175.36-271.66)	402.55	(336.79-468.31)	696.01	(606.23-785.79)
Natal (2001-2005)	181.88	(121.60-242.16)	223.89	(152.53-295.24)	450.80	(337.56-564.00)	161.89	(106.62-217.16)	334.92	(250.71-419.13)	548.66	(433.27-664.06)
Salvador (2001-2005)	120.69	(94.69-146.70)	161.00	(129.83-192.16)	258.22	(214.96-301.47)	93.11	(70.94-115.28)	180.12	(148.97-211.27)	361.47	(313.46-409.49)
Teresina (2000-2002)	27.14	(12.90-41.38)	28.68	(12.43-44.92)	40.11	(17.38-62.84)	29.79	(14.69-44.89)	44.84	(24.60-65.09)	118.27	(80.58-155.95)
Median	140.79		192.55		284.02		148.03		250.78		454.21	
Midwest												
Cuiabá (2003-2007)	165.07	(107.86-222.27)	198.96	(133.91-264.01)	370.80	(274.44-467.17)	171.00	(113.50-228.51)	276.05	(201.66-350.43)	403.62	(306.86-500.37)
Distrito Federal (1999-2002)	201.02	(158.23-243.81)	224.65	(179.68-269.61)	452.50	(383.82-521.18)	173.80	(136.10-211.51)	332.26	(280.26-384.25)	679.40	(599.78-759.02)
Goiânia (2005-2009)	254.12	(195.62-312.61)	322.53	(257.31-387.75)	578.65	(482.65-674.66)	212.97	(161.87-264.08)	437.38	(364.37-510.39)	962.51	(844.49-1080.53)
Median	201.02		224.65		452.50		173.80		332.26		679.40	
Southeast												
Belo Horizonte (2001-2005)	175.00	(139.71-210.29)	226.01	(186.34-265.68)	293.87	(245.00-342.73)	130.50	(100.82-160.18)	256.41	(215.59-297.22)	411.45	(355.93-466.97)
Grande Vitória (2004-2008)	93.84	(63.15-124.52)	119.79	(83.53-156.04)	128.04	(87.30-168.78)	54.31	(31.05-77.57)	97.43	(65.57-129.30)	176.41	(130.19-222.62)
Jahu (2007-2011)	134.84	(2.60-267.07)	184.37	(36.75-331.98)	782.20	(481.43-1082.98)	208.26	(41.60-374.93)	332.79	(136.14-529.45)	524.30	(282.03-766.58)
Poços de Caldas (2007-2011)	157.44	(19.31-295.56)	313.75	(119.27-508.24)	400.56	(173.97-627.15)	162.08	(19.91-304.25)	124.65	(2.45-246.85)	279.27	(84.37-474.17)
São Paulo (2006-2010)	51.04	(46.40-55.69)	90.92	(84.59-97.24)	155.12	(146.44-163.79)	54.25	(49.47-59.03)	130.81	(123.26-138.36)	271.21	(259.84-282.58)
Median	134.84		184.37		293.87		130.50		130.81		279.27	
South												
Curitiba (2004-2008)	42.10	(20.77-63.43)	35.45	(16.87-54.03)	52.04	(27.99-76.09)	56.49	(32.27-80.72)	24.67	(9.37-39.97)	48.63	(26.16-71.11)
Porto Alegre (2002-2006)	182.30	(134.88-229.71)	412.63	(339.94-485.32)	480.47	(395.86-565.08)	133.76	(92.70-174.81)	344.62	(279.59-409.64)	706.37	(606.17-806.58)
Median	112.20		224.04		266.26		95.13		184.65		377.50	

[^1]TABLE 3. Age-adjusted Incidence Rate (Per Million) for Cancers in Adolescents and Young Adults (AYA) (15-29y) According to AYA Classification in 21 Brazilian PBCR

PBCR	Leukemias		Lymphomas		CNS		Bones		Sarcomas		Germ Cell		$\underline{\text { Skin Carcinoma }}$		Carcinomas		Miscellanea		Nonspecific	
			Mela	ma																
	Rate	M/F			Rate	M/F	Rate	\mathbf{M} / \mathbf{F}	Rate	M/F	Rate	M/F	Rate	M/F						
North																				
Belém (1999-2003)	25.58	1.44	21.19	1.50	8.14	2.17	8.63	2.00	7.40	1.43	8.04	8.50	5.98	0.44	61.13	0.37	1.29	2.00	29.58	1.33
Manaus (2001-2005)	30.71	1.12	17.46	2.00	14.58	0.94	14.57	1.06	13.01	0.58	11.29	1.36	12.24	3.02	59.97	0.19	0.44	0.00	20.72	0.96
Palmas (2006-2010)	10.89	0.50	22.56	5.00	13.03	2.00	7.71	1.00	4.27	0.00	7.06	1.00	11.43	2.00	63.09	0.23	0.00	0.00	0.00	0.00
Roraima (2003-2005)	0.00	0.00	0.00	0.00	17.96	0.67	0.00	0.00	7.06	0.00	0.00	0.00	18.25	1.50	16.83	0.30	0.00	0.00	27.28	7.00
Median	18.24		19.33		13.81		8.17		7.23		7.55		11.84		60.55		0.22		24.00	
Northeast																				
Aracaju (2005-2009)	19.47	1.00	31.00	0.77	12.28	1.25	12.23	1.25	16.42	2.00	18.45	1.17	82.46	0.89	157.81	0.30	4.06	0.00	1.40	0.00
Fortaleza (2002-2006)	21.19	1.16	38.11	1.12	19.04	1.22	10.64	2.40	9.88	1.07	10.45	2.30	21.31	1.08	70.01	0.36	2.13	0.75	23.18	1.06
João Pessoa (2003-2007)	25.66	2.29	44.67	0.95	17.04	0.88	26.40	2.43	11.84	1.75	9.17	3.00	11.52	0.67	88.15	0.16	2.41	0.00	18.55	0.45
Natal (2001-2005)	33.19	1.00	31.47	1.13	19.82	1.86	7.99	2.00	11.63	0.50	12.81	0.86	37.25	1.00	111.96	0.42	2.61	2.00	44.34	0.88
Recife (2003-2007)	22.34	0.64	28.69	0.87	14.90	2.33	10.76	1.75	15.91	1.20	6.12	1.60	17.62	1.00	175.59	0.13	2.50	1.50	19.59	0.54
Salvador (2001-2005)	16.22	1.37	24.98	1.55	16.82	1.78	9.06	1.25	12.34	1.29	7.99	0.52	19.72	1.05	64.70	0.33	1.03	0.33	20.53	0.84
Teresina (2000-2002)	6.05	0.60	5.34	0.86	5.84	1.33	0.85	1.00	4.70	0.83	2.75	0.17	3.03	2.00	14.53	0.21	1.21	0.00	3.45	0.33
Median	21.19		31.00		16.82		10.64		11.84		9.17		19.72		88.15		2.41		19.59	
Midwest																				
Cuiabá (2003-2007)	23.99	1.36	34.68	1.53	20.97	1.09	9.38	2.33	13.79	0.88	15.60	1.83	43.44	1.04	75.02	0.22	5.23	0.67	18.92	1.50
Distrito Federal (1999-2002)	17.37	3.00	36.93	1.54	26.51	1.27	13.88	2.50	14.55	1.53	11.30	0.81	37.93	0.85	99.02	0.33	0.79	0.00	81.92	0.40
Goiânia (2005-2009)	23.10	1.86	63.53	1.00	33.54	1.43	15.59	1.60	27.43	0.96	23.33	4.71	74.75	0.61	172.51	0.27	11.03	0.90	11.03	1.11
Median	23.10		36.93		26.51		13.88		14.55		15.60		43.44		99.02		5.23		18.92	
Southeast																				
Belo Horizonte (2001-2005)	19.36	1.63	38.87	0.70	22.49	1.12	11.53	1.47	15.32	1.22	18.47	3.54	26.84	0.68	75.79	0.43	2.29	0.75	14.92	0.69
Grande Vitória (2004-2008)	19.85	1.33	17.16	1.25	13.43	3.00	7.53	1.67	3.73	0.60	3.55	2.50	4.53	0.50	30.03	0.51	0.47	0.00	9.99	0.75
Jahu (2007-2011)	19.34	0.00	49.96	1.00	21.55	1.00	12.87	1.00	14.11	0.50	26.07	0.00	116.27	1.33	77.15	0.34	6.10	0.00	9.68	0.00
Poços de Caldas (2007-2011)	10.62	1.00	32.94	1.00	5.07	0.00	5.96	0.00	21.59	3.00	54.65	9.00	41.67	7.00	48.27	0.27	10.30	0.00	5.22	0.00
São Paulo (2006-2010)	5.95	1.15	16.32	1.08	3.79	1.20	3.30	1.85	3.64	1.19	5.25	14.78	12.53	0.95	48.80	0.32	0.87	0.69	22.04	0.49
Median	19.34		32.94		13.43		7.53		14.11		18.47		26.84		48.80		2.23		9.99	
South																				
Curitiba (2004-2008)	4.57	1.50	6.01	1.60	3.46	1.67	4.47	0.80	3.22	2.50	8.13	2.00	2.12	0.67	9.73	0.17	1.32	0.50	0.41	0.00
Porto Alegre (2002-2006)	23.43	1.63	61.43	0.98	14.22	2.57	13.80	1.08	22.67	1.50	41.15	11.44	48.75	0.71	112.82	0.29	2.81	0.67	27.61	1.04
Median	14.00		33.72		8.84		9.14		12.95		24.64		25.44		61.28		2.07		14.01	
Median	19.47		31.00		14.90		9.38		12.34		10.45		19.72		70.01		2.13		18.92	

TABLE 4. Age-adjusted Incidence Rate (Per Million) for the 4 Most Incident Subgroups of Group 8 (Except Skin) According to Sex in 21 Brazilian PBCR

PBCR	Colorectal				Thyroid				Breast				Cervical Females	
	Males		Females		Males		Females		Males		Females			
	No. Cases	Rate												
North														
Belém (1999-2003)	11	11.14	4	2.75	4	3.47	8	6.22	0	0.00	16	12.66	52	40.30
Manaus (2001-2005)	4	3.93	8	7.20	1	1.00	10	8.40	0	0.00	15	13.61	53	50.86
Palmas (2006-2010)	1	8.61	2	13.43	0	0.00	4	28.14	0	0.00	2	15.86	6	41.91
Roraima (2003-2005)	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	2	17.53
Median		6.27		4.98		0.50		7.31		0.00		13.14		41.11
Northeast														
Aracaju (2005-2009)	2	5.67	2	5.77	10	31.15	48	132.43	0	0.00	9	24.36	16	43.82
Fortaleza (2002-2006)	10	6.64	4	2.49	9	5.91	55	33.43	0	0.00	29	18.50	45	28.28
João Pessoa (2003-2007)	5	12.34	2	4.44	1	2.36	14	29.05	0	0.00	8	17.37	26	58.90
Recife (2003-2007)	4	4.06	6	5.77	4	4.1	18	16.75	0	0.00	45	42.77	205	193.28
Natal (2001-2005)	1	1.96	4	7.64	11	23.44	43	90.01	0	0.00	8	19.81	18	34.57
Salvador (2001-2005)	8	4.39	12	5.99	7	3.89	48	24.21	0	0.00	54	28.31	21	10.67
Teresina (2000-2002)	2	1.88	1	1.05	0	0.00	4	3.71	0	0.00	6	5.96	10	8.90
Median		4.39		5.77		4.10		29.05		0.00		19.81		34.57
Midwest														
Cuiabá (2003-2007)	5	9.75	2	3.43	3	5.57	10	17.01	0	0.00	9	16.05	27	50.56
Distrito Federal (1999-2002)	9	7.65	19	14.46	7	6.00	50	36.93	0	0.00	30	23.12	46	34.97
Goiânia (2005-2009)	10	12.92	14	16.29	14	17.74	82	91.10	1	1.14	36	41.69	55	65.30
Median		9.75		14.46		6.00		36.93		0.00		23.12		50.56
Southeast														
Belo Horizonte (2001-2005)	19	12.16	14	8.58	12	7.82	48	28.88	0	0.00	40	24.11	34	20.75
Grande Vitória (2004-2008)	6	6.07	6	5.43	1	0.97	1	0.81	0	0.00	20	19.72	5	5.09
Jahu (2007-2011)	1	9.61	0	0.00	0	0.00	6	55.26	0	0.00	0	0.00	1	9.49
Poços de Caldas (2007-2011)	1	10.71	0	0.00	0	0.00	3	33.95	0	0.00	4	43.87	0	0.00
São Paulo (2006-2010)	70	2.77	87	3.36	155	6.12	801	30.92	15	0.57	327	12.75	182	7.10
Median		9.61		3.36		0.97		30.92		0.00		19.72		7.10
South														
Curitiba (2004-2008)	0	0.00	1	0.86	1	0.95	5	4.27	0	0.00	2	1.69	5	4.10
Porto Alegre (2002-2006)	8	9.26	15	17.02	7	7.93	21	23.14	1	1.02	39	45.78	47	54.77
Median		4.63		8.94		4.44		13.71		0.51		23.74		29.44

PBCR indicates population-based cancer registries

FIGURE 2. Average annual percent change (AAPC) of incidence rate for cancers in adolescents (15 to 19 y) according to sex in 21 Brazilian population-based cancer registries (PBCR).
supplemental Table 1, Supplemental Digital Content 1, http://links.lww.com/JPHO/A138.

Carcinomas occurred with high age-adjusted incidence rates among most PBCRs in different geographic regions (Table 3). The ratio M/F of carcinoma was <1 in all PBCR (Table 3). Colorectal, thyroid, breast, and cervical carcinomas had the highest incidence rates in group 8 of AYA Classification. The primary site distribution revealed that cervix/uterus showed the highest age-adjusted incidence rate in most PBCRs, and that thyroid carcinoma was more common among females than males, mainly in southeast region (Table 4). Germ cell tumors, skin carcinomas, and melanoma had the highest age-adjusted incidence rates among males.

Males had a higher incidence rate of lymphoma compared with females. There was small difference between lymphoma subtypes (Supplemental Table 2, Supplemental Digital Content 2, http://links.lww.com/JPHO/A139).

To evaluate the incidence rates trends of adolescents age 15 to 19 years in different Brazilian region, joinpoint regression models were applied and a significant decline were observed in 5 PBCR (Sao Paulo, Salvador, Porto Alegre, Grande Vitoria, and Cutitiba). Increased rates were observed in 2 PBCR (Recife and Goiania) (Fig. 2).

DISCUSSION

This report is the first descriptive incidence profile of cancer cases among adolescents and young adults in Brazil. Although we previously described cancer incidence among children and adolescents from 0 to 19 years of age, the incidence among AYAs from 15 to 29 years of age in Brazil has never before been investigated. ${ }^{18}$ Increased cancer
incidence among AYAs has been reported in Asia, Europe, and the United States. ${ }^{1,5,12}$

Table 5 shows previously reported cancer incidence rates in AYAs among different countries. Among adolescents of 15 to 19 years of age, incidence rates did not differ between sexes in our present study as well as in previous reports. In this age group, the highest overall incidence rates are reported in France (219.40 cases per million) and the USA (221 cases per million). ${ }^{1,2,9}$ In all countries, as in our present findings, the age-adjusted incidence rates increase with increasing age groups.

In young Brazilian adults of 20 to 24 years of age, there were not great differences in incidence rates of females compared with males. Higher incidence of female was seen in Korea and USA. ${ }^{2,11}$ Analysis of the overall age-adjusted incidence rates in this age group shows the highest values in the USA (379 cases per million) and Canada (327 cases per million). ${ }^{8}$

Among the countries in which the incidence rate is described in young adults over 24 years of age, higher incidence rates are reported in females compared with males. Females in USA and Korea show the highest incidence rates (692 and 663 cases per million, respectively) among young adults with ages ranging from 25 to 29 years. The overall highest incidence rate in this age group is reported in the USA (610 cases per million). ${ }^{2,11}$

Lymphomas are the most common cancer diagnosed among AYAs, corresponding to 20% of all cancers affecting this population according to data from the Surveillance, Epidemiology, and End Results (SEER) program. ${ }^{19}$ Our present data also indicated that lymphomas were the most frequent tumor type in AYAs, for both sexes and with no differences between the different analyzed age groups. Among AYAs in England, the rates of non-Hodgkin
TABLE 5. Incidence Rates (Per Million) for Cancers in Adolescents and Young Adults (15-29y)

Source/Country	References	15-19 y			20-24 y			25-29 y		
		M	F	T	M	F	T	M	F	T
PBCR, France (2000-2008)	Desandes et al ${ }^{10}$	218.80	220.10	219.40	307.70	278.20	293.10	-	-	-
NCR, England (1979-1997)	Birch et al ${ }^{5}$	158.00	128.00	144.00	238.00	214.00	226.00	-	-	-
NCR, Nothern England (1968-1995)	Cotterill et al ${ }^{12}$			144.30			209.30			
PBCR, Portugal (1997-2006)	Carreira et al ${ }^{13}$	-	-	198.30	-	-	306.20	-	-	-
PBCR, Ontario, Canada (1990-2001)	Furlong et al ${ }^{8}$	-	-	198.00	-	-	327.00	-	-	535.00
SEER, USA (2007-2011)		229.00	211.00	221.00	351.00	407.00	379.00	530.00	692.00	610.00
PBCR, The Netherlands (1989-2009)*	Aben et all ${ }^{15}$	221.00	181.00	-	335.00	295.00	-	468.00	534.00	-
KCCR, Korea (1999-2010) \dagger	Moon et al ${ }^{11}$	150.90	160.40	-	170.70	305.60	-	273.40	663.30	-
PBCR, Brazil	This study (median)	148.33	133.76	153.60	192.55	194.89	219.50	266.26	377.50	339.62

[^2]of tumor size in this study led to the conclusion that the incidence rate was high regardless of the tumor evolution. This is in contrast with the concept that increasing thyroid cancer incidence is due to higher detection of smaller tumors at early ages. ${ }^{33}$ Socioeconomic data may be an important variable despite that our PBCR are limited to capitals and the Human development index has only small difference among the capitals. Furthers analysis need to be done.

Several countries have also seen substantially increased incidence of skin tumors in recent years. This increase is observed among AYAs, especially within the white populations of North America and Europe, Australia, and New Zealand. ${ }^{34-36}$ In all Brazilian PBCRs, we found higher skin tumor incidence rates within the 20 - to 24 -year and 25 - to 29 -year age groups. Skin carcinomas are generally less common than melanoma. ${ }^{37,38}$ In Tunisia, skin carcinoma is exceptionally prevalent among 15 - to 19 -year-olds, with rates of 7.8 per million for males and 16.5 per million for females. ${ }^{39}$ In our present series, among AYAs, the median incidence of melanoma was 3 cases per million, whereas the median incidence of skin carcinomas was 18 cases per million, and these rates increased with age. All Brazilian PBCRs collect data on basal carcinoma, which may be the reason for the higher incidence rate. Exposure to ultraviolet radiation plays a key role in melanoma and carcinoma development, and sun exposure habits are high in children in Brazil. ${ }^{40}$

Within the new classification system, the 10th group corresponds to unspecific neoplasms. In our data, we observed very high rates of unspecific neoplasms in 2 PBCRs: 81.92 per million in Distrito Federal and 44.34 per million in Natal. These high rates could be due to a lack of specific diagnoses in these PBCRs as well as to incorrect data in the systems. In the Ontario Cancer Registry, increased rates of unspecified diagnoses were found to increase with age, with a lower rate in the 15 - to 19 -year age group compared with the 20 - to 24 -year and 25 - to 29 -year age groups $(P<0.001) .{ }^{8}$

The decrease rate observed on some PBCR must be interpreted with caution because it may reflect the access to health care, the improvement of diagnosis procedure especially among adolescents with cervical cancer and the quality of data collection. For this analysis we used only the PBCR with at least 8 years of consolidation, but longer follow-up is necessary to better evaluate.

Our present results confirm that cancer among adolescents and young adults presents epidemiological characteristics that differ from those seen in children, reinforcing the need for a new classification system that includes tumor histologic types that are closer to those found in adults. Incidence rates of cancer in AYA in Brazil vary by geographic regions being the highest at Midwest and Northeast and the lowest in the South and North regions. Carcinomas, lymphomas were the most frequent malignancies in 10 registries. Previous data leukemia, lymphoma, and central nervous system were the most frequent among children and adolescent (0 to 19 y). ${ }^{18}$ Further environment factors need to be explored. Our findings show a high incidence rate of cervical cancer, indicating a need for further investigation regarding disease prevention and screening programs. The major limitations of the present study are that all of the Brazilian PBCRs were confined to capital cities and different periods. This study describes, for the first time, the cancer incidence rate in adolescents and
young adults in Brazil. Despite the study limitations, we believe that the present data represent the Brazilian profile.

ACKNOWLEDGMENTS

The authors are grateful to all of the coordinators of the Brazilian PBCRs who contributed to this work, including Carlos Anselmo Lima (PBCR-Aracaju), Lucrécia A. Cabral Formigosa (PBCR-Belém), Berenice N. Antoniazzi (PBCRBelo Horizonte), Djalma de Carvalho Moreira Filho and Nazira Mahayri (PBCR-Campinas), Maria Ilma Castilho (PBCR-Cuiabá), Cyntia Asturian Laporte (PBCR-Curitiba), Maria Cristina Scandiuzzi (PBCR-Distrito Federal; Miren Maite Uribe Arregi (PBCR-Fortaleza), José Carlos de Oliveira (PBCR-Goiânia), José Getúlio Martins Segalla (PBCR-Jaú), Josefa A. P. de Aquino (PBCR-João Pessoa), Anasselis Veiga de Lima (PBCR-Manaus), Maria Suely Lopes Correa (PBCR-Natal), Paulo Recena Grassi (PBCRPorto Alegre), Cláudia C. Lima de Castro (PBCR-Recife), Elmando Sampaio Silva (PBCR-Salvador), Fernanda Alessandra Silva (PBCR-São Paulo), and Jeane Soares de Aguiar (PBCR-Vitória). BDC has a scholar grant from CNPq 306291/2014-2.

REFERENCES

1. Bleyer A, Viny A, Barr R. Cancer in 15- to 29 -year-olds by primary site. Oncologist. 2006;11:590-601.
2. National Cancer Institute. SEER Cancer statistics review 19752000: Adolescent and Young Adult Cancer by Site Incidence, Survival and Mortality. Avaiable at: http://seer.cancer.gov/ archive/csr/1975_2011/results_merged/sect_32_aya.pdf.
Acessed August 3, 2015.
3. Birch JM, Alston RD, Quinn M, et al. Incidence of malignant disease by morphological type, in young persons aged 12-24 years in England, 1979-1997. Eur J Cancer. 2003;39:2622-2631.
4. Kramárová E, Stiller CA. The international classification of childhood cancer. Int J Cancer. 1996;68:759-765.
5. Birch JM, Alston RD, Kelsey AM, et al. Classification and incidence of cancers in adolescents and young adults in England 1979-1997. Br J Cancer. 2002;87:1267-1274.
6. Barr RD, Holowaty EJ, Birch JM. Classification schemes for tumors diagnosed in adolescents and young adults. Cancer. 2006;106:1425-1430.
7. National Cancer Institute. SEER Cancer statistics review 19752000: Adolescent and Young Adult Cancer by Site Incidence, Survival and Mortality. Avaiable at: http://seer.cancer.gov/ ayarecode/aya-who2008.html. AcessedAugust 3, 2015.
8. Furlong W, Rae C, Greenberg ML, et al. Surveillance and survival among adolescents and young adults with cancer in Ontario, Canada. Int J Cancer. 2012;131:2660-2667.
9. Bleyer A, Barr R. Cancer in young adults 20 to 39 years of age: overview. Semin Oncol. 2009;36:194-206.
10. Desandes E, Lacour B, Belot A, et al. Cancer incidence and survival among adolescents and young adults in France, 20002008. Pediatr Hematol Oncol. 2013;30:291-306.
11. Moon EK, Park HJ, Oh CM, et al. Cancer incidence and survival among adolescents and young adults in Korea. PLoS One. 2014;9:e96088.
12. Cotterill SJ, Parker L, Malcolm AJ, et al. Incidence and survival for cancer in children and young adults in the North of England, 1968-1995: a report from the Northern Region Young Persons' Malignant Disease Registry. Br J Cancer. 2000;83:397-403.
13. Carreira H, Antunes L, Castro C, et al. Cancer incidence and survival (1997-2006) among adolescents and young adults in the north of Portugal. Pediatr Hematol Oncol. 2012;29: 663-676.
14. Wu XC, Chen VW, Steele B, et al. Cancer incidence in adolescents and young adults in the United States, 1992-1997. J Adolesc Health. 2003;32:405-415.
15. Aben KK, Van Gaal C, Van Gils N, et al. Cancer in adolescents and young adults (15-29 years): a population-based study in the Netherlands 1989-2009. Acta Oncol. 2012;51:922-923.
16. Doll R, Payne P, Watherhouse JAH. Cancer Incidence in Five Continents Geneva, UICC Volume 1. Berlin: Springer; 1996.
17. Kim HJ, Fay MP, Feuer EJ, et al. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med. 2000;19:335-351.
18. De Camargo B, Santos MO, Rebelo MS, et al. Cancer incidence among children and adolescents in Brazil: first report of 14 population-based cancer registries. Int J Cancer. 2009; 126:715-720.
19. Bleyer A, Viny A, Barr R. Introduction. In: Bleyer A, O'Leary M, Barr R, Ries LAG, eds. Cancer Epidemiology in Older Adolescents and Young Adults 15 to 29 Years of Age, Including SEER Incidence and Survival: 1975-2000. Bethesda, MD: National Cancer Institute; 2006:1-218.
20. Stiller CA, Desandes E, Danon SE, et al. Cancer incidence and survival in European adolescents (1978-1997). Report from the Automated Childhood Cancer Information System Project. Eur J Câncer. 2006;42:2006-2018.
21. Martins LF, Valente JG, Thuler LC. Factors related to inadequate cervical cancer screening in two Brazilian state capitals. Rev Saude Publica. 2009;43:318-325.
22. Figueiredo Alves RR, Turchi MD, Santos LE, et al. Prevalence, genotype profile and risk factors for multiple human papillomavirus cervical infection in unimmunized female adolescents in Goiânia, Brazil: a community-based study. BMC Public Health. 2013;13:1041.
23. Monteiro DLM, Trajano AJ, Silva KS, et al. Incidence of cervical intraepithelial lesions in a population of adolescents treated in public health services in Rio de Janeiro, Brazil. Cad Saúde Pública. 2009;25:1113-1122.
24. Utagawa ML, Pereira SMM, Cavaliere MJ, et al. Cervical intraepithelial neoplasia in adolescents: study of cytological findings between 1987 and 1995 in São Paulo State-Brazil. Arch Gynecol Obstet. 1998;262:59-64.
25. Leal EAS, Junior OSL, Guimarães MH, et al. Cervical cancer precursor lesions in adolescent and young adult women of Rio Branco. Acre Rev Bras Ginecol Obstet. 2003;25:81-86.
26. Popadiuk C, Stankiewicz A, Dickinson J, et al. Invasive cervical cancer incidence and mortality among Canadian women ages 15 to 29 and the impact of screening. J Obstet Gynaecol Can. 2012;34:1167-1176.
27. Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA). Magnitude do câncer no Brasil: incidência, mortalidade
e tendência. Informativo Vigilância do Câncer, n. 4, jan/jul. 2013. Avaiable at: http://wwwl.inca.gov.br/conteudo_view.asp?id = 471.
28. Cuzick J, Castañón A, Sasieni P. Predicted impact of vaccination against human papillomavirus $16 / 18$ on cancer incidence and cervical abnormalities in women aged 20-29 in the UK. Br J Cancer. 2010;102:933-939.
29. Barnabas RV, Laukkanen P, Koskela P, et al. Epidemiology of HPV 16 and cervical cancer in Finland and the potential impact of vaccination: mathematical modelling analyses. PLoS Med. 2006;3:e138.
30. Baldur-Felskov B, Dehlendorff C, Munk C, et al. Early impact of human papillomavirus vaccination on cervical neoplasianationwide follow-up of young Danish women. J Natl Cancer Inst. 2014:106djt460.
31. Hariri S, Bennett NM, Niccolai LM, et al. HPV-IMPACT Working Group. Reduction in HPV 16/18-associated high grade cervical lesions following HPV vaccine introduction in the United States-2008-2012. Vaccine. 2015;33:1608-1613.
32. Van Effelterre T, Hogea C, Taylor S. Projected impact of Cervarix (®) vaccination on oncogenic human papillomavirus infection and cervical cancer in the United Kingdom. Hum Vaccin Immunother. 2014;10:1794.
33. Vergamini LB, Frazier AL, Abrantes FL, et al. Increase in the incidence of differentiated thyroid carcinoma in children, adolescents, and young adults: a population-based study. J Pediatr. 2014;164:1481-1485.
34. Magnanti BL, Dorak MT, Parker L, et al. Sex-specific incidence and temporal trends in solid tumors in young people from Northern England, 1968-2005. BMC Cancer. 2008;3:89.
35. Baade PD, Youlden DR, Valery PC, et al. Trends in incidence of childhood cancer in Australia, 1983-2006. Br J Cancer. 2010; 102:620-626.
36. Wong JR, Harris JK, Rodriguez-Galindo C, et al. Incidence of childhood and adolescent melanoma in the United States: 1973-2009. Pediatrics. 2013;131:846-854.
37. Senerchia AA, Ribeiro KB, Rodriguez-Galindo C. Trends in incidence of primary cutaneous malignancies in children, adolescents, and Young adults: a population-based study. Pediatr Blood Cancer. 2014;61:211-216.
38. de Vries E, Steliarova-Foucher E, Spatz A, et al. Skin cancer incidence and survival in European children and adolescents (1978-1997). Report from the Automated Childhood Cancer Information System project. Eur J Cancer. 2006;42:2170-2182.
39. Parkin DM, Ferlay J, Hamdi-Chérif M, et al. Cancer in Africa, Epidemiology and Prevention. Lyon: IARC Press; 2003.
40. Corrêa MP, Dubuisson P, Plana-Fattori A. An overview of the ultraviolet index and the skin cancer cases in Brazil. Photochem Photobiol. 2003;78:49-54.

[^0]: Received for publication January 10, 2015; accepted January 23, 2016. From the *Multiprofissional Residency Oncology Program; †Coordenação de Prevenção e Vigilância; \ddagger Pediatric Service, Hospital do Câncer I; and §Pediatric Hematology and Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
 N.V.B. reclassified all patients using the new classification system and analyzed the data. N.V.B., B.D.C., R.S.R., J.F.P.O., S.F., and M.O.S. reviewed, discussed, and analyzed the data and contributed to the writing of the manuscript. All authors participated in the interpretation of results, and read and approved the final manuscript.
 The authors declare no conflict of interest.
 Reprints: Beatriz de Camargo, MD, PhD, Pediatric Hematology and Oncology Program, Research Center, Instituto Nacional de Câncer, Rua Marques de Pombal 125, Rio de Janeiro 20230-240, Brazil (e-mail: bdecamar@terra.com.br).
 Supplemental Digital Content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's Website, www.jpho-online.com.
 Copyright (C) 2016 Wolters Kluwer Health, Inc. All rights reserved.

[^1]: CI indicates confidence interval; PBCR, population-based cancer registries

[^2]: *ESR (European standardized rates).
 KCCR indicates Korea Central Cancer Registry; NCR, National Cancer Registry; PBCR, population-based cancer registries; SEER, Surveillance, Epidemiology, and End Results.

