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Abstract. Wilms' tumor (WT) is a heterogeneous neoplasia 
characterized by a number of genetic abnormalities, involving 
tumor suppressor genes, oncogenes and genes related to the 
Wnt signaling pathway. Somatic biallelic inactivation of WT1 
is observed in 5-10% of sporadic WT. Somatic mutations in 
exon 3 of CTNNB1, which encodes β-catenin, were initially 
observed in 15% of WT. WTX encodes a protein that nega-
tively regulates the Wnt/β-catenin signaling pathway and 
mediates the binding of WT1. In this study, we screened 
germline and somatic mutations in selected regions of WT1, 
WTX and CTNNB1 in 43 WT patients. Mutation analysis of 
WT1 identified two single-nucleotide polymorphisms, one 
recurrent nonsense mutation (p.R458X) in a patient with 
proteinuria but without genitourinary findings of Denys-Drash 
syndrome (DDS) and one novel missense mutation, p.C428Y, 
in a patient with Denys-Drash syndrome phenotype. WT1 
SNP rs16754A>G (R369R) was observed in 17/43 patients, 
and was not associated with significant difference in age at 
diagnosis distribution, or with 60-month overall survival rate. 
WTX mutation analysis identified five sequence variations, 
two synonymous substitutions (p.Q1019Q and p.D379D), a 
non-synonymous mutation (p.F159L), one frameshift muta-
tion (p.157X) and a novel missense mutation, p.R560W. Two 
sequence variations in CTNNB1 were identified, p.T41A and 

p.S45C. Overall survival of bilateral cases was significantly 
lower (P=0.005). No difference was observed when survival 
was analyzed among patients with WT1 or with WTX muta-
tions. On the other hand, the survival of two patients with 
the CTNNB1 p.T41A mutation was significantly lower 
(P=0.000517) than the average.

Introduction

Wilms' tumor (WT) is a heterogeneous neoplasia character-
ized by several genetic and epigenetic abnormalities, involving 
tumor suppressor genes, oncogenes and genes related to the 
Wnt signaling pathway. The incidence of WT is 1/10,000 and 
bilateral presentation is observed in 10% of affected indi-
viduals. In approximately 1-2% of WT, recurrence occurs in 
the family (1). 

The WT1 gene is an essential regulator of kidney develop-
ment, critical to the survival and subsequent differentiation 
of kidney cells (2). The WT1 somatic, biallelic inactivation is 
seen in 5-10% of sporadic WT (1). The WT1 protein contains 
an amino-terminal transactivator and a carboxyl-terminal 
DNA-binding domain consisting of four zinc fingers. 
Alternative WT1 splicing results in four different isoforms of 
the protein, and the most abundant isoform (+KTS) is generated 
by insertion of amino acids lysine, threonine and serine (KTS), 
coded by exons 9 and 10 (3-6). Exon 9 represents an important 
target for germline mutations associated with Denys-Drash 
syndrome (DDS), and specific constitutional point mutations 
affect the properties of WT1 to bind with EGR1 (early growth 
response 1) consensus sequence (7).

Mutations in exon 3 of the CTNNB1 gene, which encodes 
β-catenin, were initially observed in 15% of tumor samples 
from WT patients (8). The β-catenin N-terminal region 
contains consensus phosphorylation sites for the serine/threo-
nine kinase GSK-3β (glycogen synthase kinase 3β) protein, 
whose function is to phosphorylate β-catenin at multiple sites 
(Ser33, Ser37, Thr41 and Ser45). In the absence of signs of 
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growth and differentiation, this phosphorylation results in 
β-catenin degradation mediated by ubiquitin (9,10). β-catenin 
stabilization in the nucleus activates the Wnt signaling pathway 
mediated by β-catenin/TCF (11), leading to the deregulation of 
β-catenin signaling, which is critical for the development of 
various malignancies, including WT (8).

Rivera et al (2) identified another gene, WTX, found inacti-
vated in one third of the studied WT samples. The WTX protein 
forms a complex with β-catenin, APC, and other proteins 
to negatively regulate the Wnt/β-catenin signaling pathway, 
leading to the degradation of β-catenin (12). Rivera et al (13) 
showed that WTX shuttles between the cytoplasm and the 
nucleus, and mediates the binding of WT1, modulating its 
activity. Mutations in WTX and WT1 were initially thought 
to be mutually exclusive, while most mutations observed in 
CTNNB1 coincided with WT1 mutations (2).

In the present study, we screened germline and somatic 
mutations in the WT1 exons 8, 9 and 10, the WTX coding 
region and the CTNNB1 exon 3 in 43 WT patients.

Materials and methods

Patients. This study involved 43 patients with documented 
WT. All tumor samples were collected following neoadjuvant 
chemotherapy. This study was approved by the local ethics 
committee and the parents or tutors of all participant patients 
signed an informed consent.

DNA extraction. DNA extraction from peripheral blood and 
fresh tumor samples followed procedures established by 
Miller et al (14) and Sambrook et al (15).

Sequencing of WT1, WTX and CTNNB1. Blood and fresh tumor 
DNA samples were screened for WT1, WTX and CTNNB1 
mutations with previously reported primers (2). PCR reactions 
contained 5 pmol of forward and reverse primers (Prodimol), 
1 µm dNTPs (Life Technologies), 0.9 mM MgCl2, 10 mM 
Tris-HCl (pH 8.0), 25 µM KCl, 1 U Taq DNA polymerase (Life 
Technologies) and 100 ng of DNA in a 25 µl final volume. PCR 
conditions for WT1 exons 8, 9 and 10 assay consisted of 94˚C 
for 5 min, 35 cycles at 94˚C for 30 sec, 58˚C for 30 sec and 
72˚C for 30 sec and 72˚C for 7 min. PCR conditions for WTX 
exon 2 assay consisted of 94˚C for 5 min, 35 ‘step down’ cycles 
at 94˚C for 30 sec, 66˚C (decreasing 0.3˚C per cycle) for 30 sec 
and 72˚C for 30 sec and 72˚C for 7 min. Finally, CTNNB1 
exon 3 amplification conditions were 94˚C for 5 min, 35 ‘step 
down’ cycles at 94˚C for 30 sec, 60˚C (decreasing 0.2˚C per 
cycle) for 30 sec, 72˚C for 30 sec and 72˚C for 7 min. PCR 
products were purified using the GFX™ PCR DNA and Gel 
Band Purification kit (GE Healthcare) and were subjected to 
nucleotide sequencing using BigDye v3.1 (Life Technologies). 
DNA samples and reference sequences (NG_009272 for 
WT1; NG_021345 for WTX; and NG_013302.1 for CTNNB1) 
(16) were aligned and compared to identify homozygous and 
heterozygous nucleotide positions using ChromasPro v. 1.41 
and MEGA 5 software.

Statistical analysis. Kaplan-Meier curves were used to 
estimate 60-month survival rates and overall survival. The 
Mann-Whitney U test was used to compare age at diagnosis.

Results

Our sample consisted of 43 unrelated patients, 18 females and 
25 males, diagnosed with WT. Bilateral disease was diagnosed 
in nine patients. WT mean age at diagnosis was 43 months 
for the whole sample (ranging from 4 to 137 months) and 
32 months for bilateral cases only. Five patients also presented 
major phenotypic abnormalities: one with Beckwith-
Wiedemann syndrome, one with hemihypertrophy, two with 
non-syndromic macrosomia and one with Denys-Drash 
syndrome. Table I shows clinical, histopathological and 
molecular data of all patients.

Mutation analysis of WT1 exons 8, 9 and 10 identified 
four sequence variants, namely, two single-nucleotide poly-
morphisms (SNPs), one novel missense mutation and one 
nonsense mutation. The synonymous sequence variant, SNP 
rs16754 (p.R369R), located at exon 8, was the most frequent 
mutation, having been observed in 17 patients. With the 
exception of case 7, all blood samples were heterozygous for 
this SNP, and no loss of heterozygosity (LOH) was observed 
in the available tumors. The only possible case of LOH was 
patient 38, whose tumor sample showed this variation in a 
homozygous (or hemizygous) state, but no blood sample was 
available from this patient. The second most frequent sequence 
variant, located at intron 9, was SNP rs2234593, observed in 
five patients. In three of these patients (patients 13, 35 and 
43) blood and tumor samples were studied and did not show 
LOH. The novel missense mutation, p.C428Y (g.47820G>A; 
c.1283G>A) (Fig. 1A), was observed in heterozygosis in patient 
44, a female patient with bilateral WT diagnosed at 12 months 
and clinical findings of Denys-Drash syndrome. Finally, 
patient 41 presented a nonsense g.48510C>T (c.1372C>T) 
transition, resulting in the replacement of an arginine for a 
stop codon (p.R458X) (Fig. 1B). This mutation was observed 
in heterozygosis in both blood and tumor samples. This male 
patient developed unilateral blastematous WT diagnosed at 
25 months and proteinuria without other clinical findings of 
Denys-Drash syndrome.

Analysis of WTX exon 2 identified five sequence variants, 
two synonymous substitutions (rs61730681 and rs150075206), 
a non-synonymous mutation (rs34677493), a novel missense 
mutation and one frameshift mutation. SNP rs61730681 
(p.Q1019Q) was observed in four female and two male patients, 
and LOH was observed in two of the four female carriers. 
SNP rs150075206 (p.D379D) and the non-synonymous muta-
tion rs34677493 (p.F159L) were observed, respectively, in 
one female and one male patient, in both cases in association 
with SNP rs61730681. The novel missense mutation p.R560W, 
resulting from a C>T transition at position g.19136 (c.1678C>T) 
(Fig. 1C), was identified in hemizygosis in both blood and 
tumor samples of one male patient (patient 18), whose unilat-
eral tumor showed focal anaplasia. Mutation g.17896insT 
(c.439insT), resulting in a frameshift and subsequent stop 
codon in the protein (p.157X) (Fig. 1D) was observed in the 
tumor sample of one male patient.

Two sequence variants in the CTNNB1 gene were identi-
fied in three patients, in all cases in a heterozygous state in 
the tumor samples. Sequence variation rs121913409 predicts 
the frequently described missense mutation p.S45C and was 
observed in one patient (patient 37). Variation rs121913412, 
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predictive of missense mutation p.T41A, was observed in 
two patients (patients 22 and 27).

The overall 60-month survival rate for the whole sample 
was approximately 80%. Overall survival of bilateral cases 
was significantly lower (P=0.005) (Fig. 2A). No difference 
was observed when survival was analyzed among patients 
with WT1 mutations (P=0.778) (Fig. 2B), or in patients with 
WTX mutations (P=0.594) (Fig. 2C). On the other hand, 
survival of patients 22 and 27, carriers of the p.T41A mutation 
in CTNNB1, was significantly lower (P=0.000517) than the 
average (Fig. 2D). Overall survival of WT1 rs16754 carriers 
did not differ from the rest of the sample (P=0.561) and age at 
diagnosis did not differ between carriers and non-carriers of 
this sequence variant (P=0.817; data not shown).

Discussion

In the present study we screened for mutations in selected 
regions of WT1, WTX and CTNNB1 in 43 WT patients.

In WT1, rs16754A>G, predictive of the synonymous muta-
tion p.R369R, was the most frequently observed sequence 
variant (17/43 patients). No LOH was observed in 8/17 patients 
whose blood and tumor samples were analyzed. According to 
Milani et al (17), rs16754 corresponds to a cis-acting genetic 
variation regulating WT1 expression levels. This SNP has 
been associated with better overall survival in pediatric acute 
myeloid leukemia patients, and among rs16754 carriers, an 
increased expression of WT1 mRNA was observed (18). In 
our sample, allele rs16754G was not associated with differen-
tial age at diagnosis (P=0.817), or overall survival (P=0.561) 
among carriers. 

Sequence variation WT1 rs2234593 was present in five 
patients and in three of these no LOH was observed. This 
intronic variant, apparently, does not alter WT1 splicing 
sites (19).

The nonsense mutation p.R458X (p.R390X) was observed 
in one male patient with unilateral WT. This patient also had 
proteinuria and did not present genitourinary anomalies. 

Figure 1. Electropherograms of WT1 and WTX mutations observed in this study. (A) Electropherogram representing the novel WT1 exon 9 missense mutation 
p.C428Y (g.47820 G>A) in heterozygosis; (B) electropherogram demonstrating WT1 exon 10 nonsense transition (c.1372C>T), g.48510C>T, mutation p.R458X 
in heterozygosis; (C) the novel missense mutation p.R560W, resulting from a C>T transition at position g.19136 (c.1678C>T) in hemizygosis; (D) mutation 
g.17896insT (c.439insT), resulting in a frameshift and subsequent stop codon in the protein (p.157X) in hemizygosis. Black arrows indicate the mutations.
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This mutation has been frequently described in patients with 
DDS, and in at least one case of Frasier syndrome (20,21). 
Royer-Pokora et al (20) described three new cases of the 
WT1 p.R390X nonsense mutation, and reviewed eight other 
cases from the literature (22-25), and observed that genito-
urinary anomalies were not present in 3/10 patients with 
p.R390X (20). Little et al (26) also described two female 
WT patients with p.R390X and without genitourinary 
anomalies. Shibata et al (25) studied seven cases of WT with 
rhabdomyogenic components (fetal rhabdomyogenic nephro-
blastoma), and found five cases with the p.R390X mutation. 
Corbin et al (27) observed the p.R390X mutation in a homo-
zygous state in a tumor sample of one DDS patient who also 
presented the CTNNB1 p.T41A mutation in a heterozygous 
state.

The missense WT1 p.C428Y (g.47820G>A; c.1283G>A;) 
mutation described in this study was observed in heterozy-
gosis in a female patient with bilateral WT diagnosed at age 
12 months. This patient had genitourinary anomalies, and 
developed early-onset proteinuria and end-stage renal disease. 
Another missense mutation in the same protein residue, 
p.C428G, has previously been reported. This mutation changes 
a cysteine residue important for the coordination of the zinc 
atom in the zinc finger domain (28).

Sixty-month overall survival among carriers of all 
WT1 mutations in our sample did not differ from global 
overall survival, a finding that was also observed by Royer-
Pokora et al (29).

Five sequence variants were detected in WTX, two synony-
mous mutations (rs61730681; p.Q1019Q and rs150075206; 
p.D379D), two non-synonymous mutations (rs34677493; 
p.F159L and p.R560W) and one frameshift mutation. With the 
exception of p.R560W, all other WTX mutations observed in 
our patients had been previously identified by Rivera et al (2).

Transition c.1678C>T, predictive of undescribed missense 
mutation p.R560W, was observed in one male patient with 
unilateral WT and focal anaplasia. Corbin et al (27) observed 
another WTX missense mutation, p.T429I, in a WT patient 
who also presented anaplasia. Germline mutations in WTX 
were described in X-linked dominant osteopathia striata with 
cranial sclerosis (OSCS) (30), a disease not associated with 
WT risk. To the best of our knowledge, the WTX p.R560W 
mutation has not been previously described among WT 
(27,31-37) or OSCS (30,38) patients.

In our sample, 60-month overall survival among carriers of 
all WTX mutations did not differ from global overall survival 
(P=0.594), as observed by Wegert et al (32).

CTNNB1 exon 3 sequencing showed two previously 
well-known missense mutations (8,39,40) in three patients of 
our sample, all in heterozygosis: p.T41A in two patients and 
p.S45C in one patient. These somatic mutations remove a major 
phosphorylation site for GSK-3β, leading to the stabilization of 
β-catenin, and they exert a dominant effect at the level of the 
β-catenin/TCF-mediated transcription; therefore, these muta-
tions may be associated with the development and/or survival 
of WT (8,39). Notably, the two carries of the p.T41A mutation 
showed a significantly lower overall survival rate (P= 0.000517) 
than the rest of the sample. In spite of the small number of 
p.T41A carriers in our group of patients (two individuals), we 
could not find an association of this somatic mutation with 
poorer survival rate among WT patients in the literature.

Additional studies of the impact of WTX mutations are 
essential to better understand the reasons why only somatic, 
and not germline mutations in this gene result in WT. Also, 
the interaction of the WT1, WTX and CTNNB1 genes within 
the context of the Wnt signaling pathway, seems to be critical 
for the development and survival of various malignancies, 
including WT.

Figure 2. Estimated probability of overall survival. (A) Overall survival of bilateral cases was significantly lower (P=0.005); (B) no difference was observed 
when survival was analyzed among patients with WT1 mutations (P=0.778); (C) no difference was observed when survival was analyzed among patients with 
WTX mutations (P=0.594), (D) survival of patients 22 and 27, carriers of the T41A mutation in CTNNB1, was significantly lower (P=0.000517) than the average.
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