

Ministério da Saúde Instituto Nacional de Câncer José Alencar Gomes da Silva Coordenação de Pós-graduação Stricto sensu

PRISCILA RAFAELA RIBEIRO

Screening de proteínas que potencialmente interagem com o receptor inibitório Lymphocyte-Activation Gene 3 (LAG-3)

Orientadores: Dr. Martin Bonamino Dr. Leonardo Chicaybam

Orientador(a) do período sanduíche: Dra. Angela Bachi

RIO DE JANEIRO 2020

Ministério da Saúde Instituto Nacional de Câncer José Alencar Gomes da Silva Coordenação de Pós-graduação Stricto sensu

INSTITUTO NACIONAL DE CÂNCER Pós-Graduação em Oncologia

PRISCILA RAFAELA RIBEIRO

Screening de proteínas com potenciais interações com o receptor inibitório Lymphocyte-Activation Gene 3 (LAG-3)

Tese apresentada ao Instituto Nacional de Câncer como parte dos requisitos para obtenção do título de Doutor em Oncologia

Orientadoras: Dr. Martin Bonamino Dr. Leonardo Chicaybam

Orientador (a) do período sanduíche: Dra. Angela Bachi

RIO DE JANEIRO 2020

Ministério da Saúde Instituto Nacional de Câncer José Alencar Gomes da Silva Coordenação de Pós-graduação Stricto sensu INSTITUTO NACIONAL DE CÂNCER Pós-Graduação em Oncologia

PRISCILA RAFAELA RIBEIRO

Screening de proteínas com potenciais interações com o receptor inibitório Lymphocyte-Activation Gene 3 (LAG-3)

Orientadoras: Dr. Martin Bonamino Dr. Leonardo Chicaybam Orientador do período sanduíche: Dra. Angela Bachi

Aprovada em ____/___/____

EXAMINADORES:

Prof. Dr. Emiliano Horacio Medei (Titular externo)

Prof. Dr. Francisco Bastos (Suplente externo)

Prof(a). Dra. Mariana Emerenciano (Titular interno)

Prof. Dr. Miguel Angelo Martins Moreira (Titular interno)

Prof(a). Dr(a). Sheila Coelho(Suplente interno)

Prof. Dr. Zilton Vasconcelos (Titular externo)

RIO DE JANEIRO 2020

EPÍGRAFE

"...o sucesso demora, dói e da trabalho. Por outro lado, dói menos e demora menos do que não ter sucesso, do que desistir, do que não ter planos ou sonhos. Por isso, só vence quem não esmorece, quem persevera e não desiste. Quando o caminho é difícil, a perseverança vale mais que a inteligência" (As 25 leis bíblicas do sucesso)

> "...somente a sabedoria confere excelência ao detentor do conhecimento" (Eclesiastes 7:12)

AGRADECIMENTOS

Difícil resumir 7 anos (AP, mestrado e doutorado) em 1 folha, mas vou tentar.

Sem dúvida, agradeço primeiro a Deus, pois mesmo sem saber como provar, se é que preciso disso, sinto que está por perto e me ajudou não só nesta etapa, mas em toda minha vida.

Ao meu orientador e co- orientador pela oportunidade de conhecer este projeto do qual tanto gosto e que me trouxe experiências pessoais e profissionais valiosas. Agradeço também a minha orientadora do exterior, por ter me recebido tão bem e por tudo que pude aprender com o grupo durante o período do doutorado sanduíche.

Aos colegas do laboratório do INCA, por toda a convivência durante este tempo, em especial Priscila, Luiza, Mari e Giovana.

A todos do 6o andar, por todos os momentos e em especial, pelos cafés ©

Aos meus pais Eva e llário, por toda a simplicidade, riso fácil, amor e ao mesmo tempo, por serem fortes e terem me dado irmãos tão especiais com estas mesmas características, que também me inspiram e me fazem sentir orgulho de fazer parte da nossa família.

Aos meus tios, especial Carlinhos e Leninha, por toda a parceria de sempre, por serem também irmãos e amigos ao mesmo tempo. Muito obrigada!

Aos meus amigos...e que sorte a minha de poder citar aqui tantos nomes! Aos de infância que são da infância para a vida, em especial Juninho e Dani; aos que fiz no Rio de Janeiro e foram responsáveis por tantos momentos incríveis, em especial Ana Laura, Adriana, Fabi, Gabi, Amanda e Dora.

Às meninas com quem dividi quartos nos alojamentos, e que sorte tive durante todos esses anos: em especial Neze, Lauana, Mari, Thaíssa, Taisnara e Amanda. Muito obrigada por tudo e principalmente pelas risadas!

Ao Neimar por ter estado comigo em praticamente todos os momentos durante esse 7 anos, e ter sido um super parceiro. Muito obrigada por tudo!

A todos os que zelam por nós no alojamento, como os porteiros, aos que lutam por manter essa idéia, uma vez que sem ela, no meu caso, seria impossível concluir minha formação nesta instituição.

Aos que conheci durante o doutorado sanduíche, que fizeram desta experiência muito melhor do que eu poderia imaginar: Zica, Chaitra, Tami, Regis, Rafa, Andrea, Francesco, Ilaria, Sara, Marina e, em especial, Anjali e Gian, por todo carinho e por terem me feito sentir em casa. Vou traduzir esta frase e mostrar a eles,haha. Thanks a lot guys!

Em especial, a Aline Costa Matos da Hora e Wesley Lima, ambos acometidos pelo câncer e que após lutarem contra esta doença, descansaram. Aline foi o motivo pelo qual comecei na pesquisa cobre câncer, e Wesley foi mais um que fortaleceu minhas razões para continuar. Que a jornada de vocês nos permita lembrar sempre o principal motivo pelo qual estamos aqui.

A todos que de alguma forma torceram e torcem por mim e talvez eu nem saiba, obrigada...

"O bem que você pratica em algum lugar é teu advogado em toda parte".

Ministério da Saúde Instituto Nacional de Câncer José Alencar Gomes da Silva Coordenação de Pós-graduação Stricto sensu

INSTITUTO NACIONAL DE CÂNCER

Screening de proteínas com potenciais interações com o receptor inibitório Lymphocyte-Activation Gene 3 (LAG-3)

RESUMO

Priscila Rafaela Ribeiro

Introdução: Receptores inibitórios como PD-1, LAG-3, TIM-3 e CTLA-4 ganharam atenção especial como potenciais alvos para imunoterapia, uma vez que a manipulação de sinais negativos mediados por esses receptores pode fornecer novos alvos terapêuticos para várias doenças, inclusive câncer. Mais recentemente, Lymphocyte activation gene-3 (LAG-3) foi descrito como uma molécula de superfície celular que interage com moléculas de MHC de classe II e a identificação de como as proteínas transduzem o sinal desses receptores tem sido um desafio. Técnicas como Imunoprecipitação e a mais recentemente descrita, denominada BioID, são técnicas que podem auxiliar significativamente na identificação das interações proteína-proteína e, desta forma, na descoberta de proteínas essenciais para a ativação de determinada via de sinalização. Objetivo: Realizar um screening de proteínas que interagem com LAG-3 através das técnicas de Imunoprecipitação e BioID. Metodologia: os receptores de antígenos quiméricos (CARs) foram construídos com o scFv anti-CD20 fundido com os domínios intracelulares consistindo de: Lag-3 WT, Lag-3KMUT (K => mutação A no domínio KIEELE), Lag3 EPdel (domínio EP deletado), todos fusionados ao domínio BirA, com posterior indução da expressão destes CARs nas linhagens celulares HEK293T e MOLT4(linfócitos T CD4 +). Análise por citometria de fluxo, imunofluorescência e western blot foram feitos para avaliar a expressão e presença dos CARs. Após a imunoprecipitação das proteínas em beads conjugadas a streptavidina (BioID) e beads revestidas por proteína G (IP), as proteínas foram eluídas e submetidas a análise por espectrometria de massas. Posteriormente, análises in silico de possíveis vias de sinalização envolvidas downstream a LAG-3 foram realizadas com base nas proteínas marcadas identificadas no espectrometro de massas. Resultados: Receptores baseados em CAR foram sintetizados e clonados no vetor pcDNA3.1 MCS-BirA (R118G) -HA, em sequência com o domínio BirA. O CAR anti-CD20 / Lag3Wild foi eletroporado na linhagem celular MOLT4 e transfectado na linhagem HEK293T; nesta última, as demais construções também foram transfectadas, e a expressão e presença dos CARs foi verificada por citometria de fluxo, imunofluorescência e Western blot. Para a técnica de BioID em MOLT4, a análise do padrão de biotinilação para o CAR anti-CD20 / Lag3Wild revelou o padrão de biotinilação esperado. Contudo, foi verificada necessidade de otimização tanto da técnica BioID quanto IP em células T. Já a realização da IP em células HEK293T revelou que as proteínas EEF1G, DYNC1H1, PTBP1, FASN e DERL1 estavam presentes exclusivamente na condição LAG-3WT, quando esta foi comparada com as condições EPDEL e KMUT. Além disso, o ensaio mostrou que as proteínas PDIA4, SDF4 e HEL-S-269 estavam presentes exclusivamente na lista da condição LAG3WT, quando esta foi comparada com as condições KMUT e DMUT. A análise das vias de sinalização enriquecidas com base nas proteínas exclusivamente encontradas em cada condição, entre a condição CAR LAG3WT versus controle, mostrou que as vias de processamento de proteínas no retículo endoplasmático, de biossíntese de N- glicanos e exporte de proteínas foram encontradas como enriquecidas. Quando todas as condições foram consideradas para esta mesma análise simultanamente- considerando- se somente as proteínas únicas presentes em cada condição-, foi observado que a via de processamento de proteínas no retículo endoplasmático esteve presente como enriquecida em quase todas as condições, assim como vias de processamento de N- glicanos e exporte de proteínas. Na condição KMUT, a via da interleucina 17 (IL-17) também foi foram como enriquecida. Ainda, a via de exporte de proteínas também esteve presente para a condição KMUT e também na DMUT, sendo que nesta última, a de síntese de Nglicanos também foi observada, novamente nos levando a inferir uma possível correlação entre a necessidade de glicosilação de LAG-3 para sua função inibitória. Conclusão:. Em relação a técnica de BioID, é possível também observar pela técnica de western blot o padrão de biotinilação esperado entre amostra e controles. A análise das amostras seguindo os protocolos de IP e BioID por espectrometria de massas nos revelou algumas proteínas que provavelmente estão diretamente envolvidas com a função de LAG-3. Perspectivas: realizar a edição através da técnica de CRISPR/Cas9 das possíveis proteínas essenciais a LAG-3 encontradas após análise das amostras por espectrometria de massas. Uma vez realizados tais ensaios funcionais, pretende-se realizar os mesmos novamente, mas usando modelos in vivo. PALAVRAS-CHAVES: LAG-3, checkpoint imunológico, imunoprecipitação, BioID, receptores quiméricos de antígenos.

Ministério da Saúde Instituto Nacional de Câncer José Alencar Gomes da Silva Coordenação de Pós-graduação Stricto sensu

INSTITUTO NACIONAL DE CÂNCER

Screening of proteins with potential interactions with the inhibitory receptor

Lymphocyte-Activation Gene 3 (LAG-3)

ABSTRACT

Priscila Rafaela Ribeiro

Introduction: Inhibitory receptors such as PD-1, LAG-3, TIM-3, and CTLA-4 gained special attention as targets for immunotherapy since manipulation of signals mediated by these receptors can cause new therapeutic targets for some diseases, including cancer. More recently, the lymphocyte activation gene 3 (LAG-3) has been described as a cell surface molecule that interacts with MHC class II molecules and to identify how proteins transduce or signal these receptors proved challenging. Techniques such as Immunoprecipitation and more recent ones, called BioID, can help in the identification of interactions of proteins and, likewise, in the discovery of essential chemical substances for the activation of a specific signaling pathway. Objective: to perform a protein screening that interacts with LAG-3 using immunoprecipitation and BioID techniques. Methodology: chemical antigen receptors (CARs) were constructed with anti-CD20 scFv and intracellular domains composed of Lag-3 WT, Lag-3KMUT (K => mutation in the KIEELE domain), Lag3 EPdel (deleted EP domain), all fused in the BirA domain, with subsequent induction of the expression of these CARs in the HEK293T and MOLT4 cell lines (CD4 + T lymphocytes). Flow cytometry, immunofluorescence and western blot analyzes were performed to assess the expression and presence of CARs. After the immunoprecipitation of proteins in beads conjugated to streptavidin (BioID) and beads coated with protein G (IP), proteins were eluted and subjected to mass spectrometry analysis. Subsequently, in silico analysis of possible signaling pathways involved downstream of LAG-3 were performed based on the labeled proteins identified by mass spectrometry. Results: CAR-based receptors were synthesized and cloned into the pcDNA3.1 MCS-BirA (R118G) -HA vector, in sequence with the BirA domain. The anti-CD20 / Lag3Wild CAR was electroporated in the MOLT4 cell line and transfected in the HEK293T line; in the latter, the other constructions were also transfected, and the expression and presence of the CARs were verified by flow cytometry, immunofluorescence and Western blot. As for the BioID technique in MOLT4, the analysis of the biotinylation pattern for the anti-CD20 / Lag3Wild CAR revealed the expected biotinylation pattern. However, there was a need to optimize both the BioID and IP techniques in T cells. The IP in HEK293T cells revealed that the EEF1G, DYNC1H1, PTBP1, FASN, and DERL1 proteins were present exclusively in the LAG-3WT condition when it was compared to EPDEL and KMUT conditions. In addition, the test showed that the proteins PDIA4, SDF4, and HEL-S-269 were present exclusively in the list of the conditions LAG3WT, when this was compared with the conditions KMUT and DMUT. Analysis of the enriched signaling pathways based on the proteins found exclusively in each condition, between the CAR LAG3WT versus control condition, showed that the protein processing pathways in the endoplasmic reticulum, N-glycans biosynthesis, and protein export were found as enriched. When all conditions were considered for this same analysis simultaneously - considering only the unique proteins present in each condition-, it was observed that the protein processing pathway in the endoplasmic reticulum was present as enriched in almost all conditions, as well as pathways processing of N-glycans and export of proteins. In the KMUT condition, the interleukin 17 (IL-17) pathway was also enriched. In assition, the protein export route was also present for the KMUT condition and also in DMUT, and in the latter, the synthesis of N-glycans was observed as well, again leading us to infer a possible correlation between the need for glycosylation of LAG-3 fto exert its inhibitory function. Conclusion:. Regarding the BioID technique, it is also possible to observe the expected biotinylation pattern between samples and controls by western blot technique. Samples following the protocols of IP and BioID by mass spectrometry revealed to us some proteins that are probably directly involved with the function of LAG-3. Perspectives: carry out the editing using the CRISPR / Cas9 technique of candidate proteins essential to LAG-3 highlighted by mass spectrometry analysis of the samples. Once these functional tests will be performed, we will move towards their application to in vivo models KEYWORDS: LAG-3, immunological checkpoint, immunoprecipitation, BioID, chimeric antigen receptor

ÍNDICE

RESUM	0 <i>vii</i>
ABSTRA	ACTviii
LISTA D	E QUADROSxii
LISTA D	E FIGURASxiii
LISTA D	DE SIGLAS E ABREVIATURASxv
1. INT	RODUÇÃO16
1.1.	Epidemiologia16
1.2.	Hematopoese e Linfócitos T16
1.3.	Ativação de células T20
1.4.	Sistema Imune e Câncer21
1.4.	1 Anticorpos monoclonais
1.4.	2. Transferência de linfócitos modificados
1.4.	3. CARS25
1.5.	Checkpoints imunológicos
1.5.	1 PD-1
1.5.2	2 CILA-4
1.6.	LAG-3
1.6.	1. Estrutura
1.6.	2. Sinalização e expressão
1.0.	
1.7.	BioID
1.8.	Imunoprecipitação41
2. OB.	JETIVOS
2.1.	Objetivo primário44
2.2.	Objetivos secundários44
3. ME	TODOLOGIA
3.1.	Plasmídeos45
3.2.	Multiplicação do DNA plasmidial45
3.3.	Linhagens celulares46
3.4.	Eletroporação e Transfecção dos plasmídeos
3.4.	1. Eletroporação com Nucleofactor II46
3.4.2	2. Eletroporação com NEPA2147
3.4.3	3. Transfecção com Fosfato de Cálcio47
3.5. B	ioID48
3.6 Im	unoprecipitação49

	3.7.	Detecção da expressão dos CARs	.49
	3.7.	1. Detecção por citometria de fluxo	50
	3.7.	2. Detecção por imunofluorescência	51
	3.8.	Western blot	52
	3.9.	Preparação de amostras para análise por espectrometria de massas.	52
	3.9.	1. Redução	53
	3.9.	2. Alquilação	53
	3.9. 3 Q	 Digestao e injeção da amostra Eluição 	.54 54
	0.0.		54
	3.10.	Analise dos dados provenientes do espectrometro de massas	.33
	3.10).2. Análises estatísticas	.55
4	RE		56
			50
	4.1.	BIOID em MOLI 4	.50
	4.1. 1	2. Analise da expressão dos plasmideos por citometria de nuxo	62
	4 1	2 Análise do padrão de biotinilação por Western Blot	63
	4.1.	3. Diagrama de Venn- BioID em MOLT 4	.64
	4 2	Jmunoprecipitação em MOLT4	65
	4.2.	1.Análise da expressão do CARLAG3-WT por citometria de fluxo	65
	4.2.	2. Análise da presença do CAR LAG3-WT por Western blot	.67
	4.2.	3. Diagrama de Venn pós Imunoprecipitação em MOLT 4	68
	4.3.	Imunoprecipitação em HEK 293T	.70
	4.3. 4.3	1. Análise da presença do CAR LAG3 WT por imunofluorescência 2 Análise da presença do CAR LAG3 WT e do teste de imunoprecipitação	70
	por	Western blot	.71
	4.3.	3. Análise da presença dos CARs com construções mutantes (EPDEL,	
	KM	UT e DMUT) por imunofluorescência	73
	4.3.	4. Análise da expressão dos CARs EPDEL, KMUT e DMUT e da presença	l
	das	bandas correspondentes as construções de CARS apos imunoprecipitação	כ 75
	por		15
	4.4.	Análises estatísticas	.76
	4.4. dom	 Analises diferenciais dos dados de interação das construções conten pínios intracitoriasmáticos de LAC3 	ao 76
	4.4.	2.Análise de componentes principais (PCA)	.78
	4.5.	Diagramas de Venn e localização da proteínas	.79
	4.6.	Vias de enriquecimento	.82
5.	DIS	CUSSÃO	86
	5.1.	BioID em MOLT4	.86
	5.1.	Imunoprecipitação em MOLT4	.86
	5.2	Imunoprecipitação em HFK 293T.	88
F	~~~		02
υ.	- UU		7)

х

7	. PE	ERSPECTIVAS	95
R	REFER	RÊNCIAS	9 5
8	. AF	PÊNDICES1	02
	8.1. célul	Apêndice 1: Quadro de proteínas encontradas no ensaio de BioID em as MOLT41	า 102
	8.2. atrav	Apêndice 2: Quadro de proteínas encontradas na condição LAG3WT vés do ensaio de imunoprecipitação1	.07
	8.3 atrav	Apêndice 3: Quadro de proteínas encontradas na condição EPDEL vés do ensaio de imunoprecipitação1	10
	8.4. atrav	Apêndice 4: Quadro de proteínas encontradas na condição KMUT vés do ensaio de imunoprecipitação1	.16
	8.5. atrav	Apêndice 5: Quadro de proteínas encontradas na condição DMUT vés do ensaio de imunoprecipitação1	22
	8.6. CAR	Apêndice 6: Quadro de proteínas encontradas exclusivamente em LAG3WT,EPDEL,KMUT e DMUT,quando comparadas	
	simu	Iltaneamente,através do ensaio de imunoprecipitação1	.28
9	. AN	NEXOS1	30
	9.1.	Anexo A1	.30
	9.2.	Anexo B1	.31

LISTA DE QUADROS

QUADRO 1: Co-inibidores anti-LAG-3 e co-estimuladores utilizados em alguns	
ensaios clínicos	.37

LISTA DE FIGURAS

Figura 1.3. Sinais de ativação e inibição durante a sinalização das células T.	20
Figura 1.4. Esquema comparando a estrutura dos anticorpos utilizados na clínica	24
(quiméricos e humanizados) com os murinos e humanos.	
Figura 1.4.1. Esquema de um receptor quimérico de antígeno (CAR).	26
Figura 1.5. Forma de ação dos anticorpos anti-PD-1 e anti- CTLA-4.	31
Figura 1.6. Representação esquemática da estrutura do receptor inibitório LAG-3.	32
Figura 1.6.1. Estrutura da porção intracelular do receptor inibitório LAG-3	33
Figura 1.7. Técnica BiolD	40
Figura 1.8. Diagrama esquemático do princípio do co- IP	43
Figura 4.1. Mapa esquemático do plasmídeo pcDNA 3.1 que contém sequência	57
da BirA*2	
Figura 4.2. Histórico de síntese e clonagem de 20LAG-3 ao plasmídeo pcDNA	58
3.1	
Figura 4.3. Mapa final após clonagem de 20LAG-3 ao plasmídeo pcDNA 3.1 que	59
contém sequência da BirA*2	
Figura 4.4. Gel de agarose mostrando bandas da digestão do CAR 20LAG-	59
3BirA*2.	
Figura 4.5. Expressão do CAR 20 LAG-3 WT BirA*2 nas células MOLT4.	61
Figura 4.6. Western blot mostrando a presença do CARLAG3-WT	62
Figura 4.7. Western blot mostrando a presença do CARLAG3-WT	63
Figura 4.8. Western blot mostrando o padrão de biotinilação	64
Figura 4.9. Diagrama de Venn do teste BioID em MOLT4.	65
Figura 4.10. Expressão do CAR LAG-3 WT nas células MOLT4.	66
Figura 4.11. Análise da presença dos CARs por Western blot	67
Figura 4.12. Diagrama de Venn e proteínas encontradas no teste de	68
imunoprecipitação em MOLT4.	
Figura 4.13. Padrão esperado de localização das proteínas encontradas na	69
imunoprecipitação com MOLT4 de acordo com a plataforma UNIPROT KB	
Figura 4.14. Padrão de expressão dos CARs por imunofluorescência	70
Figura 4.15. Análise da presença do CAR LAG3-WT por Western blot.	72
Figura 4.16. Padrão de expressão dos CARs por imunofluorescência	74

Figura 4.17. Análise da presença dos CARs com construções mutantes (EPDEL,	75
KMUT, DMUT) por SDS PAGE.	
Figura 4.18. Volcano plot CAR LAG3WT x Controle	76
Figura 4.19. Volcano plot EPDEL x Controle.	77
Figura 4.20. Volcano plot KMUT x Controle	77
Figura 4.21. Volcano plot DMUT x Controle	78
Figura 4.22. Análise de componentes principais (PCA).	79
Figura 4.23. Diagrama de Venn CAR LAG3 WT x EDEL e proteínas presentes	80
exclusivamente em LAG3WT.	
Figura 4.24. Diagrama de Venn CAR LAG3 WTx KMUT e proteínas presentes	80
exclusivamente em LAG3WT.	
Figura 4.25. Diagrama de Venn CAR LAG3 WT x DMUT e proteínas presentes	81
exclusivamente em LAG3WT.	
Figura 4.26. Diagrama de Venn comparando as proteínas únicas presentes nas	82
condições CAR LAG3WT, EPDEL, KMUT e DMUT	
Figura 4.27. Representação das vias de sinalização relacionadas as proteínas	83
encontradas exclusivamente na condição LAG3WT vs controles	
Figura 4.28. Representação das vias de sinalização relacionadas as proteínas	83
encontradas exclusivamente na condição LAG3WT vs mutantes.	
Figura 4.29. Representação das vias de sinalização relacionadas as proteínas	84
encontradas exclusivamente na condição EPDEL vs demais construções de	
LAG3	
Figura 4.30. Representação das vias de sinalização relacionadas as proteínas	84
encontradas exclusivamente na condição KMUT vs demais construções de LAG3.	
Figura 4.31. Representação das vias de sinalização relacionadas as proteínas	85
encontradas exclusivamente na condição DMUT vs demais construções de LAG3.	

LISTA DE SIGLAS E ABREVIATURAS

APC- Célula apresentadora de antígeno

BSA- Bovine serum albumin (albumina sérica bovina)

CAR- *Chimeric antigen receptor* (receptor quimérico de antígeno)

CDR-*Complementarity determining region* (região determinante de complementariedade)

CIBio- Comissão interna de biossegurança

CLP- Common lymphoid precursor (Progenitor linfoide comum)

CMP- Common myeloid precursor (Progenitor mieloide comum)

CTLA-4- Cytotoxic T-lymphocyte protein 4

DECH- Doença enxerto contra hospedeiro

DLI- Donor lymphocyte infusion (Infusões de linfócitos do doador)

ECL- Efeito enxerto contra leucemia

FDA- Food and drug administration

HLA- Human leukocyte antigen (antígeno leucocitário humano)

HRP- Horseradish peroxidase

IL- Interleucina

ITIM- motivos inibitórios baseado em tirosina

LAG-3- Lymphocyte-Activation Gene 3

LMC- Leucemia mielóide crônica

MHC- Complexo maior de histocompatibilidade

NSCLC- Non small cell lung cancer (câncer de pulmão de não pequenas células)

OGM- Organismo geneticamente modificado

PBS- *Phosphate-buffered saline*

PD-1- *Programmed cell death protein* 1

PE- *Phycoerythrin* (Ficoeritrina)

PFA- Paraformaldeído

RE- Retículo endoplasmático

SPV- Streptavidin (estreptavidina)

TCR- *T* cell receptor (receptor de célula T)

TKI- *Tirosine kinase inhibitor* (inibidor de tirosino quinase)

TNF- Tumor necrosis factor (fator de necrose tumoral)

TPH- Transplante de precursores hematopoiéticos

Treg- Célula T reguladora

VDJ- Variable, diversity, junction

1. INTRODUÇÃO

1.1. Epidemiologia

Em 2012, segundo as estimativas mundiais, ocorreram 14,1 milhões de casos novos de câncer e 8,2 milhões de óbitos. Tanto a incidência quanto a mortalidade foram maiores entre os indivíduos do sexo masculino (53% e 57%, respectivamente) (FERLAY et al., 2013). Os cânceres de pulmão, mama, intestino e próstata foram os mais incidentes no mundo de forma geral, sendo o de pulmão mais incidente nos homens, seguido pelo câncer de próstata, enquanto que nas mulheres, os tipos mais frequentes foram os de mama, intestino e pulmão (FERLAY et. al., 2013).

Para o Brasil, no triênio 2020-2022, estima- se a ocorrência de aproximadamente 625 mil casos novos de câncer para cada ano, excetuando- se deste total os 177 mil para o câncer de pele não melanoma. Dos possíveis 600.000 casos, os cânceres de mama e próstata (66 mil cada), seguido por cólon e reto 41 mil, pulmão (30 mil) e estômago (21 mil) serão os mais incidentes na população (INCA, 2019).

O câncer ocorre por meio de um processo de transformação de células normais em células neoplásicas. Estas células adquirem capacidade de replicação descontrolada, obtendo assim vantagem seletiva sobre as demais por meio de eventos genéticos como mutações no DNA, mudanças na expressão de genes pela ativação de oncogenes e inibição de genes supressores de tumor ou por eventos epigenéticos como metilação do DNA e modificação de histonas. Dessa forma, as células neoplásicas possuem capacidade de evadir os mecanismos de apoptose, além de serem insensíveis aos sinais anti-proliferativos fisiológicos, bem como visto mais recentemente, de evadir os mecanismos de defesa do sistema imune. Esta capacidade de evasão do sistema imune é considerada um hallmark emergente do câncer (HANAHAN; WEINBERG, 2011).

Há poucos anos atrás, os principais tratamentos para os mais variados tipos de câncer se baseavam apenas em cirurgia, radioterapia e quimioterapia, sendo estas

terapias pouco específicas e, com isso, responsáveis por graves efeitos colaterais aos pacientes.

Com o desenvolvimento significativo de áreas como biologia molecular e bioquímica estrutural, mais recentemente, a elucidação de várias vias importantes para o processo de carcinogênese começou a ser realizada. Isso possibilitou então o desenvolvimento de novas drogas especificas para determinadas moléculas, como os inibidores de tirosina quinase (TKIs). Ainda assim, com as terapias atuais empregadas na clínica, muitos pacientes desenvolvem resistência ao tratamento, ou são não responsivos. Desta forma, há a necessidade de se desenvolver novas terapias, principalmente com objetivo de se atingir mais especificamente as células tumorais sem comprometer os tecidos saudáveis, a fim de que os efeitos colaterais fossem menos intensos e obter melhor qualidade de vida do paciente e ,melhorias nas taxas de sobrevida. Com isso, passou- se a pensar na utilização de células do próprio paciente, como as células do sistema imune, como uma nova abordagem de tratamento.Hematopoese e Linfócitos T

O sistema imune é dividido é composto por dois grupos principais de células e moléculas, as que compõe o sistema imune inato e as que compõe o sistema imune adaptativo. As células efetoras deste último são os chamados linfócitos B, T. O processo pelo qual tanto as células do sistema imune inato quanto adaptativo são geradas é denominado hematopoese, e tem início na medula óssea.

Neste órgão, um precursor mielóide comum (CMP) e um precursor linfóide comum (CLP) são formados primeiramente. O CLP originará precursores comprometidos com a diferenciação dos linfócitos T que, ao migrarem para o timo, são capazes de gerar células T maduras.

Uma vez no timo, rearranjos ocorrem nas sequências das cadeias V (variável), D (diversidade), J (junção) que constituem o receptor da célula T (TCR). Estes rearranjos geram novas sequências gênicas que resultam em cadeias polipeptídicas que compõe os TCRs. Após o rearranjo, o linfócito T com seu TCR clonotípico é submetido a mecanismos de seleção positiva e negativa baseados nas afinidades de reconhecimento de antígenos pelo TCR recém rearranjado. Como co-reconhecimento das moléculas de MHC os linfócitos utilizam as moléculas CD4 ou CD8. A expressão de CD4 ou CD8 por linfócitos T determina estes dois subtipos celulares.

Os linfócitos CD8 possuem função citotóxica, sendo capazes de eliminar a célula alvo por meio da liberação de granzimas e perforinas, que são enzimas capazes de degranular e perfurar a membrana plasmática da célula alvo. A partir destes linfócitos T CD8⁺, linfócitos de memória central e linfócitos de memória efetora podem ser formados.

Já os linfócitos T CD4⁺, após reconhecerem o antígeno e se tornarem ativos, são capazes de produzir citocinas que podem modular a atividade de outras células, como linfócitos CD8⁺, macrófagos e células B. A partir destes linfócitos CD4⁺, outras subpopulações com seus respectivos fenótipos e funções são geradas, sendo as mais estudadas as células T helper (Th) do tipo Th1, Th2, e Th17, além das células T reguladoras (T reg). A primeira população, Th1, é capaz principalmente de produzir citocinas como IFN- γ , IL-2 e TNF- α em resposta a patógenos intracelulares e vírus. Células Th2 podem ativar células B e está envolvida em processos de alergia e ativação de eosinófilos, por meio da secreção de interleucinas (IL) como IL-4, IL-5, IL-6 e IL-10.

A população TH17 está relacionada à resposta a antígenos extracelulares, bem como no recrutamento de neutrófilos para locais de inflamação. Secretam principalmente IL17A e IL17F, além de IL-9 e IL-21. Já as células T reguladoras (Treg) atuam principalmente para regular a ação de outros linfócitos por meio da produção de citocinas como IL-10 e TGF-β. Assim como o início do processo de diferenciação a partir dos linfócitos T maduros, tanto os linfócitos T CD4⁺ e CD8⁺ podem se interconverter fenotipicamente se submetidos a estímulos que ainda não são bem esclarecidos (NAKAYAMADA *et al.*, 2012; COSMI *et al.*, 2014).

1.2. Hematopoese e linfócitos T

O sistema imune é dividido é composto por dois grupos principais de células e moléculas, as que compõe o sistema imune inato e as que compõe o sistema imune adaptativo. As células efetoras deste último são os chamados linfócitos B e T. O processo pelo qual tanto as células do sistema imune inato quanto adaptativo são geradas é denominado hematopoese, e tem início na medula óssea.

Neste órgão, um precursor mielóide comum (CMP) e um precursor linfóide comum (CLP) são formados primeiramente a partir de uma célula tronco hematopoética. O CLP originará precursores comprometidos com a diferenciação dos linfócitos T que, ao migrarem para o timo, são capazes de gerar células T maduras.

Uma vez no timo, rearranjos ocorrem nas sequências das cadeias V (variável), D (diversidade), J (junção) que constituem o receptor da célula T (TCR). Estes rearranjos geram novas sequências gênicas que resultam em cadeias polipeptídicas que compõe os TCRs. Após o rearranjo, o linfócito T com seu TCR clonotípico é submetido a mecanismos de seleção positiva e negativa baseados nas afinidades de reconhecimento de antígenos/MHC (complexo principal de hisatocompatibilidade) pelo TCR recém rearranjado. Para o co-reconhecimento das moléculas de MHC os linfócitos utilizam as moléculas CD4 ou CD8 e a utilização de CD4 ou CD8 para o reconhecimento funcionao do peptído+MHC no timo determina a qual destes dois subtipos celulares pertencerá o linfócito T em desenvolvimento.

Os linfócitos CD8 possuem função citotóxica, sendo capazes de eliminar a célula alvo por meio da liberação de granzimas e perforinas, que são enzimas capazes de degranular e perfurar a membrana plasmática da célula alvo, respectivamente. A partir destes linfócitos T CD8⁺, linfócitos de memória central e linfócitos de memória efetora podem ser formados.

Já os linfócitos T CD4⁺, após reconhecerem o antígeno e se tornarem ativos, são capazes de diferenciar e produzir citocinas que podem modular a atividade de outras células, como linfócitos CD8⁺, macrófagos e células B. A partir destes linfócitos CD4⁺, outras subpopulações com seus respectivos fenótipos e funções são geradas, sendo as mais estudadas as células T helper (Th) do tipo Th1, Th2, e Th17, além das células T reguladoras (T reg). A população Th1 é capaz de produzir citocinas como IFN-γ, IL-2 e TNF-α em resposta a patógenos intracelulares e vírus. Células Th2 podem ativar células B e estão envolvidas em processos de alergia e ativação de eosinófilos, por meio da secreção de interleucinas (IL) como IL-4, IL-5, IL-6 e IL-10.

A população TH17 está relacionada à resposta a antígenos extracelulares, bem como no recrutamento de neutrófilos para locais de inflamação. Secretam principalmente IL17A e IL17F, além de IL-9 e IL-21. Já as células T reguladoras (Treg) atuam principalmente para regular a ação de outros linfócitos por meio da produção de citocinas como IL-10 e TGF-β. Assim como o início do processo de diferenciação

a partir dos linfócitos T maduros, tanto os linfócitos T CD4⁺ e CD8⁺ podem se interconverter fenotipicamente se submetidos a estímulos que ainda não são bem esclarecidos (NAKAYAMADA *et al.*, 2012; COSMI *et al.*, 2014

1.3. Ativação de células T

Para que os antígenos sejam reconhecidos pelo TCR das células T, eles devem ser processados e apresentados MHC por células apresentadoras de antígeno (APC). Além disso, um segundo sinal é necessário para que ocorra este reconhecimento, consistindo na ligação de moléculas de membrana que são consideradas como co-estimulatórias aos seus ligantes presentes nas APCs. Um terceiro sinal ainda é fundamental na diferenciação dos linfócitos T, consistindo na presença no meio de citocinas que determinarão o comprometimento funcional destes linfócitos (**Figura 1.3**).

Figura 1.3. Sinais de ativação e inibição durante a sinalização das células T. A) O antígeno é apresentado pelo MHC ao TCR. Em paralelo, moléculas co- estimuladoras como CD28 se ligam aos seus ligantes, como exemplificado pela proteína B7. B) Após a ativação, receptores que proveem sinais inibitórios como CTLA4, PD1 e LAG-3 passam a ser expressos na membrana. (Adaptado de: Sharma et. al., 2012; Wykes and Lewin, 2018).

O engajamento dos TCRs depende do reconhecimento de complexos de peptídeos + MHC de classe I (no caso dos linfócitos CD8+) ou classe II (no caso de linfócitos CD4). Esta ligação do TCR iniciará a ativação do linfócito. Este mecanismo de apresentação é fundamental para qualquer resposta imunológica dependente de linfócitos T, o que inclui as respostas anti-tumorais.

Um dos mecanismos de escape tumoral mais comuns que ocorrem nas células tumorais, por exemplo, consiste na redução da expressão das moléculas de MHC. Dessa forma, os antígenos ficam impossibilitados de serem apresentados às células T.

1.4. Sistema Imune e Câncer

As interações entre o sistema imunológico e o câncer são governadas por uma complexa rede de vias biológicas. A manipulação do sistema imune para utilização no tratamento do câncer (imunoterapia) é uma nova área de estudo que visa empregar seus componentes, como anticorpos, célulasdendríticas ou linfócitos T para reconhecer antígenos tumorais.

Contudo, para que possa ser efetiva, a imunoterapia precisa conseguir promover o aumento de linfócitos antitumorais, que consigam reconhecer o tumor mesmo em um ambiente imunossupressor.

Em 1893, houve a primeira manipulação documentada do sistema imune na tentativa de tratar o câncer. O médico e pesquisador William Coley tratou pacientes com sarcoma e carcinoma utilizando culturas de *Streptococcus pyogenes* (COLEY, 1893). Na época, houve registros de tumores que regrediram ocasionalmente após a ocorrência de infecções agudas. Em seu trabalho, o autor relatou casos de pacientes que apresentaram melhora no quadro clínico após receberem injeções de S. pyogenes ou infecções naturais por este microorganismo. Posteriormente, Coley tratou quase 1.000 pacientes com as que agora passaram a ser denominadas "toxinas de Coley", com taxa de resposta de aproximadamente 10% (WIEMANN; STARNES, 1994; COLEY-NAUTS AND MCLAREN, 1990).

Posteriormente, através do transplante de precursores hematopoiéticos (TPH) em 1956, foi observado que em camundongos irradiados, as células leucêmicas foram eliminadas quando os camundongos receberam transplantes alogênicos, mas não singênicos (BARNES *et. al.*, 1956).

O transplante de células tronco hematopoiéticas do tipo alogênico foi elaborado como uma tentativa de sobrepassar a toxicidade observada em pacientes submetidos à quimio ou radioterapia intensiva. Contudo, as reações imunológicas entre as células do doador e receptor podem conferir desfechos benéficos ou não aos pacientes, devido à compatibilidade ou não das moléculas do antígeno leucocitário humano (HLA)- hortólogos do MHC de outras espécies-, que são proteínas expressas na superfície celular das células apresentadoras de antígeno (classe I e II) e demais células nucleadas (classe I) e que apresentam estes aos receptores das células T CD4+ ou CD8+ (KLEIN & SATO, 2000).

Dessa forma, células T presentes no enxerto podem reagir contra os complexos peptídeo-HLA do receptor, levando à chamada doença do enxerto contra o hospedeiro (DECH), causando reações no trato gastrointestinal, na pele e fígado, por exemplo (VOGELSANG & BENSEN-KENNEDY, 2003). Com isso, o risco de DECH é maior quando o HLA de doador e receptor são incompatíveis, ou seja, possuem proteínas diferentes devido polimorfismos а genéticos. Essas proteínas polimórficas também são processadas e apresentadas como antígenos (chamados antígenos minoritários de histocompatibilidade – mHAgs). Com isso, linfócitos T presentes no enxerto que ainda não entraram em contato com estes peptídeos (não tolerizados para estes antígenos) reconhecem o complexo peptídeo-HLA diferente е se tornam ativados, exercendo sua função efetora. Uma vez expressos pelos clones leucêmicos, são reconhecidos e resultam no efeito do enxerto contra a leucemia (ECL) (BLEAKLEY; RIDDELL, 2004).

Após os experimentos de Barnes e colaboradoradores (1956), transplantes em humanos foram realizados e a mesma característica foi observada: recidivas aconteceram menos frequentemente em pacientes que receberam transplante alogênico em relação aos que receberam transplante de um irmão gêmeo por exemplo, reforçando o conceito do ECL, demonstrando que o sistema imune poderia eliminar o tumor.

Outra evidência do efeito ECL na eliminação da leucemia foi observado com a utilização de infusões de linfócitos do doador (DLI) para o tratamento de pacientes que sofreram recidivas de leucemia mielóide crônica (LMC) após o TPH alogênico. A DLI foi capaz de induzir remissão completa em

aproximadamente 70% dos pacientes, com chance de recidiva menor que 20% em 3 anos (KOLB; SCHATTENBERG; GOLDMAN, 1995).

Sendo assim, o denominado efeito ECL foi considerado um precursor da imunoterapia, uma vez que envolve o uso de linfócitos T de reconhecer antígenos leucêmicos e, assim, induzir a eliminação das células leucêmicas do hospedeiro.

1.4.1 Anticorpos monoclonais

A tecnologia do hibridoma foi desenvolvida em 1975, quando dois pesquisadores produziram anticorpos com especificidade conhecida em larga escala (KÖHLER; MILSTEIN, 1975). Dessa forma, pensou- se em utilizar estes anticorpos no tratamento do câncer, uma vez que poderiam reconhecer proteínas específicas que estariam superexpressas no tumor ou com expressão aumentada durante a progressão tumoral. Nos primeiros testes clínicos realizados, apesar da resposta anti-tumoral observada, alguns pacientes também desenvolveram resposta contra os anticorpos infundidos, sendo tal fato atribuído à origem murina destes anticorpos (MILLER et al., 1982). Este processo pôde ser superado com o desenvolvimento dos anticorpos monoclonais quiméricos (estrutura da IgG humana com as regiões variáveis derivadas de camundongo) humanizados (estrutura da IgG humana com as regiões determinantes de complementariedade – CDRs – de camundongo) (**Figura 1.4**).

Figura 1.4. Esquema comparando a estrutura dos anticorpos utilizados na clínica (quiméricos e humanizados) com os murinos e humanos.

O isotipo de IgG dita o mecanismo de ação destas moléculas. A indução de citotoxicidade celular dependente de anticorpo (ADCC) e citotoxicidade dependente de complemento (CDC) ocorre por meio de anticorpos com estrutura IgG1, o que pode culminar diretamente na morte das células tumorais. Já o isotipo IgG2 atua através de suas propriedades de ligação ao antígeno. Essas moléculas são capazes de bloquear fisicamente a interação entre o ligante e o receptor ou impedindo a mudança de conformação necessária para a dimerização e sinalização, uma vez que muitos alvos são receptores de fatores de crescimento (WEINER; MURRAY; SHUPTRINE,2012).

O primeiro anticorpo a ser utilizado na clínica foi o Rituximab, um anticorpo anti-CD20. Esta droga foi desenvolvida para o tratamento de pacientes com linfomas não Hodgkin de células B, onde cerca de 50% dos pacientes apresentaram resposta significativa (MCLAUGHLIN *et al.*, 1998). No entanto, uma vez que CD20 é expresso não só em células tumorais, mas em células normais, o tratamento com Rituximab pode atingir estas últimas, causando toxicidade aos pacientes.

Recentemente, anticorpos foram desenvolvidos para bloquear receptores inibitórios, como PD-1 (Programmed cell death protein 1), CTLA-4 (Cytotoxic T-lymphocyte protein 4) e LAG-3 (Lymphocyte-Activation Gene 3), presentes na membrana dos linfócitos T. Estes receptores inibem a função efetora das células T, culminando na diminuição da ativação, proliferação e produção de citocinas por estas

células (NIRSCHL; DRAKE, 2013) e serão discutidos com maiores detalhes posteriormente.

Alguns ensaios clínicos realizados com anticorpo anti-CTLA4 (Ipilimumab) aumentaram a sobrevida dos pacientes com melanoma metastático, com alguns pacientes apresentando regressão completa de lesões (HODI *et al.*, 2010; ROBERT *et al.*, 2011). Da mesma forma, pacientes com diferentes tipos de tumor, como melanoma, carcinoma renal e câncer de pulmão, aos quais foi administrado anticorpo anti- PD1 (BMS-936558, também conhecido como Nivolumab), apresentaram taxas de resposta 28%, 27% e 18% respectivamente (TOPALIAN *et. al.*, 2012). Uma vez que os resultados foram promissores, passou- se então a pensar na possibilidade de combinar as imunoterapias com os regimes de quimioterapia ou radioterapia padrões. Wolchok e colaboradores (2013) mostraram os resultados de um ensaio clínico de fase I com essa proposta de combinação para pacientes com melanoma: 53% responderam ao tratamento, todos com mais de 80% de regressão das lesões, sendo este resultado provavelmente devido a uma maior função das células T em reconhecer os antígenos tumorais e então atacar as células do tumor

1.4.2. Transferência de linfócitos modificados

A transferência adotiva de células T consiste em isolar do paciente clones de linfócitos T CD4⁺ e CD8⁺ específicos contra o tumor e modificar os mesmos para reconhecer especificamente determinado tipo de antígeno e reinfundí-los no paciente, com o objetivo de retardar ou eliminar o tumor e impedir recidivas da doença. Apesar da utilização de anticorpos monoclonais já apresentar resultados satisfatórios para alguns pacientes, utilizar linfócitos T modificados também se tornou uma abordagem terapêutica atrativa. Isso porque, fisiologicamente, os linfócitos T reconhecem antígenos através de seu receptor (TCR) e exercem sua função efetora através da eliminação do antígeno alvo. Além disso, os linfócitos T podem se distribuir ativamente nos tecidos e no ambiente do tumor, com potencial de expansão in vivo (HOYOS, SAVOLDO, DOTTI, 2012).

Esta abordagem tem se mostrado uma das mais promissoras no campo da imunoterapia do câncer uma vez que uma grande quantidade de linfócitos antitumorais infiltrantes do tumor pode ser gerada e infundida nos pacientes evitando importantes mecanismos de imunossupressão tumoral associados à geração deste tipo in vivo.

1.4.3. CARs

Receptores quiméricos de antígenos (Chimeric antigen receptor-CAR) são proteínas de fusão formadas por um domínio extracelular advindo de um anticorpo monoclonal de interesse fusionado a moléculas de sinalização intracelular. Mais especificamente, as cadeias variáveis leve (VL- variable light) e pesada (VH- variable heavy) de determinado anticorpo são clonadas na forma de um fragmento simples de cadeia única, denominados scFv (Single chain fragmente variable), separadas por uma alça e unidas ao domínio intracelular através de uma porção transmembrana. Já a porção intracelular corresponde a moléculas de sinalização do complexo do TCR, bem como a moléculas responsáveis pelo co- estímulo para que o reconhecimento de antígenos pelo complexo TCR aconteça (**Figura 1.4.1**). Uma vez expresso em células T, esta molécula é capaz de promover a atividade citotóxica das células que a contém, reconhecendo o antígeno de forma independente de MHC.

Figura 1.4.1. Esquema de um receptor quimérico de antígeno (CAR). VH: Variable heavy; VL: variable light. (Adaptado de Geldres et. al., 2015).

A especificidade de um CAR é dada pela sua porção extracelular. Já a alça que conecta as cadeias variáveis leve e pesada foi pensada para fornecer flexibilidade ao scFv.

A porção intracelular de um CAR é composta por sua porção transmembrana e moléculas de sinalização. A primeira conecta o CAR à membrana plasmática e, usualmente, esta sequência provém da região transmembrana da molécula CD28 (IMAI *et. al.*, 2004). Contudo, tal característica pode variar a depender do co-estímulo utilizado. Dentre as moléculas co-estimulatórias mais conhecidas e estudadas, pode-se citar o CD28, OX40 (CD134) e 4-1BB (CD137).

Dessa forma, na tentativa de reverter a falta do segundo sinal de ativação, os CARs passaram a conter na sua porção intracelular, além do sinal de ativação da cadeia ζ da molécula CD3-advinda do complexo TCR-CD3-(CARs de primeira geração), a sequência de alguma molécula co-estimulatória, como CD28 ou 4-1BB (CARs de segunda geração) (IMAI *et. al.*, 2004) ou ainda, a sequência de duas moléculas co-estimulatórias, como CD28/4-1BB ou CD28/OX40 (CAR de terceira geração) (PULE *et. al.*, 2005).

A partir do desenho destes receptores quiméricos de antígenos, tornou- se possível manipular as células T do próprio paciente, a fim de modificá-las com a presença de determinado CAR e reinfundí-las no paciente.

Dessa forma, a terapia com CARs é altamente promissora, uma vez que redireciona a especificidade de ligação antígeno- receptor e independe da molécula MHC para que o antígeno seja reconhecido, além de promover remissões em alguns pacientes para os quais as terapias padrão já não apresentavam resposta. Contudo, esta abordagem também apresenta alguns pontos críticos a serem considerados. Um deles consiste na toxicidade relacionada a este tipo de tratamento, uma vez que efeito *off target* pode ocorrer se o antígeno tumoral também estiver presente em células normais. Outro ponto se refere a uma ativação exacerbada das células T CAR⁺ como resultado da expansão rápida destas células, o que pode levar à síndrome de liberação de citocinas, fato este que pode levar o paciente a óbito. Uma forma de

prevenir este fenômeno seria através do mapeamento dos antígenos expressos pelo tumor antes da administração das células CAR⁺, a fim de prever quais pacientes poderiam responder ou não a este tipo de imunoterapia.

Outra forma de contornar estes efeitos é a utilização dos receptores quiméricos de antígenos inibitórios (iCARs). ICARs baseados em PD-1 e CTLA-4 foram desenhados a fim de diminuir a ativação das células T CAR+ em situações de síndrome de liberação de citocinas. Foi observado que estes iCARs foram capazes de limitar a secreção de citocinas, bem como a citotoxicidade e proliferação induzidas previamente pela utilização de CARs de ativação (FEDOROV *et. al.*,2013).

1.5. Checkpoints imunológicos

1.5.1 PD-1

O receptor de morte programada 1 (PD-1, CD279- Programmed cell death protein 1) é um receptor inibitório transmembrana tipo I que pertence à superfamília das imunoglobulinas (IgSF) e que pode ser detectado na superfície de células T durante o desenvolvimento tímico e em vários outros tipos de células hematopoiéticas. A expressão dele também ocorre indutivamente após a ativação de células T periféricas CD4⁺ e CD8⁺, bem como em células B, monócitos, células T, natural killer (NK) e algumas células dendríticas (DCs) (KEIR *et. al.*, 2008). A expressão persistente da PD-1 e sua ligação nas células T induz a exaustão destas e, uma vez exaustas-capacidade de proliferação reduzida devido à exposição prolongada aos antígenos-estas células também passam a secretar uma menor quantidade de citocinas citolíticas e pró-inflamatórias, como perforina e interleucina 2 (IL-2), respectivamente. Dessa forma, a atividade citotóxica fica comprometida, diminuindo como um todo a função efetora destas células.

PD-1 possui dois ligantes principais, sendo eles o chamado PD-L1 (B7-H1, CD274) (DONG et. al., 1999) e PD-L2 (B7-DC, CD273) (LATCHMAN et. al., 2001) sendo que PD-L1 parece ser mais proeminente na regulação. Assim como PD-1, PDL-

1 passa a ser expresso após estimulação. A expressão de PD-L1 por céluas tumorais, por exemplo, pode culminar na diminuição da ação de células T que possuem PD-1 e este se liga ao PD-L1 presente nas céluals tumorais. Dessa forma, tentar inibir esta interação de PD-1 com seus ligantes se tornou uma importante nova forma de terapia a ser explorada. Com isso, anticorpos monoclonais foram desenvolvidos a fim de se ligarem a PD-1 ou a PD-L1 ou PD-L2 e permitirem a restauração da atividade citotóxica de células T. Contudo, a imunoterapia baseada em células T requer não apenas a expressão de antígenos pelas células cancerígenas por exemplo, mas também que haja um número suficiente de células T efetoras que reconheçam esses antígenos para eliminar o tumor.

Um dos primeiros anticorpos anti PD-1 aprovados para tratamento de câncer pelo FDA (food and drug administration), órgão americano que, dentre outras funções, testa e aprova novos medicamentos, foi o denominado Nivolumab (Opdivo®) para melanoma metastático, câncer de pulmão de não pequenas células (NSCLC), linfoma de Hodgkin e carcinoma de células renais. Outro anticorpo anti- PD-1 aprovado também para melanoma e NSCLC é o chamado pembrolizumab (Keytruda®). Atezolizumab, um anticorpo desenvolvido para se ligar ao ligante de PD-1, logo, um anti-PD-L1 (Tecentriq®) também foi aprovado pelo FDA para câncer de bexiga e NSCLC (GUBIN, et. al., 2014).

1.5.2 CTLA-4

Assim como PD-1, CTLA-4 (Cytotoxic T-lymphocyte protein 4) é um receptor inibitório que passa a ser expresso na membrana das células T após ativação das mesmas, com a função de minimizar uma resposta além da adequada e evitar que danos ocorram aos tecidos normais. CTLA-4 possui dois ligantes conhecidos, sendo eles as proteínas CD80 e CD 86, pertencentes à família B7. Estes ligantes são os mesmos da molécula co- estimulatória CD28. Contudo, a afinidade de CTLA-4 pelos membros da família B7 é muito maior em relação a CD28 por CD80 e CD86. Dessa forma, este fenômeno também favorece a exaustão das células T quando expostas prolongadamente a determinado antígeno, uma vez que após a ativação dos linfócitos

T, a expressão de CTLA-4 começa a aumentar e, dessa forma, por compartilhar o mesmo ligante de CD28, o sinal inibitório passa a ser maior que o de ativação.

Com isso, o desenvolvimento de anticorpos anti- CTLA-4 também se tornou uma alternativa promissora para evitar os sinais inibitórios e favorecer a ativação das células T. Assim, anticorpos como Ipilimumab e Tremelimumab foram desenvolvidos.

Um estudo randomizado de fase III com pacientes de melanoma metastático, no qual Ipilimumab foi administrado, culminou no aumento de 3,7 meses na sobrevida global dos mesmos (P=0,003) (HODI *et. al.*, 2010). Um segundo estudo randomizado mais recente, de Fase III, revelou um aumento de 11,2 meses na sobrevida global dos pacientes que foram tratados com uma combinação de Ipilimumab e quimioterapia padrão (Dacarbazina), em relação 9,1 meses dos pacientes que receberam apenas dacarbazina (ROBERT *et. al.*, 2011).

Dessa forma, resumidamente, pode- se inferir que a manipulação destes sinais inibitórios constitui- se numa poderosa ferramenta para diminuir tais sinais permitindo que os sinais de ativação (TCR: MHC e sinais co- estimulatórios) possam atuar mais robustamente em detrimento dos inibitórios, permitindo uma melhor taxa de resposta pelos pacientes à imunoterapia. A ligação entre anticorpos tanto anti-PD-1 ou anti-CTLA-4 às suas respectivas moléculas alvo (PD-1 e CTLA-4) pode ser observada esquematicamente através da **figura 1.5.** Além destes primeiros receptores inibitórios, outros como TIM-3 e LAG-3 foram mais recentemente descritos.

Figura 1.5. Forma de ação dos anticorpos anti-PD-1 e anti- CTLA-4. Ao se ligarem às suas moléculas alvo, os anticorpos anti PD-1 e anti CTLA-4 não permitem que aqueles receptores inibitórios se liguem à PD-L1 e B7, permitindo então que somente os sinais estimulatórios (TCR:MHC e CD28:B7) ocorram, restaurando a atividade das células T. (Adaptado de Sharma et. al., 2012).

1.6. LAG-3

1.6.1. Estrutura

LAG-3 foi descrito em 1990 como uma proteína de membrana identificada em linhagens de células Natural Killer e linfócitos T ativados (Triebel etl al., 1990). Esta molécula possui, assim como o CD4, 4 domínios extracelulares formados por proteínas da superfamília das imunoglobulinas (IgSF- like) (**Figura 1.6**). O gene desta molécula encontra-se no cromossomo 12 em humanos, adjacente à sequência gênica da molécula CD4. Além da proximidade espacial, 20% da sequência de aminoácidos entre LAG-3 e CD4 são compartilhadas e ambos os genes possuem similaridade também na organização entre íntros e éxons (8 éxons em cada gene). Desta forma, assim como CD4, LAG-3 é capaz de se ligar a moléculas MHC de classe II, com uma

afinidade 100 vezes maior quando comparado com CD4 (HUARD *et. al.*, 1995). Contudo, diferentemente de CD4, LAG-3 se liga ao MHC II através de um loop extra de 30 aminoácidos ausente na molécula CD4-, que se encontra adjacente ao primeiro domínio (D1).

Figura 1.6. Representação esquemática da estrutura do receptor inibitório LAG-3. A interação de uma célula tumoral e a célula T se faz através do reconhecimento pelo receptor de célula T (TCR) do antígeno apresentado pela molécula de MHC II, na qual LAG-3, que possui 4 domínios, aqui representados D1 a D4, se liga através de seu loop extra. Fonte: Andrews et. al., 2017.

Em relação a porção citoplasmática, LAG-3 possui 3 motivos conhecidos (**Figura 1.6.1**): um consiste numa sequência de repetição de ácido glutâmico e prolina, denominado domínio "EP"; o segundo, denominado KIEELLE, é caracterizado por possuir um resíduo de lisina, sendo ambos os motivos altamente conservados entre

humanos e murinos, com 70% de similaridade na sequência de aminoácidos destes grupos. O terceiro motivo é caracterizado por possuir resíduos de serina e, como um todo, a cauda intracelular de LAG-3 não possui motivos inibitórios baseado em tirosina (ITIM), os quais estão presentes em outros receptores inibitórios como o PD-1. Desta forma, pode- se pensar que os mecanismos utilizados por LAG-3 em sua sinalização são distintos dos utilizados pelos demais receptores inibitórios. Além disso, a importância da sinalização realizada pela cauda citoplasmática de LAG-3 parece ser crucial para a transmissão dos sinais inibitórios, uma vez que Workman e colaboradores (2002) demonstraram que células mutantes que não possuíam a porção intracelular desta molécula não foram capazes de competir com CD4 pela ligação ao MHC II bem, como não exerceram sua função inibitória, o que indica que estudos adicionais de caracterização da transdução de sinal e interações moleculares da porção intracelular de LAG-3 são necessários para melhor compreensão de seu funcionamento.

Figura 1.6.1. Estrutura da porção intracelular do receptor inibitório LAG-3. LAG-3 possui 3 motivos em sua cauda intracelular: um sítio com resíduo de lisina, um altamente conservado entre humanos e murinos (KIEELE) e uma sequência de repetições de prolina e ácido glutâmico (EP). Fonte: Bae et. Al., 2014.

1.6.2. Sinalização e expressão

Muito se tem especulado sobre as demais possíveis moléculas com as quais LAG-3 pode se ligar no seu domínio extracelular, bem como quais outras pode recrutar através de seu domínio citoplasmático, uma vez que, a princípio, LAG-3 não parece influenciar negativamente o reconhecimento de antígenos pelos linfócitos T em células alvo que possuem baixa expressão de MHC II. A galectina-3 é uma lecitina capaz de mediar a supressão de linfócitos T CD8+ *in vitro* e, como esta lectina é expressa em muitas células no microambiente tumoral e LAG-3 é muito glicosilado, a galectina-3 tornou- se um possível ligante alternativo de LAG-3 (DUMIC *et. al.*, 2006). Além desta lectina, uma outra, denominada lectina de célula endotelial sinosoidal (LSECtin) foi identificada em tecidos de melanoma humano, sendo associada com a inibição da resposta antitumoral pelas células T neste tecido, uma vez que associada a LAG-3, favoreceu a diminuição de produção de INFy por células T efetoras (XU *et. al.*, 2014).

Apesar de Xu e colaboradores (2014) terem observado que LAG-3 é importante para inibir a proliferação e atividade de células T, alguns estudos anteriores mostraram que esta molécula apresenta menor expressão na membrana celular quando em condições sem estímulo, sendo degradada no compartimento lisossomal. Para averiguar esta questão, Bae e colaboradores (2014) elaboraram 2 construções baseadas na cauda citoplasmática de LAG-3: uma sem o motivo EP e outra sem toda a cauda citoplasmática de LAG-3. Ambas as construções foram transfectadas na linhagem celular Jurkat, de células T CD4⁺, que foram também tratadas com 1µg/mL de lonomicina e 10 ng/mL de PMA, a fim de simular a ativação destas células. A expressão na membrana celular de LAG-3 WT e LAG-3 sem toda a porção citoplasmática foi similar na presença e na ausência de estímulo; contudo, LAG-3 sem o motivo EP aumentou na condição com estímulo quando comparada a sem estímulo, indicando que este motivo poderia ser essencial para a translocação de LAG-3 do compartimento lisossomal para a membrana celular.

O mesmo grupo observou também que a translocação para a membrana celular, bem como o consequente aumento na expressão de LAG-3 pode ser favorecido pela via de sinalização da proteína C quinase (PKC). Esta pode induzir mudança estrutural em moléculas que se ligam a LAG-3, que consequentemente terá sua estrutura modificada a fim de se translocar para a superfície celular.

Em 2001, louzalen e colaboradores encontraram uma proteína, denominada LAP associada ao domínio EP da cauda citoplasmática de LAG-3 através da técnica de captura por dois híbridos, sendo até o momento a única proteína encontrada associada a um dos motivos intracelulares deste receptor inibitório (IOUZALEN,

2001). Entretanto, posteriormente, foi verificado que mutantes de LAG-3 que não continham o domínio EP mantiveram sua função inibitória, o que sugeriu que a associação da proteína LAP a este domínio parece não ser crucial para a sinalização inibitória das funções imunológicas por parte de LAG-3 (IOUZALEN, 2001). Sendo assim, tornou- se necessário procurar novas técnicas que possibilitassem determinar possíveis novas interações entre proteínas e, neste caso, para encontrar novas moléculas com as quais LAG-3 poderia se ligar na sua porção extracelular, bem como encontrar moléculas que possam ser recrutadas pelos seus diferentes motivos intracelulares, a fim de se entender melhor a via de sinalização utilizada por este checkpoint imunológico para exercer sua função inibitória sobre as células T.

1.6.3. LAG-3 e imunoterapia

Apesar dos resultados positivos em relação ao tratamento de pacientes com tipos diferentes de câncer com anticorpos que tinham como alvo PD-1 e CTLA-4, como Pembrolizumab, Nivolumab e Ipilimumab, a maioria dos pacientes não respondem a este tipo de terapia (TOPALIAN *et. al.*, 2012). Um estudo com pacientes com carcinoma de células renais (RCC) e melanoma avançado, aos quais foi administrado Nivolumab, mostrou que apenas 28% dos pacientes com melanoma e 21% daqueles com RCC apresentaram respostas objetivas (HODI *et. al.*, 2010).

Alguns tipos de tumor como NSCLC, cujo tratamento não apresentava taxas de remissão muito altas com as terapias padrão, passaram a ser mais responsivos com terapia anti PD-1. Contudo, outros tumores como de pâncreas e próstata, não são tão responsivos a esta terapia. Sendo assim, a identificação de receptores inibitórios adicionais juntamente com uma melhor compreensão dos seus mecanismos de atuação é essencial para aumentar o leque de possibilidades de novas imunoterapias utilizadas isoladamente ou em combinação com terapias padrão. Dessa forma, a atenção se voltou para outros receptores inibitórios, incluindo LAG-3 (BRAHMER *et. al.*, 2012).

LAG-3 foi encontrado com expressão alta em células Tregs de sangue periférico e de células do tumor de pacientes com melanoma avançado e de câncer colorretal. Além disso, também foi observado uma correlação entre a expressão de LAG-3 em Tregs com a produção de citocinas como IL-10 e TGF- β em comparação a células que não tinham ou possuíam baixa expressão de LAG-3 (CAMISASCHI *et. al.*, 2010), revelando a potencial importância translacional deste receptor.

Em amostras de tumores de pacientes que apresentavam co-expressão de LAG-3 e PD-1, observou- se um estado de disfunção das células T, cujo fenótipo exausto foi identificado através de reduzida capacidade de produção de IFNγ e TNFα. Com o bloqueio duplo *in vitro* de ambos os IRs, houve aumento na taxa de proliferação e produção de citocinas (IFNγ) das células T CD8⁺ que estavam infiltradas no tumor (BAITSCH *et. al.*, 2011).
Em 2013, ensaios clínicos de fase I foram iniciados com um anticorpo anti-LAG3 (BMS-986016) tornando-se o terceiro IR a ser utilizado como alvo na clínica com um anticorpo antagonista. Atualmente, existem quatro agentes imunoterápicos que possuem LAG-3 como alvo que passaram a ser utilizados na imunoterapia do câncer, e vários estudos pré- clínicos em desenvolvimento.

Os ensaios clínicos iniciais envolvendo LAG-3 foram realizados com o agente IMP321(Prima BioMed / Immutep), que, na verdade, atua como um ativador das APCs. Três diferentes anticorpos monoclonais (mAbs), relacionados ao tratamento de câncer e específicos para LAG3 foram desenvolvidos, sendo eles: BMS-986016 (Bristol-Myers Squibb, IgG4 totalmente humana), LAG525 (Novartis, IgG4 humanizada) e MK-4280 (Merck). O **quadro 1** resume alguns estudos clínicos que já foram realizados ou estão em curso ou recrutando pacientes, nos quais LAG-3 foi alvo terapêutico.

Quadro 1. Co- inibidores anti-LAG-3 e co- estimuladores utilizados em alguns ensaios clínicos.

Intervenção	Indicação	Fase	Identificação do ensaio clínico
BMS-986016 ± nivolumab	Glioblastoma recorrente	I	NCT02658981
BMS-986016 ± nivolumab	Tumores sólidos avançados	I/IIa	NCT01968109
BMS-986016 ± nivolumab vs nivolumab +			
ipilimumab	Câncer gástrico avançado	П	NCT02935634
BMS-986016 + nivolumab vs 3 outros braços	NSCLC avançado	П	NCT02750514
BMS-986016 ± nivolumab	CLL, HL, NHL, MM	1/11	NCT02061761
LAG525 ± PDR001	Tumores sólidos avançados	1/11	NCT02460224

NSCLC= câncer de pulmão de não pequenas células. **CLL=** leucemia linfocítica crônica. **HL=**linfoma de Hodgkin. **NHL=** linfoma não Hodgkin. MM= mieloma múltiplo.

O escalonamento da dose de IMP321 foi realizado em pacientes com CCR metastático avançado em um estudo clínico de fase I (NCT00351949). As doses foram administradas subcutaneamente, com concentração entre 0,05 a 30 mg para 21 pacientes. O tratamento demonstrou- se seguro, bem tolerado e induziu aumento significativo de células T efetoras de memória que expressam o co- ativador CD28 (BRIGNONE. et. al, 2009).

Em relação aos anticorpos monoclonais, BMS-986016 foi o primeiro mAb anti-LAG3 a ser desenvolvido e, atualmente, encontra- se sendo avaliado em estudos de fase I e fase II, tanto para tumores hematológicos quanto sólidos. Um ensaio clínico iniciado em 2013 pretende avaliar a eficácia do bloqueio de LAG-3 sozinho ou em combinação com Nivolumab para diversos tipos de câncer: cervical, ovário, bexiga, colorretal, HNSCC positivo para HPV, gástrico, hepatocelular, CCR (NCT01968109), com o objetivo inicial de matricular ao menos 360 pacientes até o fim do ano 2018. Um segundo ensaio de fase I/la pretende avaliar a tolerância ao bloqueio de LAG-3, também com BMS-986016, com ou sem Nivolumab em neoplasias hematológicas, incluindo linfoma não-Hodgkin linfoma de Hodgkin e mieloma múltiplo (NCT02061761).

Sendo assim, LAG-3 torna- se um novo importante alvo terapêutico a ser utilizado em diversos tipos tumorais. Contudo, além da possibilidade de bloquear a ação da molécula de forma direta através do bloqueio com mbAs, entender como ocorre a sinalização citoplasmática destas moléculas também pode resultar em importantes novas estratégias de intervenção. Sendo assim, identificar quais moléculas são recrutadas para que ocorra ativação destes receptores inibitórios também é um importante caminho a ser explorado para se entender a sinalização como um todo e descobrir potenciais novos alvos terapêuticos. Contudo, para isso, é necessário o desenvolvimento de técnicas que permitam a descoberta em larga escala das associações proteína- proteína, a fim de se entender o mecanismo de ação como um todo de determinada rede de sinalização.

Além da técnica de captura por dois híbridos, que permitiu a descoberta da interação da proteína LAP, recentemente uma nova técnica denominada BioID foi elaborada por Roux e colaboradores (2012), a fim de identificar interações proteína-

proteína. Tal técnica é baseada em captura por afinidade, além de ser baseada em proximidade.

1.7. BioID

A busca pelas interações que ocorrem entre proteínas é essencial para que os processos fisiológicos sejam melhor compreendidos e, assim, novos alvos terapêuticos sejam encontrados. Contudo, métodos como captura por dois híbridos, além de não fornecerem vários possíveis novos parceiros em um único ensaio, também não permitem obter proteínas que se associem transientemente àquela de interesse, fazendo com que dados que poderiam ser importantes para o entendimento daquela rede de sinalização possam ser perdidos.

A técnica BioID consiste na adição de biotina a uma concentração final de 50 µM diretamente ao meio de cultura das células de interesse, o que permite que as proteínas sejam biotiniladas e que estas sejam capturadas posteriormente com base em afinidade; neste caso, beads conjugadas a streptavidina são utilizadas, uma vez que a constante de dissociação entre biotina-streptavidina é a menor conhecida até o momento (Kd= 10⁻¹⁴). Uma vez isoladas, as proteínas são concentradas e passam pelo processo de preparação para identificação e quantificação por espectrometria de massas, gerando então dados relacionados às proteínas que interagem com a proteína de interesse (**Figura 1.7**).

Figura 1.7. Técnica BioID. a) A adição de biotina no meio de cultura irá promover maior biotinilação pela enzima BirA*. Após solubilização e captura por afinidade, as proteínas são identificadas e quantificadas por espectrometria de massas. **b)** Ilustração do método BioID com células HEK293 a fim de identificar proteínas parceiras da proteína Lamina A. (ROUX et.al., 2012).

Dessa forma, em 2012, Roux e colaboradores desenvolveram a técnica BiolDproximity-dependent biotin identification. Tal técnica é baseada na biotinilação celular dependente de proximidade por uma biotina ligase bacteriana (BirA). BirA é uma biotina ligase, purificada a partir de *Escherichia coli,* que possui 35 kDa capaz de regular a biotinilação de uma subunidade de acetil-CoA carboxilase (CHAPMAN-SMITH e CRONAN, 1999).

O processo de biotinilação por BirA acontece em duas etapas: primeiramente, a combinação de biotina e ATP formam biotinoil-5'-AMP (bioAMP). Esta biotina

ativada é mantida no sítio ativo de BirA até que reaja com um resíduo de lisina específico da sequência BAT no segundo passo. Dessa forma, BirA possui uma forte seletividade por seu substrato endógeno. O que o grupo que desenvolveu a técnica desejava era que esta enzima fosse capaz de biotinilar seus alvos de forma mais promíscua. Desta forma, desenvolveram algumas biotinas ligases mutantes que liberam prematuramente a molécula BioAMP, que é instável e altamente reativa. (KWON E BECKETT, 2000). Esta ligase mutante (BirA*) tem menor capacidade de ligação ao DNA (KWON et. al., 2000) e menor afinidade pelo bioAMP, cerca de duas ordens de magnitude menor em relação à enzima wild type (WT) (KWON E BECKETT, 2000). Na bactéria *Escherichia coli*, a expressão da BirA* resultou em uma biotinilação promíscua, uma vez que o bioAMP livre reage prontamente com aminas primárias. Posteriormente, outro grupo demonstrou que BirA* realiza a biotinilação de forma dependente de proximidade (CHOI-RHEE et al., 2004; CRONAN, 2005), e que as proteínas candidatas encontradas podem representar interações diretas, indiretas e proteínas vicinais.

Posteriormente, na tentativa de otimizar a biotinilação e reduzir problemas relacionados ao tamanho da sequência da enzima por si só, que poderia ocasionalmente impedir o direcionamento eficiente de certas proteínas de fusão, o grupo liderado novamente por Roux (2016) procurou pela menor biotina ligase conhecida, encontrando-a em uma bactéria termofílica denominada *Aquifex aeolicus*. A biotina ligase destas bactérias não contém o domínio de ligação ao DNA, sendo naturalmente menor (233 aminoácidos) que a primeira encontrada em *Escherichia coli*. Uma mutação no domínio catalítico de biotinilação (R40G) desta enzima foi realizada, para que fosse capaz de biotinilar promiscuamente todas as proteínas que estejam próximas em até 20nm de determinada proteína de interesse (CHOI-RHEE *et al.*, 2004; CRONAN, 2005).

1.8. Imunoprecipitação

Imunoprecipitação consiste em um dos tipos de técnicas que permitem identificar interações entre proteínas. Um anticorpo específico é adicionado a um lisado de células, permitindo assim a formação do complexo antígeno- anticorpo

após determinado tempo de incubação (TAYLOR RT, BEST SM. 2011). Finalizado este período, esferas de sefarose revestidas com proteína A, G ou L são adicionadas ao lisado e, após novo período de incubação, o complexo antígeno- anticorpo e beads é formado, uma vez que que as proteínas A/G/L podem se ligar à região conservada do anticorpo (YOU B et. al., 2013). (**Figura 1.8**)

Posteriormente, após sucessivas etapas de lavagem, as esferas conjugadas aos anticorpos e estes, aos antígenos de interesse, são eluídos e desnaturados a 95C com a adição de SDS-PAGE Buffer (dodecilsulfato de sódio para gel de eletroforese em gel de poliacrilamida) (Lee C, 2007). Após esta etapa, os peptídeos da proteína de interesse podem ser visualizados diretamente no gel, através de coloração direta do mesmo por azul de commassie e através do convencional westen blot, utilizando- se 5% da amostra total. Desta forma, tais peptídeos presentes no gel podem ser digeridos e identificados por espectrometria de massas ou seguindo protocolo padrão ou otimizado para tal.

Esta técnica, apesar de amplamente utilizada, pode apresentar algumas limitações: o quão significativo pode ser a formação dos complexos anticorpoantígeno e anticorpo-esferas é dependente de alguns fatores, como por exemplo, a concentração final de anticorpo e antígeno presentes no lisado celular.

Figura 1.8. Diagrama esquemático do princípio do co- IP. Amostra de proteína contendo antígeno (geralmente um lisado celular), anticorpo específico e contas de afinidade (geralmente proteína A / G, que podem se ligar especificamente à região conservada do anticorpo) são adicionadas sequencialmente para a reação de ligação. As contas de afinidade com proteínas ligadas são coletadas por centrifugação. O sobrenadante contendo proteínas não ligadas é descartado e posteriormente lavado durante a etapas de lavagem. O anticorpo e o antígeno são eluídos com um tampão que dissocia proteínas das esferas de afinidade. Os complexos proteicos purificados podem ser utilizados ainda para imunotransferência ou outras análises bioquímicas. Fonte:LIN and LAI, 2017.

2. OBJETIVOS

2.1. Objetivo primário

Realizar um *screening* de proteínas que interagem com o a proteína de *checkpoint* imunológico LAG-3.

2.2. Objetivos secundários

- Construir vetores para a expressão do CARs contendo o domínio intracelular de LAG-3 WT, LAG-3 Kmut (mutação lisina (K) para alanina (A) no motivo KIEELE), Lag3 EPdel (domínio EP deletado) e duplo mutado (Kmut e EPdel), todos fusionados ao domínio BirA.

- Induzir expressão destes CARs na linhagem HEK293FT.

- Induzir a expressão dos CARs em linhagem de linfócito T CD4+ (MOLT4).

- Identificar quais proteínas interagem com LAG-3 através da técnica de *screening* por BioID e Imunoprecipitação

- Realizar análise *in silico* para obter as possíveis vias de sinalização envolvidas *downstream* à sinalização de LAG-3.

- Realizar ensaios funcionais para identificar a relevância das proteínas encontradas.

3. METODOLOGIA

3.1. Plasmídeos

Este projeto tem autorização da comissão interna de biossegurança (CIBio) por manipular organismos geneticamente modificados (OGM) de classe I, sob número de protocolo 007/2012 (**Anexo A**).

Para simular a ativação de LAG-3, o receptor quimérico de antígeno (CAR) foi sintetizado com a porção extracelular scFv anti-CD20 pela empresa Genscript (Piscataway, Nova Jersey, EUA). Na parte intracelular, a sequência do LAG-3 Wild Type também foi sintetizada. Paralelamente, as demais sequências da porção intracelular de LAG-3, sem o domínio extracelular anti-CD20 foram sintetizadas: EPdel (deleção do motivo EP), Kmut (mutação de uma lisina-K- para uma alanina- A) e duplo mutante (Kmut e EPdel). O objetivo foi diminuir o custo de síntese e clonar posteriormente somente as sequências dos mutantes de LAG-3 ao vetor.

Em todas as sequências sintetizadas, foram adicionados os sítios de restrição das enzimas Age I e BamHI, uma vez que estas são enzimas disponíveis no laboratório e que estão presentes no plasmídeo pcDNA 3.1. Este plasmídeo foi adquirido comercialmente na empresa AddGene e contém a sequência da enzima BirA*2, já fusionada à sequência da proteínaa HA, utilizada como tag para permitir a detecção da presença do CAR por citometria de fluxo.

3.2. Multiplicação do DNA plasmidial

Após as clonagens das diferentes condições da cauda intracelular de LAG-3 no plasmídeo pcDNA 3.1, os plasmídeos foram transformados em bactéria competente (DH5α). Após incubação em estufa a 37°C, selecionou- se algumas colônias isoladas para inóculo em meio LB (Luria Bertani). Em seguida, realizou a retirada do DNA plasmidial das bactérias, através de um processo denominado mini prep, com o kit Wizard Plus SV Minipreps (#A1460) seguindo as instruções do fabricante.

3.3. Linhagens celulares

A linhagem HEK 293T é uma linhagem de células aderentes, que consiste em fibroblastos de rim embrionário humano e foi mantida em cultura em meio DMEM (Gibco® #11330-032) completo: (10% soro fetal bovino, 1% L-glutamina, 1% penicilina/estreptomicina), a 37°C e 5% de CO₂ dentro de estufa. É conhecida por apresentar boas taxas de expressão de diferentes vetores devido à sua facilidade de transfecção. Além disso, o ensaio de BioID foi padronizado utilizando esta linhagem celular, de forma que, também por esta razão, este tipo celular foi escolhido para testar ao menos uma das técnicas aqui mencionadas.

Já a linhagem celular de células T CD4+/ MOLT4 foi mantida em meio RPMI (Sigma), completo (10% soro fetal bovino, 1% L-glutamina, 1% penicilina/estreptomicina), também a 37°C e 5% de CO₂ dentro de estufa.

3.4. Eletroporação e Transfecção dos plasmídeos

3.4.1. Eletroporação com Nucleofactor II

1x10⁶ das células HEK 293FT foram eletroporadas no aparelho Nucleofector II (Lonza), utilizando o tampão 1SM (CHICAYBAM et. al., 2013), e o programa Q- 001, com os plasmídeos codificando os CARs 20LAG-3 WT BirA*2, 20EPdel BirA*2, 20Kmut BirA*2 e 20Dmut BirA*2. A droga G418 foi adicionada a concentração final de 900ug/mL posteriormente, a fim de selecionar clones expressando estavelmente o inserto, uma vez que o plasmídeo pcDNA 3.1 confere resistência a este antibiótico. A linhagem de células T CD4⁺ (MOLT4) foi eletroporada e também mostrou expressão dos CARs, que pôde ser analisada por citometria de fluxo.

3.4.2. Eletroporação com NEPA21

O eletroporador NEPA21 (NEPAGENE) foi utilizado para eletroporar as células MOLT4 durante o período de doutorado sanduíche na Itália com as construções mutantes EPdel, Kmut ou DMut.

Dessa forma, 1x10⁶ células MOLT4 por condição foram lavadas com PBS. O pellet foi ressuspendido em 98 µL do buffer Opt- MEM (Invitrogen Sku# 31985-062) e, a esta solução, 10 ug de DNA foram adicionados. Todo este conteúdo foi então colocado no interior das cubetas de eletroporação (CU6000 Cuvette Stand Holder), e estas encaixadas na câmara de eletroporação (CU500 Cuvette chamber). Posteriormente, foi aplicada a condição de 175 volts, 5ms (length) e intervalo de 50milisegundos, por 2 vezes, uma vez que esta foi identificada como a melhor para este tipo celular., após realização de eletroporações com a finalidade de setar as melhores condições de voltagem para esta linhagem celular.

3.4.3. Transfecção com Fosfato de Cálcio

Para a transfecção de células HEK293T, as mesmas foram plaqueadas no dia anterior a transfecção em placas de cultura de células de 10cm, de forma a apresentarem entre 30 a 50% de confluência. No dia seguinte, o meio de cultura foi trocado 1 hora antes da transfecção. Em prosseguimento ao protocolo, por condição, foi necessária a utilização de 2 dois tubos de fundo cônico do tipo Falcon: 1 contendo 500 μ L de HBS 2x e outro no qual foi adicionado 439 μ L de dH₂0, 10 μ g de DNA e 61 μ L de CaCl₂ 2M. O borbulhamento foi realizado no tubo contendo HBS 2x, enquanto que todo o conteúdo do segundo tubo foi despejado gota a gota no primeiro tubo, a fim de permitir a formação do precipitado Ca₃(PO₄)₂ e DNA, auxiliando assim a entrada do DNA na célula alvo. A mistura foi deixada sob incubação a temperatura ambiente por 5 minutos, e depois adicionada em toda a superfície de cada placa contendo as células.

3.5. BioID

A técnica BioID foi realizada como projeto piloto em células HEK 293T e em larga escala na linhagem MOLT4.

Um total de 1x10⁶ de células HEK293T foram lisadas com SDS- PAGE Buffer, sonicadas (Ultrasonic processor, modelo GEX 130PB) a fim de fragmentar qualquer ácido nucléico presente na amostra e então estocadas a -80^o para posterior análise por *Western Blot.* A proporção de buffer: células foi de 200 µL para 1x10⁶ células, seguindo as instruções do protocolo descritos por Roux e colaboradores (ROUX *et. al.*, 2013). O western blot utilizando Streptavidin-HRP para identificar o padrão de biotinilação foi realizado, comparando as condições controle sem DNA (com e sem adição de biotina 50 µM ao meio de cultura), e com DNA (novamente, sem e com adição de biotina), após 24h da eletroporação das células. Vale ressaltar que a adição de biotina foi feita logo após a eletroporação dos plasmídeos nas células, seguindo as instruções do protocolo da técnica BioID (ROUX et. al., 2013).

Seguindo as 24h de cultura celular com biotina adicionada ao meio de cultura, nas condições cabíveis, as células foram lisadas com buffer SDS-PAGE, sonicadas a fim de fragmentar qualquer ácido nucléico presente na amostra, e então estocadas a -80°C para posterior análise por *Western Blot*. A proporção de buffer: células foi de 200 μ L para 1x10⁶ células, seguindo as instruções do protocolo descritos por Roux e colaboradores (ROUX *et. al.*, 2013).

Já para o mesmo ensaio de BioID realizado em MOLT4, em larga escala, 80x10⁶ células por condição foram lisadas com 540µL de Lysis buffer (50 mM Tris·Cl, pH 7.4 , 500 mM NaCl, 0.2% SDS w/v). Foram adicionados 200 µL de Triton X-100 a concentração final de1%- de acordo com o volume de células e lysys buffer- à amostra. Posteriormente, as amostras foram sonicadas a 4C, usando o aparelho Bioruptor plus, com 30 ciclos com duração de 15 segundos cada.

No momento seguinte, os lisados foram centrifugados a 4°C,16 g por 12 minutos; o sobrenadanete foi transferido para novos tubos eppendorfs e a quantificação de proteínas por Bradford foi realizada. Ao final, 9.500ug de proteínas foram utilizadas para serem incubadas com as esferas conjugadas a streptavidina

(MyOne Streptavidin C1). Ao todo, 15uL de cada amostra foram separadas como INPUT, a fim de avaliar a presença do plasmídeo por western blot. Aos 100 µL esferas que seriam posteriormente utilizados para cada amostra, 1 mL de lysis buffer foi utilizado, em novos tubos Eppendorf, para realizar a lavagem das mesmas, através de centrifugação por 2 min a 1000g. O sobrenadante foi descartado e as amostras foram adicionadas aos tubos Eppendorfs com as esferas. Nesta condição, as amostras permaneceram sob período de incubação de 12 horas.

Após incubação overnight, as esferas foram centrifugadas por 5 min a 10g, a fim de se coletar as esferas e, após descarte do sobrenadante, 1mL de Wash Buffer (50mM Tris.Cl, pH7.4; 8M ureia) foi adicionado ao pellet de esferas 4 vezes, a fim de realizar as etapas de lavagem das mesmas. Este processo foi realizado após 8 minutos de incubação das esferas com o Wash buffer em rotator e centrifugação por 2 min a 1000g. Ao final, o pellet foi ressuspendido em 1mL do Wash Buffer e 100uL desta solução foram separados para WB e 900uL para posterior análise em espectrômetro de massas. Após centrifugação, o pellet correspondente aos 100 μ L de amostra foi ressuspendido em 100 μ L do SDS-PAGE Buffer, para análise do perfil de biotinilação por western blot. Já em relação ao pellet do tubo contendo os 900 μ L, foram adicionados 50 μ L de 1mM de biotina em 50mM de bicarbonato de amônio para deixar a amostra compatível com as soluções a serem utilizadas na preparação da amostra para análise em espectrômetro de massas.

3.6 Imunoprecipitação

Para a linhagem HEK293T, 4x10⁷ células por condição (em duplicata) foram centrifugadas a 1500 rpm por 5 minutos, após 24 horas de cultura pós transfecção dos plasmídeos. Já para a linhagem MOLT4, 1x10⁸ células foram utilizadas por condição, e também centrifugadas nas mesmas condições descritas acima. O pellet foi lavado 2 vezes com 2 mL de PBS e, posteriormente, 700 µL de Lysis buffer (20mM Tris-HCl, pH: 7.4; 150mM NaCl; 5mM MgCl2; 0.5% NP-40%; 10% Glycerol; Inibidor de protease 1:100 µL de solução) foram adicionados ao pellet.

As amostras foram sonicadas de acordo com a setagem para este experimento, e deixadas a 4°C sob agitação por tempo determinado. Após esta etapa,

as amostras foram centrifugadas por 20 min a 16.000 rpm a 4°C, e o sobrenadante contendo a fração proteica foi transferido para outros tubos Eppendorf, sendo então a concentração proteica determinada por Bradford. Dessa forma, também foi calculado o volume do Buffer IBB (10mM Tris-HCl, pH: 7.6; 150mM NaCl; 0.4% NP-40%; Inibidor de protease 1100uL) a ser adicionado a amostra. Desta solução, 45 µL foram retirados como amostra INPUT, e a esta porção foi adicionado SDS PAGE Buffer, para posterior análise por western blot. Ao restante do mix de amostra, lisado e IBB buffer, o anticorpo anti-HA (#14675681eBioscience) foi adicionado, a concentração final de 1ug/uL. Novamente, a amostra foi submetida ao período de incubação de 12h (over night) e, no dia seguinte, incubadas com 50µL de esferas de sefarose revestidas com proteína G; estas, contudo, foram previamente lavadas com 500 µL de tampão IBB por 1 minuto a 800g e, posteriormente, incubadas com a amostra sob rotação por 2h a 4°C.

Após este período, os lisados com as esferas foram centrifugados novamente a 800g por 1 minuto, e 45 µL do sobrenadante retirado para posterior análise por western blot. Após descarte do restante do sobrenadante, o pellet de esferas, neste momento conjugado às proteínas, foi lavado algumas vezes com wash buffer e, novamente, 50 µL SDS-PAGE Buffer foi adicionado ao pellet ao fim das lavagens. Dessa forma, as amostras aquecidas a 95°C por 5 minutos, centrifugadas por 1 minuto a 800g e o sobrenadante, agora correspondente ao imunoprecipitado, foi estocado até posterior análise por western blot, coloração de gel por azul de comassie e espectrometria de massas.

3.7. Detecção da expressão dos CARs

3.7.1. Detecção por citometria de fluxo

Os CARs foram detectados por citometria de fluxo e, ocasionalmente, por microscopia de imunofluorescência. Para a primeira técnica foi utilizado, a depender da disponibilidade do equipamento, o citômetro Accuri ou FACS calibur. Anticorpo anti- HA (eBioscience, # 14-6756-81, diluição 1:20) foi utilizado como anticorpo primário. Anti F'(ab)2 conjugado a ficoeritrina (PE) (eBioscience, #12-4739-81) foi utilizado como anticorpo secundário na diluição de 1:200. Da mesma forma, a depender da disponibilidade no laboratório, foi utilizado também como anticorpo primário anti- Fab, conjugado a biotina e anti-streptavidina (SVP) conjugado a APC (eBioscience, # 17-4317-82).

3.7.2. Detecção por imunofluorescência

As células da linhagem HEK 293FT foram lavadas e fixadas com paraformaldeído (PFA) 4% overnight. Após este período, foram novamente lavadas com PBS e bloqueadas e permeabilizadas com BSA 1% e 0,3% triton X-100 por uma hora (1h). Após subsequentes lavagens, foram incubadas com anticorpo primário (anti- HA 1:25) em BSA 1% e 0,3% triton X-100 overnight. Posteriormente, foram incubadas com anticorpo secundário (anti- rabbit conjugado a Alexa-fluor 546-marca), lavadas e incubadas com DAPI para marcação nuclear por um minuto. As células nas lâminas foram observadas então com utilização do microscópio confocal FUOVIEW FV10i (Olympus).

Alternativamente, para os dados gerados no laboratório colaborador na Itália, as células foram incubadas em PBS com Paraformaldeído 4% (300uL/poço), por 10 minutos; posteriormente, as mesmas foram lavadas 3 vezes com PBS +BSA 0,2%, seguido de permeabilização com 1mL de Triton 0.03% em PBS, por 10 minutos a temperatura ambiente. Após esta etapa, novas duas lavagens com PBS+BSA 0.2% foram feitas, e as lamínulas colocadas em contado com o anticorpo primário por 1hora, a temperatura ambiente. Dessa forma, seguiu- se para lavagem das lamínulas com PBS + BSA 0.2% (1mL), por 3 vezes, e adição de 500uL de PBS + BSA 2% por 15 minutos, a fim de promover maior bloqueio da amostra.

Uma nova lavagem com PBS+BSA 0.2% (1mL) foi feita, e o anticorpo secundário (anti-Rabbit Alexa flúor 488) foi adicionado (1:1000), por 1 hora, novamente a temperatura ambiente. Finalizado o período de incubação com anticorpo, as lamínulas foram novamente lavadas 3 vezes com PBS + BSA 0.2%. Após, 1mL de PBS+ BSA 2% foi adicionado por 15 minutos, seguido de novas duas lavagens com PBS+BSA 0.2% (1mL) e uma com 1 PBS. Assim, pôde- se prosseguir para a incubação com DAPI (1:50) por 3 minutos, e PBS foi utilizado 2 vezes para lavar as lamínulas após a incubação com DAPI. 2,5 µL de glicerol foram utilizados para auxiliar na adesão da lamínula à lamínula, e as imagens foram adquiridas utilizando o microscópio confocal SP2 AOBS (Leica).

3.8. Western blot

Após preparação e polimerização dos géis *separating* (pH= 8.8) e *stacking* (pH= 6.8), as amostras foram rapidamente fervidas (5´-10´), centrifugadas (spin) e aplicadas no gel a uma corrente de 80V por 1h. Em seguida, aplicou- se uma corrente de 20V (overnight). O gel foi colocado junto à membrana de nitrocelulose (GE Healthcare, #10600003) e aos papéis filtro para transferência por 2h a 45 mA. Posteriormente, a membrana foi corada com Vermelho de Ponceau (30 minutos) para verificação da presença de extratos protéicos, descorada com água e bloqueada com BSA *blocking buffer* (ROUX et. al., 2013). Após bloqueio e lavagens de acordo com o protocolo, a membrana foi incubada com Streptavidina conjugada a HRP (Pierce \mathbb{M} High Sensitivity Streptavidin-HRP), em diluição 1:40.000. Após lavagem e revelação com *ECL* (Promega, #W1001) o filme (Hyperfilm ECL, # 28-9068-36, GE Healthcare) foi exposto a membrana.

Durante o período de doutorado sanduíche, o gel Bolt[™] 4-12% Bis-Tris (#NW04122BOX- Plus Gels) foi utilizado para realizar todos os western-blots necessários. Ruuning buffer foi preparado a partir da solução estoque 20X Bolt[™] MES SDS Running Buffer (#B0002, Novex Life Technologies) e, após corrida a 150 V por 45 minutos, o gel foi colocado junto à membrana de nitrocelulose (GE Healthcare, #10600003) e aos papéis filtro para transferência por 12h (over night) a 4°C. O tampão de transferência foi preparado utilizando a proporção de 70% de água MilliQ, 20% de metanol e 10% de transfer buffer (Tris base #77861 e Glicina #56406). Já os géis destinados a coloração com azul de comassie foram corados com este reagente, e o gel estocado em água MilliQ a 4°C até momento oportuno para preparação do mesmo para posterior análise por espectrometria de massas.

Para a membrana submetida a transferência, após esta etapa, a membrana foi corada com vermelho de Ponceou para observação da presença de extratos proteicos na membrana, descorada com água destilada e, posteriormente, bloqueada por 1 hora com 5% de leite em pó em TBS-T. Após o bloqueio, à membrana foi adicionado o anticorpo primário anti- HA (#14675681, eBioscience) na proporção 1: 3000 por 1 hora a temperatura ambiente. Em seguida, a membrana foi lavada 3 vezes por 5 minutos em TBS-T, seguida de incubação com anticorpo secundário anti- mouse (#1706516, Bio-Rad) na diluição 1:3000, também por 1 hora a temperatura ambiente.

Posteriormente, a membrana foi lavada 3 vezes por 15 minutos cada, com TBS-T. Após lavagem e revelação com *ECL* (Promega, #W1001) o filme (Hyperfilm ECL, # 28-9068-36, GE Healthcare) foi exposto a membrana.

3.9. Preparação de amostras para análise por espectrometria de massas

Após coloração do gel com azul de comassie por 30 minutos e aquisição da imagem do gel, o mesmo foi lavado com água MilliQ, e o gel foi cortado na região que continha a banda atribuída a proteína de interesse. A partir deste momento, o gel- da amostra proveniente da imunoprecipitação, contendo as proteínas, precisa ser reduzido, alquilado, digerido e eluído, para que a amostra final seja injetada no espectrômetro de massas. As mesmas etapas foram aplicadas à amostra contendo as esferas conjugadas a streptavidina e estas, às proteínas biotiniladas- do ensaio de BioID-, que neste caso, encontravam- se em solução. Contudo, de forma geral, as etapas seguintes foram realizadas para ambas as amostras (em solução e em gel), da seguinte forma:

3.9.1. Redução

Para a redução das proteínas em gel, 150uL de acetonitrila (ANC) foram adicionados ao gel, a fim de desidrata-lo. Após remover a ACN, a amostra foi concentrada no concentrator (SpeedVac) por 1 minuto e, à mesma, foram adicionados 150uL de DTT 1,4-Dithiothreitol (DTT) em bicarbonato de amônio (NH₄HCO₃) 50mM, a fim de reduzir as pontes dissulfeto entre os resíduos de cisteína das proteínas. Sob estas condições, a amostra ficou a 56°C por 30 minutos em shaker.

Posteriormente, a amostra foi novamente desitradata com 150uL de ACN, por duas vezes de 5 minutos cada. Uma vez desidratado e após a remoção de toda a ACN, o gel pode ser submetido a etapa de Alquilação.

3.9.2. Alquilação

Ao gel, nesta etapa já desidratado, foi adicionado 55mM de lodacetamida (IAA) (#114924, Sigma), em 50mM de NH₄HCO₃. A IAA, como um agente alquilante, é adicionada com a finalidade de alquilar resíduos de cisteína e impedir uma nova

reestruturação das proteínas, após a redução. Nestas condições, a amostra foi deixada por 20 minutos a temperatura ambiente (TA). Transcorrido este período de tempo, a IAA foi removida e o gel lavado 2 vezes com NH₄HCO₃ (50Mm) e colocado no concentrador por 1 minuto.

3.9.3. Digestão e injeção da amostra

As proteínas foram digeridas com tripsina (0,1µg / µl em 50mM NH₄HCO₃) e incubadas a 37°C durante a noite. Após digestão, os peptídeos foram extraídos dos pedaços de gel usando ACN e ácido fórmico (FA) a 5%. Os extratos peptídicos foram então purificados usando o procedimento StageTip32 (SOFFIENTINI and BACHI, 2016), secos em um SpeedVac e ressuspensos em ácido trifluoroacético (TFA) a 1% antes da análise por espectrometria de massa. 4 µL dos peptídeos purificados foram injetados no sistema de cromatografia líquida EASY-nLC 1200 (Thermo Scientific) e separados na coluna capilar de fabricação própria (ReproSil-Pur 120 C18-AQ, 1,9 µm, Dr. Maisch GmbH , 360 x 0,075 mM), ressaltando- se que 10 µL totais foram injetados por amostra, a fim de permitir a análise com réplica técnica e biológica. Os 2 µL restantes, totalizando 10 µL, são adicionados para evitar formação de bolhas na coluna do instrumento

3.9.4. Eluição

A eluição foi realizada usando um gradiente linear de tampão B crescente (80% de acetonitrila, ácido fórmico a 0,1%) e tampão A decrescente (ácido fórmico a 0,1%) na vazão de 200nL / min. O sistema LC foi acoplado ao espectrômetro de massa híbrido quadrupolo-Orbitrap da Thermo Scientific ™ Q Exactive ™ HF. O tempo total de execução (gradiente), incluindo carregamento de amostra e recondicionamento de coluna, foi de 45 minutos.

3.10. Análise dos dados provenientes do espectrômetro de massas

3.10.1. Processamento dos dados brutos

Todos os arquivos brutos foram processados usando MaxQuant (Versão 1.5.2.8), através do qual é possível identificar as proteínas encontradas, bem como quantifica-las, utilizando o banco de dados humano UniProtKB / Swiss-Prot como referência. A carbamidometilação foi definida como modificação fixa e, para as análises em que o método BioID foi utilizado, a modificação biotinilação também foi acrescentada. Para dados estequiométricos, foi utilizada a opção iBAQ. Além do MaxQuant, o software Scaffold Viewer foi utilizado para visualizar os dados provenientes dos experimentos em que a técnica BiolD foi utilizada, além do diagrama de venn (https://bioinfogp.cnb.csic.es/tools/venny/) para a visualização comparativa destes dados. plataformas KEGG bem como as (http://amp.pharm.mssm.edu/Enrichr/enrich#) e STRING (http://version10.stringdb.org/) para análises de enriquecimento de vias das quais as proteínas encontradas participam.

3.10.2. Análises estatísticas

A análise estatística foi realizada com o programa Perseus, utilizando o teste t de duas amostras com correção de Benjamini-Hochberg fixada em FDR = 0,05. As áreas dos picos de proteína foram log2 transformadas e plotadas no espaço componente principal. A análise de componentes principais (PCA) também foi realizada utilizando esta ferramenta.

4. RESULTADOS

4.1. Construção dos plasmídeos para expressão dos CARs 20LAG3 WT e mutantes

Para simular a ativação de LAG-3, o receptor quimérico de antígeno (CAR) foi sintetizado com a porção extracelular scFv anti-CD20 pela empresa Genscript (Piscataway, Nova Jersey, EUA). Na parte intracelular, a sequência do LAG-3 Wild Type também foi sintetizada. Paralelamente, as demais sequências da porção intracelular de LAG-3, sem o domínio extracelular anti-CD20 foram sintetizadas: EPdel (deleção do motivo EP), Kmut (mutação de uma lisina-K- para uma alanina- A) e duplo mutante (Kmut e EPdel). O objetivo foi diminuir o custo de síntese e clonar posteriormente somente as sequências dos mutantes de LAG-3 ao vetor.

Em todas as sequências sintetizadas, foram adicionados os sítios de restrição das enzimas Age I e BamHI, uma vez que estas são enzimas disponíveis no laboratório e que estão presentes no plasmídeo pcDNA 3.1 (Figura 4.1). Este plasmídeo foi adquirido comercialmente na empresa AddGene e contém a sequência da enzima BirA*2, já fusionada à sequência da proteínaa HA, utilizada como tag para permitir a detecção da presença do CAR. O mapa do histórico de clonagem do CAR anti- CD20- LAG3-BirA*2 pode ser observado na figura 4.2, bem como o mapa da construção final na figura 4.3, ambos feitos através do software SnapGene; já os demais mapas (EPDEL, KMUT e DMUT) podem ser conferidos no Anexo B. Por fim, na figura 4.4 é possível observar o gel de agarose mostrando as bandas correspondentes à digestão do CAR 20LAG-3BirA*2, que foram purificadas para posteriormente serem utilizadas para a clonagem das demais construções.

Created with SnapGene®

Figura 4.1 Mapa esquemático do plasmídeo pcDNA 3.1 que contém sequência da BirA*2. O vetor contém o multiple cloning site (MCS) mostrando as enzimas que podem ser utilizadas para clonar a sequência de interesse à da biotina ligase 2 (BirA*). Age I e BamHI foram utilizadas para a clonagem dos CARs a este vetor.

Figura 4.2. Histórico de síntese e clonagem de 20LAG-3 ao plasmídeo pcDNA 3.1. O vetor contém o multiple cloning site (MCS) mostrando as enzimas que foram utilizadas para clonar a sequência de de LAG-3 à da biotina ligase (BirA1*). Age I e BamHI foram utilizadas para a clonagem dos CARs a este vetor.

Figura 4.3. Mapa final após clonagem de 20LAG-3 ao plasmídeo pcDNA 3.1 que contém sequência da BirA*2. Age l e BamHI foram utilizadas para a clonagem dos CARs a este vetor. Demais mapas podem ser observados no anexo B

Figura 4.4. Gel de agarose mostrando bandas da digestão do CAR 20LAG-3BirA*2. Uma vez clonado, o plasmídeo contendo a sequência do CAR 20LAG-3BirA*2 foi digerido com as enzimas Agel e BamHI para inserção das demais sequências mutantes da cauda intracelular de LAG-3 (EPDEL, KMUT e DMUT) *in frame* coma sequência da enzima. Bandas circuladas indicam as bandas selecionadas para serem purificadas e ligadas às demais sequências (EPDEL, KMUT e DMUT).P= padrão de peso molecular; CWT= Controle não digerido; 1,2 e3= digestões do CAR 20LAG3.

4.2. BioID em MOLT4

4.2.1. Análise da expressão dos plasmídeos por citometria de fluxo

Para verificar a expressão dos CARs contendo os domínios intracelulares de LAG3, a linhagem de células T MOLT4 foi eletroporada com as construções e posteriormente utilizada para a realização da técnica BioID e, através de citometria de fluxo (**figura 4.5**), pode- se observar a expressão dos transgenes nestas células.

Figura 4.5. Expressão do CAR 20 LAG-3 WT BirA*2 nas células MOLT4. 10 μg do plasmídeo CAR 20Lag3 WT BirA*2 foram eletroporados na linhagem HEK 293FT e após 24h, as células foram incubadas com anticorpo primário (anti-Fab 1: 200) e anticorpo secundário (estreptavidina APC 1: 200) para detectar a presença do CAR. A, C, E: FSC x SSC das células viáveis. B: Células da condição controle (sem DNA) não marcadas. D: células marcadas apenas com anticorpo secundário (controle negativo para estreptavidina / APC). F) Porcentagem de células positivas para SPV / APC, indicando a expressão do CAR.

4.2.2. Análise da presença do CAR LAG3-WT por Western blot

Após a caracterização da expressão do trasgene por citometria de fluxo, verificamos se a proteína poderia ser detectada por western blot e se o seu peso molecular correspondia ao esperado. Através dos ensaios representados na **figura 4.6**, pode-se analisar a presença do CAR 20 LAG3 WT nas amostras após a lise celular e antes da purificação com as esferas. Amostras após o período de incubação com as esferas também foram coletadas para análise por western blot, onde não foi possível evidenciar a presença da banda esperada.

Figura 4.6. *Western blot* mostrando a presença do CARLAG3-WT. A: Nas condições em que o CAR LAG3WT é expresso (+ CAR, colunas 2 e 3), anteriormente a purificação com esferas (colunas 1, 2 e 3), pode- se observar a presença da banda referente ao peso molecular do CAR (65kDa). Já após a purificação com as esferas (colunas 4,5, e 6), a banda não foi observada. V= coluna vazia. B : presença da banda referente ao normalizador (B- actina, 41kDa).

Uma vez que, após a purificação com as esferas, utilizando ECL pico, não foi possível observar a banda correspondente ao CAR 20LAG3-WT, uma nova exposição da membrana ao ECL foi feita, utilizando- se neste momento ECL- femto, a fim de aumentar a sensibilidade do teste. Tal resultado pode ser observado na **figura 4.7.**

Figura 4.7. *Western blot* mostrando a presença do CARLAG3-WT. Nas condições em que o CAR LAG3WT é expresso (+ CAR, colunas 2 e 3), anteriormente a purificação com esferas (colunas 1, 2 e 3), pode- se observar a presença da banda referente ao peso molecular do CAR (65kDa). Após a purificação com as esferas(colunas 4,5, e 6), a banda pode ser observada. **V**= coluna vazia.

4.2.3. Análise do padrão de biotinilação por Western Blot

A fim de se avaliar o padrão de biotinilação das amostras submetidas ao teste de BioID, a técnica de western blot foi novamente realizada, utilizando Streptavidina conjugada a HRP para detecção das proteínas biotiniladas. Através da **figura 4.8**, pode- se analisar a presença do CAR 20 LAG3 WT nas amostras após a lise celular e antes e após a purificação com as esferas.

Figura 4.8. *Western blot* mostrando o padrão de biotinilação. A: extratos proteicos visualizados na membrana através da coloração com vermelho de Ponceou. B: nas condições em que o CAR LAG3WT é expresso (+ CAR, colunas 2 e 3), anteriormente a purificação com esferas (colunas 1, 2 e 3), pode- se observar a presença de biotinilação, indicada pelo rastro em análises de western blot. Após a purificação com as esferas(colunas 4,5, e 6), observa-se este padrão somente na condição CAR + Biotina. V= coluna vazia.

4.2.4. Diagrama de Venn- BioID em MOLT 4

Após a adição de biotina ao meio de cultura das células e lise após 24h, as proteínas biotiniladas foram capturadas por afinidade, utilizando-se, para isto, esferas (beads) conjugadas a streptavidina. Dessa forma, pode-se observar que houve um enriquecimento do número de proteínas encontradas na condição que continha a construção CAR LAG3-WT, quando a comparamos com as demais condições controle (sem DNA com biotina, com CAR sem biotina). A análise do número de proteínas diferencias encontradas pode ser visualizada na **figura 4.9**. A lista com as proteínas encontradas pode ser analisada no **Apêndice 1**.

Figura 4.9. Diagrama de Venn do teste BiolD em MOLT4. Diagrama de Venn representando o número de proteínas identificadas por espectrometria de massas, exclusivamente presentes nas condições Controle (sem plasmídeo e com adição de 50uM de biotina) e com o plasmídeo contendo a sequência CAR LAG3- WT sem e com adição de 50uM de biotina ao meio de cultura.

4.3. Imunoprecipitação em MOLT4

4.3.1. Análise da expressão do CARLAG3-WT por citometria de fluxo

Após serem eletroporadas com 10 µg do plasmídeo CAR 20Lag3 WT, as céluals da linhagem MOLT4 foram submetidas a seleção com a droga G418 (900ug/mL). Na data anterior ao ensaio de IP, as células foram marcadas com anticorpo primário (anti- Fab 1: 200) e anticorpo secundário (estreptavidina APC 1: 200) para detectar a presença do CAR. As células Wild type (sem plasmídeo) foram tanto não marcadas e marcadas apenas com o anticorpo secundário, correspondendo assim à condição controle. Já as células que continham a construção foram marcadas com os anticorpos primário e secundário e foi verificado que a porcentagem de expressão do CAR nestas células estava em torno de 64%. Tal dado pode ser observado na **figura 4.10**.

Figura 4.10. Expressão do CAR LAG-3 WT nas células MOLT4. 10 µg do plasmídeo CAR 20Lag3 WT BirA*2 foram eletroporados na linhagem MOLT4 e após 24h, as células foram incubadas com anticorpo primário (anti-Fab 1: 200) e anticorpo secundário (estreptavidina APC 1: 200) para detectar a presença do CAR. A, C, E: FSC x SSC das células viáveis. B: Células da condição controle (sem DNA) não marcadas. D: células da condição controle marcadas apenas com anticorpo secundário (controle negativo para estreptavidina / APC). F) Porcentagem de células CAR positivas para SPV / APC, indicando a expressão do CAR.

4.3.2. Análise da presença do CAR LAG3-WT por Western blot

No ensaio de western blot representado na figura 4.11, a fim de verificar a presença do CAR na célula, a membrana foi incubada com o anticorpo primário anti-HA e secundário anti- mouse. Para este ensaio. amostras correspondentes ao input celular (pós lise), após período de incubação com anticorpo anti- HA e proteína G (unbound) e após as etapas de lavagens das esferas de sefarose revestidas com proteína Gnas quais, neste momento. as proteínas encontrariam-se imunoprecipitadas- foram utilizadas, a fim de visualizar se o ensaio de imunoprecipitação ocorreu e se as amostras poderiam ser enviadas para análise por espectrometria de massas. Nesta etapa, o protocolo de imunoprecipitação foi realizado entre a amostra controle (células sem CAR, IP WT) e com o CAR 20LAG3 WT (IP LAG).

Figura 4.11. Análise da presença dos CARs por Western blot. As células MOLT4 foram eletroporadas com 10ug do plasmídeo contendo a sequência do CAR 30 LAG3 WT, lisadas e as proteínas imunoprecipitadas, utilizando anticorpo anti-HA e adsorvidas utilizando esferas de sefarose revestidas com proteína G. A análise de Western blot (WB) mostra em A) a presença da banda correspondente à construção (65kDa), após incubação com anticorpo primário anti-HA e secundário anti- mouse; B: presença da banda referente ao normalizador (B- actina, 41kDa) e C), Gel SDS-PAGE das proteínas purificadas corado com azul de comassie. A coluna de cada uma das amostras controle- IP WT e com CAR LAG3- WT (IP- LAG3)- foi excisada e as proteínas digeridas em gel.

4.3.3. Diagrama de Venn pós Imunoprecipitação em MOLT 4

O número e identificação das proteínas encontradas exclusivamente na condição controle (célula WT sem CAR) e CAR LAG3-WT, após a realização da técnica de imunoprecipitação em MOLT4, pode ser observado no diagrama de Venn (Figura 4.12). Além disso, a localização de tais proteínas está esquematizada na figura 4.13. Pode- se observar que a maior parte das proteínas encontradas exclusivamente na condição com o plasmídeo contendo a sequência LAG3 WT e 50uM de biotina adicionada ao meio de cultura possuem localização predominantemente nuclear.

Figura 4.12. Diagrama de Venn e proteínas encontradas no teste de imunoprecipitação em MOLT4. A) Diagrama de Venn representando o número de proteínas identificadas por espectrometria de massas, exclusivamente presentes nas condições Controle- IP- CTRL (sem plasmídeo) e com o plasmídeo contendo a sequência CAR LAG3- WT (IP_LAG) e a sobreposição de proteínas encontradas nestas condições. B) Nome de acesso das proteínas exclusivamente encontradas na condição IP_LAG.

Figura 4.13. Padrão esperado de localização das proteínas encontradas na imunoprecipitação com MOLT4 de acordo com a plataforma UNIPROT KB. A maior parte das proteínas encontradas exclusivamente na condição com o plasmídeo contendo a sequência LAG3 WT e 50uM de biotina adicionada ao meio de cultura possuem localização predominantemente nuclear. Algumas proteínas são descritas como presentes no citoplasma e LAG3 tem sua expressão descrita na membrana da célula.

4.4. Imunoprecipitação em HEK 293T

As células HEK 293T, 24 horas após serem transfectadas com o CAR 20LAG3WT, foram lisadas e submetidas ao protocolo de imunoprecipitação. Contudo, antes de iniciar o experimento, com o objetivo de visualizar a expressão e o compartimento celular correspondente para cada construção realizada, as células foram marcadas com anticorpos específicos a fim de realizar o ensaio de imunofluorescência, de forma que a construção pudesse ser visualizada por microscopia confocal. Na **figura 4.14** podemos observar que a proteína CAR-LAGWT encontra-se distribuída no citoplasma e membrana celular.

4.4.1. Análise da presença do CAR LAG3 WT por imunofluorescência

Figura 4.14. Padrão de expressão dos CARs por imunofluorescência. Células HEK 293T foram transfectadas com 10ug do plasmídeo que contém a sequência CAR LAG3-WT e, após 24h, foram incubadas com anticorpo anti-HA (1:25) e anti- rabbitt/Alexa Fluor 488 (vermelho-1:200). DAPI foi utilizado para marcação nuclear (azul). A e D: marcação nuclear com DAPI; **B e E:** marcação positiva indicando presença do CAR LAG3-WT; **D e F:** sobreposição das marcações nucleares e do CAR.

4.4.2. Análise da presença do CAR LAG3 WT e do teste de imunoprecipitação por Western blot

A primeira imunoprecipitação em células HEK 293T foi realizada entre células Wild type e céluals transfectadas com o CAR 20LAG3 WT, com réplicas biológicas para cada amostra (CTRL 1, CTRL2, LAG1 e LAG2). Dessa forma, ao final do protocolo, 5% da amostra foi utilizada para verificação da presença do CAR (65kDa) por western blot, enquanto que os 95% restantes foram utilizados em outro SDS-PAGE, a fim de corar o mesmo com azul de comassie para verificar a presença do CAR e submeter este gel ao protocolo de preparação de amostras para análise por espectrometria de massas. Tal resultado pode ser observado na **figura 4.15**. Dessa forma, o quadro final de proteínas encontradas com diferença estatisticamente significativa na condição CAR 20LAG3 WT, quando comparada com a condição Controle (sem plasmídeo) pode ser observada no **Apêndice 2**.

Figura 4.15. Análise da presença do CAR LAG3-WT por Western blot. As células HEK293T WT (CTRL 1 e CTRL 2, ambas sem plasmídeo) e as transfectadas com 10ug do plasmídeo contendo a sequência do CAR LAG3- WT(IP LAG1 e IP LAG2) foram lisadas e as proteínas foram imunoprecipitadas, utilizando anticorpo anti-HA e proteína G. A análise de Western blot (WB) mostra que (**A**) a presença dos extratos proteicos na membrana pela coloração com vermelho de ponceou, (**B**) presença da banda atribuída à contrução (65kDa) pós incubação com anticorpo primário anti- HA (1:3000) e secundário anti- mouse (1:2500); (**C**) presença da banda referente ao normalizador (B-actina, 41kDa) e **D**, SDS-PAGE das proteínas purificadas, mostrado após coloração do gel com azul de comassie. As colunas do gel de cada uma das réplicas foi excisado e as proteínas digeridas em gel.
4.4.3.Análise da presença dos CARs com construções mutantes (EPDEL, KMUT e DMUT) por imunofluorescência

Novamente, as células HEK 293T foram transfectadas com os demais CARs (EPDEL, KMUT e DMUT) e, posteriormente, foram submetidas ao protocolo de imunoprecipitação. Dessa forma, com o objetivo de visualizar a expressão e o compartimento celular correspondente a cada construção realizada, as células foram marcadas com anticorpos específicos e visualizadas por microscopia confocal para avaliar a presença dos CARs. Na **figura 4.16** podemos observar as proteínas transfectadas distribuídas no citoplasma e membrana celular.

Figura 4.16. Padrão de expressão dos CARs por imunofluorescência. Células HEK 293T foram transfectadas com 10ug do plasmídeo das condições EPDEL, KMUT e DMUT, incubadas com anticorpo anti-HA (1:25) e anti- rabbitt/Alexa Fluor 488 (vermelho-1:200). DAPI foi utilizado para marcação nuclear (1:3000 azul). Pode- se observar ausência do CAR na condição controle (**A,B,C**) e presença do mesmo na condição EPDEL (**D,E,F**), KMUT (**G,H,I**) e DMUT (**J,K,L**).

4.4.4. Análise da expressão dos CARs EPDEL, KMUT e DMUT e da presença das bandas correspondentes às construções de CARs após imunoprecipitação por SDS PAGE

Após serem eletroporadas com 10ug dos plasmídeos que continham as sequências mutantes EPDEL, KMUT E DMUT, as células HEK 293T foram lisadas e as proteínas, imunoprecipitadas, utilizando anticorpo anti-HA e esferas de sefarose revestidas com proteína G. A fim de verificar se a banda correspondente ao peso molecular referente ao CAR (65kDa) estaria presente, fazendo com que a amostra estivesse apta a ser submetida ao protocolo de preparação para análise por espectrometria de massas, as amostras foram utilizadas para SDS PAGE. A **figura 4.17** mostra o resultado destes testes, o que permitiu a digestão do gel referente a cada condição, em réplicas biológicas (EPDEL 1, EPDEL 2, KMUT1, KMUT2, DMUT1, DMUT2) para posterior análise por espectrometria de massas. Os quadros com as proteínas encontradas em cada uma destas condições (EPDEL, KMUT e DMUT) podem ser observados nos **apêndices 3, 4 e 5**, respectivamente.

Figura 4.17. Análise da presença dos CARs com construções mutantes (EPDEL,KMUT,DMUT) por SDS PAGE. As células HEK293T WT e eletroporadas com 10ug dos plasmídeos que continham as sequências mutantes EPdel, Kmut e Dmut foram lisadas e as proteínas, imunoprecipitadas, utilizando anticorpo anti-HA e esferas de sefarose revestidas com proteína G. A análise mostra em (A) a presença dos extratos proteícos na membrana pela coloração com vermelho de ponceou, (B) SDS-PAGE das proteínas purificadas, com a presença da banda relativa ao tamanho esperado (65kDa), mostrado após coloração do gel com azul de comassie. As colunas de cada uma das réplicas foram excisadas e as proteínas digeridas em gel.

4.5. Análises estatísticas

4.5.1. Análises diferenciais dos dados de interação das construções contendo domínios intracitoplasmáticos de LAG3

As análises estatísticas foram realizadas utilizando o programa Perseus, no qual os dados brutos advindos da análise por espectrometria de massas (de ambas as réplicas técnicas e biológicas das construções LAG3-WT, EPDEL, KMUT e DMUT) foram adicionados. O teste t de duas amostras com correção de Benjamini-Hochberg fixada em FDR = 0,05 foi realizado. Dessa forma, foi realizada a análise entre cada uma das construções (CAR LAG3WT, EPDEL, KMUT e DMUT) versus a condição controle (células WT, sem os plasmídeos), a fim de avaliar a presença e o enriquecimento de cada uma das construções quando comparadas com o controle. Os resultados mostram que houve enriquecimento das construções CAR LAG3 WT, EPDEL, KMUT e DMUT. Tais resultados estão representados nas figuras 4.18 a 4.21, e o quadro com as proteínas encontradas

Figura 4.18. Volcano plot CAR LAG3WT x Controle. Volcano plot mostrando as proteínas encontradas com diferença estatisticamente significativa entre a condição CAR LAG3-WT (vermelho, direita) em relação a condição controle (preto, esquerda). As proteínas à direita e acima da linha do gráfico exibiram presença aumentada na condição LAG3 WT, com destaque para a própria proteína LAG3 WT que se encontra enriquecida. Já as proteínas a esquerda estão diminuídas em relação a LAG3 WT.

		Gene Lo	g P value
	L. L	LAG3	5,057300471
		ATAD3A	4,778253425
		RUVBL2	4,379963484
		SRPRB	4,279095981
ю -	• EPdel	RPS14	4,176667338
		SEC61B	3,9302505
4 -		HNRNPA2B1	3,878702155
		CKAP4	3,84198/88/
en		HEL-S-99n	3,832305386
dB		COTAD	3,785992894
Ϋ́		CRTAP SEDDINIH1	3,785225115
-		COLIAZ	3,771903081
		COL1A2	3,738921393
		HEL-S-164n4	3,638375184
		HNRNPAS	3 607207481
0-		TMEM43	3.561016856
	-6 -4 -2 0 2 4 6 8 10 12 Difference	DDOST	3,54658191
		HEL-S-89n	3.428363621
		HIST1H2BC	3 393763633

Figura 4.19. Volcano plot EPDEL x Controle. Volcano plot mostrando as proteínas encontradas com diferença estatisticamente significativa entre a condição EPDEL (vermelho, direita) em relação a condição controle (preto, esquerda). As proteínas à direita e acima da linha do gráfico exibiram presença aumentada na condição EPDEL, com destaque para a própria proteína EPDEL que se encontra enriquecida. Já as proteínas a esquerda estão diminuídas em relação a EPDEL.

Figura 4.20. Volcano plot KMUT x Controle. Volcano plot mostrando as proteínas encontradas com diferença estatisticamente significativa entre a condição KMUT (vermelho, direita) em relação a condição controle (preto, esquerda). As proteínas a direita e acima da linha do gráfico exibiram presença aumentada na condição KMUT, com destaque para a própria proteína KMUT que se encontra enriquecida. Já as proteínas a esquerda estão diminuídas em relação a KMUT.

Figura 4.21. Volcano plot DMUT x Controle. Volcano plot mostrando as proteínas encontradas com diferença estatisticamente significativa entre a (continua próxima página) condição DMUT (vermelho, direita) em relação a condição controle (preto, esquerda). As proteínas a direita e acima da linha do gráfico exibiram expressão aumentada na condição DMUT, com destaque para a própria proteína DMUT que se encontra enriquecida. Já as proteínas a esquerda estão diminuídas em relação a DMUT.

4.5.2. Análise de componentes principais (PCA)

A análise de componentes principais (PCA), que avalia a diferença entre todas as diferentes condições envolvidas em um experimento, neste caso, CAR 20LAG3WT, EPDEL, KMUT e DMUT, também foi realizada. Pode-se observar que o padrão de distribuição das réplicas KMUT2 e EPDEL1 no gráfico da PCA corrobora o padrão destas duas amostras no gel, corado com azul de comassie e mostrando ausência de expressão consistente da construção transgênica, razão pela qual somente estas duas encontram- se mais próximas do controle, enquanto que as demais apresentam boa separação do mesmo. Tal resultado pode ser observado na **figura 4.22**.

Figura 4.22. Análise de componentes principais (PCA). A) A análise de componentes principais mostra que houve similaridade entre as réplicas técnicas e biológicas de cada amostra (Preto= controle, Vermelho= EPDEL, Azul= KMUT, Verde= DMUT) e uma boa separação das mesmas em relação ao controle, com exceção da réplica KMUT2 e DMUT1, corroborando o padrão encontrado no B) respectivo gel corado com azul de comassie.

4.6. Localização da proteínas

4.6.1. Comparação de proteínas presentes entre LAG3WT e condições mutantes EPDEL, KMUT e DMUT

Proteínas que sejam encontradas na imunoprecipitação da condição CAR-LAGWT e não nas condições contendo as construções mutadas podem indicar que os domínios mutados comprometem determinadas interações proteicas. Desta forma, análises diferenciais foram realizadas.

O número de proteínas encontradas exclusivamente nas condições CARLAG3-WT quando comparada com as demais condições EPDEL, KMUT e DMUT, após o ensaio de imunoprecipitação, bem como a identificação das mesmas em células HEK 293T, pode ser observado nas **figuras 4.23, 4.24 e 4.25,** respectivamente.

Figura 4.23. Diagrama de Venn CAR LAG3 WT x EDEL e proteínas presentes exclusivamente em LAG3WT. A= Diagrama de Venn representando o número de proteínas identificadas por espectrometria de massas, exclusivamente presentes nas condições CAR LAG3 WT, EPDEL, a sobreposição de proteínas encontradas nestas condições, bem como a localização das proteínas exclusivas de CAR-LAG3WT na célula (B). C: identificação das proteínas presentes apenas na condição CAR LAG3 WT.

Figura 4.24. Diagrama de Venn CAR LAG3 WTx KMUT e proteínas presentes exclusivamente em LAG3WT. A: Diagrama de Venn representando o número de proteínas identificadas por espectrometria de massas, exclusivamente presentes nas condições CAR LAG3 WT, KMUT, a sobreposição de proteínas encontradas nestas condições, bem como a localização das mesmas na célula (B). C: identificação das proteínas.

Figura 4.25. Diagrama de Venn CAR LAG3 WT x DMUT e proteínas presentes exclusivamente em LAG3WT. A: Diagrama de Venn representando o número de proteínas identificadas por espectrometria de massas, exclusivamente presentes nas condições CAR LAG3 WT, DMUT, a sobreposição de proteínas encontradas nestas condições, bem como a localização das mesmas na célula (B). C: identificação das proteínas.

Já o número de proteínas exclusivas encontradas em cada condição (CAR LAG3WT, EPDEL, KMUT e DMUT), quando comparadas simultaneamente entre si, permitem uma visualização ampla de cada interação exclusiva para cada uma das construções. Esta análise pode ser visualizada **figura 4.26**, e o quadro com as proteínas encontradas em cada uma destas condições pode ser observado no **apêndice 6**.

Figura 4.26. Diagrama de Venn comparando as proteínas únicas presentes nas condições CAR LAG3WT, EPDEL, KMUT e DMUT. Diagrama de Venn representando o número de proteínas identificadas por espectrometria de massas, exclusivamente presentes nas condições LAG3 WT, EPDEL, KMUT e DMUT e a sobreposição de proteínas encontradas nestas condições.

4.7. Vias de enriquecimento

A fim de identificar com quais vias de sinalização as proteínas encontradas como potenciais interações na condição CAR-LAG3WT estão relacionadas, quando comparada com a condição controle (sem o CAR LAG3-WT e demais mutantes), os nomes dos genes correspondentes às proteínas detectadas foram utilizados como Input na ferramenta KEGG. As vias de sinalização nas quais tais proteínas estão envolvidas podem ser observadas na **figura 4.27**.

Protein processing in endoplasmic reticulum
N-Glycan biosynthesis
Phagosome
Protein export
Vibrio cholerae infection
Legionellosis
Pathogenic Escherichia coli infection
Thyroid hormone synthesis
Antigen processing and presentation
Gap junction

Figura 4.27. Representação das vias de sinalização relacionadas as proteínas encontradas exclusivamente na condição LAG3WT vs controles. As proteínas encontradas com diferença estatisticamente significativa na condição LAG3WT, quando comparada com a condição controle (células WT, sem CAR), foram utilizadas nesta análise de vias de enriquecimento.

Além disso, a fim de identificar com quais vias de sinalização as proteínas encontradas exclusivamente em cada uma das demais condições (CAR LAG3 WT,EPDEL, KMUT e DMUT) estavam relacionadas, a mesma análise foi feita mas, neste momento, baseada no diagrama de venn gerado quando todas as condições foram comparadas simultaneamente (**figura 4.26**). Tais vias podem ser analisadas através das figuras **4.28**, **4.29**, **4.30 e 4.31** respectivamente, para as condições LAG3WT, EPDEL, KMUT e DMUT.

Protein processing in endoplasmic reticulum

Legionellosis

Amyotrophic lateral sclerosis (ALS)

Figura 4.28. Representação das vias de sinalização relacionadas as proteínas encontradas exclusivamente na condição LAG3WT vs mutantes. As proteínas encontradas com diferença estatisticamente significativa na condição LAG3WT, quando comparada com todas as demais condições (EPDEL, KMUT, DMUT), foram utilizadas nesta análise de vias de enriquecimento

Protein processing in endoplasmic reticulum	
Spliceosome	
Necroptosis	
Protein export	
Phagosome	
Antigen processing and presentation	
N-Glycan biosynthesis	
mRNA surveillance pathway	
DNA replication	
Ferroptosis	

Figura 4.29. Representação das vias de sinalização relacionadas as proteínas encontradas exclusivamente na condição EPDEL vs demais construções de LAG3. As proteínas encontradas com diferença estatisticamente significativa na condição EPDEL, quando comparada com todas as demais condições (LAG3WT, KMUT, DMUT), foram utilizadas nesta análise de vias de enriquecimento.

Figura 4.30. Representação das vias de sinalização relacionadas as proteínas encontradas exclusivamente na condição KMUT vs demais construções de LAG3. As proteínas encontradas com diferença estatisticamente significativa na condição KMUT, quando comparada com todas as demais condições (LAG3WT, EPDEL e DMUT), foram utilizadas nesta análise de vias de enriquecimento..

Other types of O-glycan biosynthesis
Lysine degradation
p53 signaling pathway
Gap junction
Protein digestion and absorption
Amoebiasis
Progesterone-mediated ocyte maturation
AGE-RAGE signaling pathway in diabetic complications
Cell cycle
Platelet activation

Figura 4.31. Representação das vias de sinalização relacionadas as proteínas encontradas exclusivamente na condição DMUT vs demais construções de LAG3. As proteínas encontradas com diferença estatisticamente significativa na condição DMUT, quando comparada com todas as demais condições (LAG3WT, EPDEL e KMUT), foram utilizadas nesta análise de vias de enriquecimento.

5. DISCUSSÃO

5.1. BioID em MOLT4

LAG-3 é atualmente considerado um importante receptor inibitório, com expressão aumentada, dentre outras subpopulações, em células T ativadas, Tregs e linfócitos infiltrantes de tumor (TILs) que apresentam um fenótipo de exaustão devido à exposição crônica ao antígeno. Dessa forma, alguns anticorpos bloqueadores foram desenvolvidos tanto para LAG-3 (DENG et al., 2016), quanto para outros receptores inibitórios como CTLA-4 e PD-1, a fim de reverter o quadro de exaustão das células T, fortalecendo ainda mais a área da imunoterapia como uma das abordagens terapêuticas mais promissoras das últimas décadas.

Foi observado que LAG-3 tende a ficar em compartimentos lisossomais em condições não ativadas (BAE *et. al.*, 2014) e identificar os mecanismos moleculares pelos quais este receptor é translocado para a superfície, bem como tem sua sinalização citoplasmática ativada, tem sido um desafio.

Para tentar responder a estas questões, BAE e colaboradores (2014) se basearam nos três motivos que constituem a cauda citoplasmática de LAG-3: um com sítios de fosforilação de serina, um com repetições de prolina e glutamina (motivo EP) e o mais conservado entre humanos, murinos e outras espécies, denominado KIEELE. Este grupo criou mutantes de cada um destes domínios a fim de identificar a relevância de um ou mais deles na sinalização de LAG-3.

Nas células T ativadas com PMA, a expressão deste receptor inibitório aumentou, devido à ativação da via de sinalização PKC induzida por PMA. A fim de comprovar a relação desta via com o aumento da expressão de LAG-3, foram utilizados inibidores de PKC, fato que culminou na diminuição da expressão deste IR, o que permitiu inferir a interação da via de sinalização da PKC com o aumento da expressão de LAG-3. Contudo, quando utilizaram os mutantes de LAG-3- um deles com a troca de uma serina do sítio de fosforilação por uma alanina, não houve aumento de expressão deste receptor, indicando que PKC na verdade não induz mudanças conformacionais diretamente em algum dos motivos da cauda citoplasmática de LAG-3, mas sim que pode interagir com alguns ligantes recrutados pelos seus motivos citoplasmáticos.

Dessa forma, a técnica BioID (ROUX *et. al.*, 2012), que se baseia na utilização de uma biotina ligase (BirA*2) mutada para biotinilar proteínas de forma dependente de proximidade, vem ao encontro da tentativa de identificar proteínas que estejam interagindo com determinada proteína alvo, neste caso LAG-3, para exercer sua função.

Nossos resultados mostram que, após a geração dos receptores quiméricos de antígenos fusionados à cauda citoplasmática WT de LAG-3, bem como os mutantes sem o motivo EP (EPDEL), com o motivo KIEELE mutado (KMUT) e o duplo mutante (DMUT, contendo as duas últimas mutações simultaneamente), os CARs foram eletroporados na linhagem MOLT4 e estas células foram submetidas a seleção com a droga G418, a fim de gerar uma linhagem com expressão estável. O *western blot* realizado posteriormente para esta condição revelou um padrão de biotinilação extenso somente na condição que continha, além do CAR com o motivo intracelular de LAG-3, a adição de biotina ao meio de cultura. Contudo, quando o western blot foi realizado para avaliar a presença do CARLAG3WT, a banda não foi observada. Com isso, uma nova tentativa de observá-la foi feita, incubando novamente a membrana ao reagente ECL femto, a fim de aumentar a sensibilidade de detecção. Neste experimento, pôde- se observar a banda de 65kDa referente ao CAR, mas em baixa intensidade.

Contudo, uma vez que o sinal de biotinilação foi claro, a amostra foi submetida ao protocolo de preparação para análise no espectrômetro de massas. Após finalizado, a análise dos dados brutos utilizando o software Max Quant nos revelou que um baixo número de peptídeos (3) atribuídos ao CAR foi detectado na amostra, apesar do número de proteínas encontradas ter sido maior na condição com CAR e com biotina (452), quando comparada com as amostras controle (13 e 39 respectivamente para as células WT com biotina e com CAR sem biotina), indicando possível enriquecimento de proteínas após a purificação com esferas conjugadas a streptavidina. Este baixo número de peptídeos atribuídos a CARLAG3WT não nos permitiu analisar os dados sob o ponto de vista de diferença estatisticamente significativa, de forma que os mesmos foram visualizados através do software Scafold viewer. De forma geral, o ensaio de BioID em células T nos permitiu inferir que a técnica pode ser realizada, mas que precisa de ampla otimização quando células T forem utilizadas como modelo, uma vez que tal técnica foi estabelecida em células

aderentes, como HEK293T e HeLa, e, até o momento, não há publicações utilizando a mesma em células do sistema imune. Este resultado também sugere que os níveis de expressão alcançado para a proteína carreando o BirA pode ser crítico para as aplicações do protocolo de BioID. Com isso, baseado na experiência do grupo colaborador na Itália em Imunoprecipitação, o processo de co-imunoprecipitar as proteínas foi escolhido para dar continuidade aos experimentos, tanto em células T como em células HEK 293T.

5.2. Imunoprecipitação em MOLT4

Após a realização da técnica BioID em células MOLT4, foi realizada com esta mesma linhagem celular a técnica de imunoprecipitação. Após realização do protocolo, o gel resultante foi corado com azul de commassie, no qual não pôde ser observada a banda corresponde ao peso molecular do CARLAG3WT (65kDa). No entanto, uma vez que no western blot a banda pôde ser claramente observada na condição com o CAR (IP_LAG3), as amostras foram preparadas para análise por espectrometria de massas.

O resultado revelou 15 proteínas exclusivamente presentes na condição com CARLAG3WT, quando comparada com a condição controle (IP_CTRL- sem o plasmídeo), e com a maior parte destas apresentando localização nuclear. Contudo, novamente, um baixo número de peptídeos atribuídos a LAG-3 foi encontrado na amostra com o CAR, o que não permitiu a realização de análises estatísticas. Dessa forma, os dados foram visualizados utilizando o software Scaffold viewer, o que nos permitiu averiguar, qualitativamente, que além de LAG3, a proteína RuvB-like 1 (Q9Y265) estava presente em ambos os ensaios (BioID e IP).

Esta proteína faz parte do complexo de proteínas capazes de ativar programas transcricionais associados a crescimento celular, mediados por proto-oncogenes e oncogenes. Além disso, através da análise utilizando a plataforma STRING, foi possível observar que RuvB-like 1 interage com Catenina beta 1 (CTNNB1), uma proteína associada à caderina. Tal proteína é componente chave da via de sinalização canônica de Wnt. Na ausência de Wnt, forma um complexo com outras proteínas, como AXIN1, AXIN2, APC, CSNK1A1 e GSK3B, o que permite a fosforilação nos resíduos de serina e treonina N-terminais das proteínas. LAG3 possui em seu domínio intracitoplasmático um motivo que possui 2 sítios de fosforilação de serina, de forma

que pode-se levantar a hipótese que RuvB-like 1 pode interagir com CTNNB1 para que a fosforilação destes sítios ocorra e desencadeie ativação das funções inibitórias de LAG3.

Contudo, uma vez que grande parte dos estudos de interações entre proteínas é realizado em células aderentes, bem como o próprio estabelecimento das técnicas, a linhagem de células HEK 293T foi escolhida como modelo para a realização dos experimentos seguintes.

5.3. Imunoprecipitação em HEK 293T

Primeiramente, as células WT (sem plasmídeo) e as que foram transfectadas com o plasmídeo que continha a sequência do CARLAG3WT foram submetidas à técnica de imunofluorescência para avaliar a presença do CAR nas células, o que indicou presença majoritariamente citoplasmática do CAR. Posteriormente, as amostras foram submetidas ao protocolo de imunoprecipitação, no qual pôde-se observar as bandas referentes ao CAR das diferentes construções e, dessa forma, as mesmas seguiram para preparação para análise por espectrometria de massas.

Os resultados indicaram que a construção CARLAG3WT estava presente de forma aumentada com diferença estatisticamente significativa em relação à amostra controle, e que o mesmo ocorreu para os CARs LAG3 EPDEL, KMUT e DMUT. Quando analisadas simultaneamente, através da análise de componente principal (PCA), também foi observada reprodutibilidade entre as réplicas e diferença entre as mesmas e as réplicas do controle, com exceção de uma réplica da condição KMUT e DMUT, o que foi consistente com o gel referente a todas estas amostras onde amostras com baixa expressão do transgene se comportavam no PCA de forma semelhante aos controles celulares não transfectados.

Após obtenção da lista final das proteínas presentes em cada condição, foi possível observar que, novamente, a proteína RubV-LIKE1, que estava presente no ensaio de IP com células MOLT4- CARLAG3WT, também estava presente no mesmo ensaio em células HEK 293T, na condição CAR 20LAG3WT, reforçando a hipótese que aponta esta célula como tendo uma potencial interação com LAG3.

Posteriormente, a lista de proteínas presentes na condição CARLAG3WT foi comparada separadamente com cada uma das demais construções com a finalidade de identificar potenciais parceiros de LAG3 que venham a ser perdidos quando

diferentes domínios intracelulares são mutados. As análises entre CARLAG3WT versus CARLAG3EPDEL e CAR 20LAG3WT versus CARLAG3KMUT mostrou que cinco proteínas se mantiveram, em ambas as análises, presentes exclusivamente na condição LAG3WT, sendo elas EEF1G (Fator de elongamento 1- gama), DYNC1H1 (Dineína citoplasmática 1 de cadeia pesada 1), PTBP1 (Proteína de ligação ao trato de polipirimidina 1), FASN (ácido graxo sintetase) e DERL1.

EEF1G age no alongamento de cadeias durante a síntese de polipeptídeos no ribossomo, além de interagir não covalentemente com caderina, uma proteína de membrana tipo I envolvida na adesão celular. Foi mostrado que desregulações em EEF1 podem resultar em perfis epigenéticos diferenciais, fato este que pode afetar o perfil transcricional como um todo, contribuindo para a carcinogênese (BITERGE-SUT, 2019). Já DYNC1H1 atua como um motor da motilidade retrógrada intracelular das vesículas e organelas ao longo dos microtúbulos (ARUN et al., 2013), e também já foi observado que mutações no gene desta proteína estão associadas a vários tipos de câncer (SUCULARI and ARSLANTAS, 2017). A proteína PTBP1 atua principalmente como reguladora negativa de splicing de mRNAs, enquanto que FASN catalisa a formação de ácidos graxos de cadeia longa a partir de acetil-CoA, malonil-CoA e NADPH. Por fim, é sabido que DERL1 é uma das componentes dos complexos responsáveis pela degradação associada ao retículo endoplasmático de proteínas com erros na sua configuração final (missfolding), uma vez que pode atuar formando um canal que permite a retrotranslocação destas proteínas que, posteriormente, serão ubiquitinadas e degradadas pelo proteassoma. Além disso, alguns estudos já mostraram que DERL1 pode funcionar como um oncogene em câncer do colo do útero através da via de sinalização AKT/ mTOR(LI et al., 2019), assim como sua superexpressão foi associada a um pior prognóstico em pacientes com câncer de pulmão de não pequenas células (MAO, ZHANG AND JIANG, 2018).

Apesar de estarem presentes exclusivamente na condição CARLAG3WT quando a comparadas com as condições EPDEL e KMUT, não se tem dados na literatura que realmente suportem uma possível interação destas proteínas com o domínio citoplasmático de LAG3 de forma que, neste momento, estes resultados fornecem apenas subsidios para futura confirmação destes possíveis candidatos a interações proteicas com LAG3.

Quando, por fim, a condição CARLAG3WT foi comparada com as proteínas encontradas na condição DMUT, foi observado que, das cinco proteínas presentes na condição CARLAG3WT quando comparada com LAG3 EPDEL e KMUT, apenas as proteínas EEF1G e DERL1 continuaram presentes exclusivamente na condição Wild Type. Por outro lado, foi observado que 3 novas proteínas estavam presentes tanto na condição LAG3 KMUT como DMUT, quando estas foram comparadas com CARLAG3WT, sendo elas: PDIA4 (dissulfito isomerase A4), HEL-S-269 (dissulfito isomerase) e SDF4 (calcium binding protein).

As proteínas PDIA4 e HEL-S-269 são capazes de realizar rearranjos das pontes dissulfito das proteínas (XU, SANKAR and NEAMATI, 2014), enquanto SDF44 pode regular atividades dependentes de cálcio no retículo endoplasmático. PDIA4 ainda está relacionada ao processamento e transporte de proteínas secretadas, e um estudo recém publicado (PENG et al., 2020) mostrou que PDIA4 se apresenta superexpressa em gliomas, e que tal proteína possui importância clínica na tumorigênese e progressão deste tipo tumoral. Contudo, novamente, não há dados na literatura que corroborem a interação destas proteínas com o domínio citoplasmático de LAG-3, sendo necessária futura validação destes dados, que estão inclusos nas perspectivas deste projeto.

Em um segundo momento, visando entender em quais vias de sinalização tais proteínas poderiam estar envolvidas, análises preliminares de enriquecimento de vias froam realizadas utilizando a plataforma KEGG. Com isso, quando a condição CARLAG3WT foi comparada com a condição controle, pôde- se observar que as vias de processamento de proteínas no retículo endoplasmático, de biossíntese de N-glicanos e exportação de proteínas foram encontradas como enriquecidas. Andrews (2017) postulou que LAG-3 pode ser glicosilada, de forma que podemos correlacionar preliminarmente esta informação e o enriquecimento da via de biossíntese de N-glicanos com base nos dados obtidos da análise por espectrometria de massas.

Posteriormente, a mesma análise foi feita entre todas as condições (CARLAG3WT, EPDEL, KMUT e DMUT), simultaneamente, considerando-se somente as proteínas únicas presentes em cada condição. Desta forma, foi observado que a via de processamento de proteínas no retículo endoplasmático e a via de exportação de proteínas estiveram presentes como enriquecidas em quase todas as condições. Já na condição KMUT, a via de sinalização de estrógeno e da interleucina

17 (IL-17) foram obtidas como enriquecidas. Além destas, a via de exportação de proteínas também esteve presente para a condição KMUT e DMUT, sendo que nesta última, a de síntese de N- glicanos também foi observada, novamente nos levando a inferir uma possível correlação entre a necessidade de glicosilação de LAG-3 para sua função inibitória, além da via da proteína p53, para a qual se tem vários dados na literatura mostrando que a perda ou mutação desse gene supressor de tumor (TP53) resulta em um risco fortemente aumentado de desenvolvimento de câncer. Além disso, perdas ou mutações neste gene podem afetar também o recrutamento e a atividade de mielóides e Células T, permitindo a evasão imunológica e promovendo a progressão do câncer (BLAGIH, BUCK and VOUSDEN, 2020), o que nos permite inferir preliminarmente que as vias de sinalização de p53 e LAG-3 podem compartilhar proteínas comuns, cruciais para a atividade inibitória de LAG-3.

6. CONCLUSÕES

 Os receptores quiméricos de antígenos (CARs) contendo o domínio extracelular scFv anti-CD20 e intracelular com os diferentes motivos de LAG-3 (Wild Type, EPDEL, KMUT e DMUT), foram sintetizados e clonados in frame ao domínio BirA*2.

 Os CARs foram eletroporados nas linhagens MOLT4 e transfectados na linhagem HEK293FT, com expressão verificada através de citometria de fluxo, western blot e imunofluorescência.

- Para a técnica de BioID, foi verificado o padrão esperado de biotinilação, bem como aumento do número de proteínas na condição CAR com biotina, mas não para a presença do CAR pós purificação com esferas conjugadas a streptavidina, indicando necessidade de otimização da técnica em células T.

 Para a técnica de imunoprecipitação em MOLT4 foi observada por western blot a presença do CAR após purificação com esferas de sefarose revestidas com proteína G por western blot, e a lista final mostrou 15 potenciais novos interatores de LAG3WT.
Contudo, o número de peptídeos atribuídos a LAG3 WT foi baixo, o que não permitiu a realização de análises estatísticas, também indicando necessidade de otimização em células T.

 A realização da técnica de imunoprecipitação em células HEK 293T revelou novamente a proteína RuV-LIKE1, também presente nos ensaios com a linhagem MOLT4.

A imunoprecipitação em HEK293T permitiu observar que as proteínas EEF1G,
DYNC1H1, PTBP1,FASN e DERL1 estavam presentes exclusivamente na condição
LAG-3WT, quando esta foi comparada com as condições EPDEL e KMUT

 O ensaio de IP em células HEK293T mostrou que três proteínas, PDIA4, SDF4 e HEL-S-269, estavam presentes exclusivamente na lista da condição LAG3WT, quando esta foi comparada com as condições KMUT e DMUT.

 Vias de processamento de proteínas no retículo endoplasmático, de biossíntese de N- glicanos e exportação de proteínas foram encontradas como enriquecidas em diversas análises.

 A via de processamento de proteínas no retículo endoplasmático esteve presente como enriquecida em todas as condições avaliadas, assim como a via de spliceossomo, que só não se apresentou enriquecida na análise considerando as proteínas exclusivas do CARLAG3WT.

- Na condição KMUT, além via de processamento de proteínas no retículo endoplasmático e spliceossomo, a via de processamento e apresentação de antígenos, assim como a via da interleucina 17 (IL-17) foram obtidas como enriquecidas.

A via de exportação de proteínas aparece como enriquecida nas condições KMUT e
DMUT, sendo que, nesta última, a de síntese de N- glicanos também foi observada.

7. PERSPECTIVAS

- Validar as proteínas identificadas por citometria de fluxo e / ou análise de western blot, além de ensaios de co imunoprecipitação.

- Realizar testes funcionais para analisar a função das proteínas validadas em termos da atividade inibitória de LAG3 na ativação de linfócitos T.

REFERÊNCIAS

ARUN V, WORRELL L, WILEY JC, KAPLAN DR, GUHA A. NEUROFIBROMIN INTERACTS WITH THE CYTOPLASMIC DYNEIN HEAVY CHAIN IN MELANOSOMES OF HUMAN MELANOCYTES. **FEBS LETT**. 587(10)1466-73. 2013.

BAE J, LEE SJ, PARK CG, LEE YS, CHUN T. TRAFFICKING OF LAG-3 TO THE SURFACE ON ACTIVATED T CELLS VIA ITS CYTOPLASMIC DOMAIN AND PROTEIN KINASE C SIGNALING. J IMMUNOL. 193(6):3101-12. 2014.

BAITSCH L, BAUMGAERTNER P, DEVÊVRE E, *ET AL*. EXHAUSTION OF TUMORSPECIFIC CD8(+) T CELLS IN METASTASES FROM MELANOMA PATIENTS. **J CLIN INVESTIG**. 121:2350–2360. 2011.

BARNES, D.W.H., CORP, M.J., LOUTIT, J.F. & NEAL, F.E. TREATMENT OF MURINE LEUKAEMIA WITH X-RAYS AND HOMOLOGOUS BONE MARROW. **BRITISH MEDICAL JOURNAL**.. II, 626–627. 1956.

BITERGE-SUT B. ALTERATIONS IN EUKARYOTIC ELONGATION FACTOR COMPLEX PROTEINS (EEF1S) IN CANCER AND THEIR IMPLICATIONS IN EPIGENETIC REGULATION. **LIFE SCI**. 1;238:116977. 2019.

BLAGIH J, BUCK MD AND VOUSDEN KH. P53, CANCER AND THE IMMUNE RESPONSE. JOURNAL OF CELL SCIENCE. 2020.

BLEAKLEY, M.; RIDDELL, S. R. MOLECULES AND MECHANISMS OF THE GRAFT-VERSUS-LEUKAEMIA EFFECT. **NATURE REVIEWS CANCER**, V. 4, N. 5, P. 371– 380. 2004.

BRAHMER JR, TYKODI SS, CHOW LQ, ET AL. SAFETY AND ACTIVITY OF ANTIPD-L1 ANTIBODY IN PATIENTS WITH ADVANCED CANCER. **N ENGL J MED**. 366:2455–2465. 2012.

BRIGNONE C, ESCUDIER B, GRYGAR C, MARCU M, TRIEBEL F. A PHASE I PHARMACOKINETIC AND BIOLOGICAL CORRELATIVE STUDY OF IMP321, A NOVEL MHC CLASS II AGONIST, IN PATIENTS WITH ADVANCED RENAL CELL CARCINOMA. **CLIN CANCER RES**. 15:6225–6231. 2009.

CAMISASCHI C, CASATI C, RINI F, ET AL. LAG-3 EXPRESSION DEFINES A SUBSET OF CD4(+)CD25(HIGH)FOXP3(+) REGULATORY T CELLS THAT ARE EXPANDED AT TUMOR SITES. **J IMMUNOL**. 184:6545–6551. 2010.

CHAPMAN-SMITH, A., AND J.E. CRONAN JR. MOLECULAR BIOLOGY OF BIOTIN ATTACHMENT TO PROTEINS. J. NUTR. 129(2S, SUPPL):477S–484S. 1999.

CHICAYBAM L, SODRE AL, CURZIO BA, BONAMINO MH. AN EFFICIENT LOW COST METHOD FOR GENE TRANSFER TO T LYMPHOCYTES. PLOS ONE. 8(3):E60298. 2013.

CHOI-RHEE, E., H. SCHULMAN, AND J.E. CRONAN. PROMISCUOUS PROTEIN BIOTINYLATION BY ESCHERICHIA COLI BIOTIN PROTEIN LIGASE. **PROTEIN SCI**. 13:3043–3050. 2004.

clinicaltrials.gov. Disponível em: https://www.clinicaltrials.gov/ Acesso em 28 de Maio de 2018.

COLEY, W. B. THE TREATMENT OF MALIGNAT TUMORS BY REPEATED INOCULATIONS OF ERYSIPELAS: WITH A REPORT OF TEN ORIGINAL CASES. **THE AMERICAN JOURNAL OF THE MEDICAL SCIENCES**, V. 105, N. 5, P. 487. 1893.

COLEY H, MCLAREN JR. COLEY TOXINS – THE FIRST CENTURY. **ADV EXP MED BIOL**. 1990;267:483.

CRONAN, J.E. 2005. TARGETED AND PROXIMITY-DEPENDENT PROMISCUOUS PROTEIN BIOTINYLATION BY A MUTANT ESCHERICHIA COLI BIOTIN PROTEIN LIGASE. J. NUTR. BIOCHEM. 16:416–418. HTTP://DX.DOI.ORG/10.1016/J.JNUTBIO.2005.03.017.

DAIGLE, N., J. BEAUDOUIN, L. HARTNELL, G. IMREH, E. HALLBERG, J. LIPPINCOTTSCHWARTZ, AND J. ELLENBERG. NUCLEAR PORE COMPLEXES FORM IMMOBILE NETWORKS AND HAVE A VERY LOW TURNOVER IN LIVE MAMMALIAN CELLS. **J. CELL BIOL.** 154:71–84. 2001.

DENG WW, MAO L, YU GT, ET AL. LAG-3 CONFERS POOR PROGNOSIS AND ITS BLOCKADE RESHAPES ANTITUMOR RESPONSE IN HEAD AND NECK SQUAMOUS CELL CARCINOMA. **ONCOIMMUNOLOGY**. 2016.

DONG H, ET AL. B7-H1, A THIRD MEMBER OF THE B7 FAMILY, CO-STIMULATES T- CELL PROLIFERATION AND INTERLEUKIN-10 SECRETION. **NAT MED**. 5:1365–1369. 1999.

DUMIC J, DABELIC S, FLOGEL M. GALECTIN-3: AN OPEN-ENDED STORY. BIOCHIMICA ET BIOPHYSICA ACTA. 1760:616–635. 2006.

FEDOROV VD, THEMELI M AND SADELAIN M. PD-1– AND CTLA-4–BASED INHIBITORY CHIMERIC ANTIGEN RECEPTORS (ICARS) DIVERT OFF-TARGET IMMUNOTHERAPY RESPONSES. **SCI TRANSL MED.** 11; 5(215): 215RA172. 2013.

FERLAY, J. et al. CANCER INCIDENCE AND MORTALITY WORLDWIDE: SOURCES, METHODS AND MAJOR PATTERNS IN GLOBOCAN 2012. **INTERNATIONAL JOURNAL OF CANCER.** V. 136, N. 5, P. 359-386. 2015.

GELDRES C, SAVOLDO B, DOTTI G. CHIMERIC ANTIGEN RECEPTOR-REDIRECTED T CELLS RETURN TO THE BENCH CLAUDIA GELDRES, EXPERIMENTAL TRANSPLANTATION AND IMMUNOLOGY BRANCH. **SEMIN IMMUNOL**. 28(1): 3–9. 2015. GUBIN MM, ZHANG X, SCHUSTER H, CARON E, WARD JP, NOGUCHI T, IVANOVA Y, HUNDAL J, ARTHUR CD, KREBBER WJ, ET AL. CHECKPOINT BLOCKADE CANCER IMMUNOTHERAPY TARGETS TUMOUR-SPECIFIC MUTANT ANTIGENS. **NATURE**. 515(7528):577–81. 2014.

HALLMARKS OF CANCER: THE NEXT GENERATION HANAHAN D AND WEINBERG R. **CELL** 144. 646-674. 2011.

HODI FS, ET AL. IMPROVED SURVIVAL WITH IPILIMUMAB IN PATIENTS WITH
METASTATICMELANOMA.N.ENGL.J. MED. 363:711–723. 2010.

HOYOS V, SAVOLDO B, DOTTI G GENETIC MODIFICATION OF HUMAN T LYMPHOCYTES FOR THE TREATMENT OF HEMATOLOGIC MALIGNANCIES. **HAEMATOLOGICA.** 97(11): 1622–1631. 2012.

HUARD B, PRIGENT P, TOURNIER M, BRUNIQUEL D, TRIEBEL F. CD4/MAJOR HISTOCOMPATIBILITY COMPLEX CLASS II INTERACTION ANALYZED WITH CD4- AND LYMPHOCYTE ACTIVATION GENE-3 (LAG-3)-IG FUSION PROTEINS. **EUROPEAN JOURNAL OF IMMUNOLOGY**. 25:2718–2721. 1995.

IMAI C, MIHARA K, ANDREANSKY M, NICHOLSON IC, PUI CH, GEIGER TL, ET AL. CHIMERIC RECEPTORS WITH 4-1BB SIGNALING CAPACITY PROVOKE POTENT CYTOTOXICITY AGAINST ACUTE LYMPHOBLASTIC LEUKEMIA. **LEUKEMIA**. 18(4):676–84. 2004.

INSTITUTO NACIONAL DE CÂNCER JOSÉ ALENCAR GOMES DA SILVA. COORDENAÇÃO DE PREVENÇÃO E VIGILÂNCIA. **ESTIMATIVA 2020 : INCIDÊNCIA DE CÂNCER NO BRASIL / INSTITUTO NACIONAL DE CÂNCER JOSÉ ALENCAR GOMES DA SILVA**. COORDENAÇÃO DE PREVENÇÃO E VIGILÂNCIA. – RIO DE JANEIRO,: INCA, 2019.

IOUZALEN N, ANDREAE S, HANNIER S, TRIEBEL F. LAP, A LYMPHOCYTE ACTIVATION GENE-3 (LAG-3)-ASSOCIATED PROTEIN THAT BINDS TO A REPEATED EP MOTIF IN THE INTRACELLULAR REGION OF LAG-3, MAY PARTICIPATE IN THE DOWN-REGULATION OF THE CD3/TCR ACTIVATION PATHWAY. **EUROPEAN JOURNAL OF IMMUNOLOGY**. 31:2885–2891. 2001.

KEIR ME, ET AL. PD-1 AND ITS LIGANDS IN TOLERANCE AND IMMUNITY. **ANNU REV IMMUNOL**. 26:677–704. 2008.

KESSLER, J. H.; MELIEF, C. J. M. IDENTIFICATION OF T-CELL EPITOPES FOR CANCER IMMUNOTHERAPY. **LEUKEMIA**. V. 21, N. 9, P. 1859–1874. 2007.

KLEIN, J. & SATO, A. THE HLA SYSTEM. N. ENGL. J. MED. 343, 702–709. 2000.

KOLB, H. J.; SCHATTENBERG, A.; GOLDMAN, J. M. GRAFT-VERSUS-LEUKEMIA EFFECT OF DONOR LYMPHOCYTE TRANSFUSIONS IN MARROW GRAFTED PATIENTS. EUROPEAN GROUP FOR BLOOD AND MARROW TRANSPLANTATION WORKING PARTY. **BLOOD**. 1;86(5):2041-50. 1995.

KWON, K., AND D. BECKETT. FUNCTION OF A CONSERVED SEQUENCE MOTIF IN BIOTIN HOLOENZYME SYNTHETASES. **PROTEIN SCI.** 9:1530–1539. 2000.

KWON, K., E.D. STREAKER, S. RUPARELIA, AND D. BECKETT. MULTIPLE DISORDERED LOOPS FUNCTION IN COREPRESSOR-INDUCED DIMERIZATION OF THE BIOTIN REPRESSOR. J. MOL. BIOL. 304:821–833. 2000.

LATCHMAN Y, ET AL. PD-L2 IS A SECOND LIGAND FOR PD-1 AND INHIBITS T CELL ACTIVATION. **NAT IMMUNOL**. 2:261–268. 2001.

LEE C. COIMMUNOPRECIPITATION ASSAY. **Methods Mol Biol**. 362:401–406. 2007.

LI L, LIU M, ZHANG Z, ZHANG W, LIU N, SHENG X, WEI P. DERLIN1 FUNCTIONS AS AN ONCOGENE IN CERVICAL CANCER VIA AKT/MTOR SIGNALING PATHWAY. **BIOL RES**. 2019 27;52(1):8.

LIN, JS and LA,EM. **PROTEIN–PROTEIN INTERACTIONS: CO-MMUNOPRECIPITATION.** SPRINGER PROTOCOLS, 2017.

MAO M, ZHANG J, JIANG J. OVEREXPRESSION OF DERLIN-1 IS ASSOCIATED WITH POOR PROGNOSIS IN PATIENTS WITH NON-SMALL CELL LUNG CANCER. **ANN CLIN LAB SCI**. JAN;48(1):29-34. 2018.

MILLER, R. A. et al. TREATMENT OF B-CELL LYMPHOMA WITH MONOCLONAL ANTI-IDIOTYPE ANTIBODY. **THE NEW ENGLAND JOURNAL OF MEDICINE**, V. 306, n. 9, p. 517–522. 1982.

NIRSCHL, C. J.; DRAKE, C. G. MOLECULAR PATHWAYS: COEXPRESSION OF IMMUNE CHECKPOINT MOLECULES: SIGNALING PATHWAYS AND IMPLICATIONS FOR CANCER IMMUNOTHERAPY. **CLINICAL CANER RESEARCH**: AN OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH. V. 19, N. 18, P. 4917–4924. 2013.

Peng Z, Chen Y, Cao H, Zou H, Wan X, Zeng W, Liu Y, Hu J, Zhang N, Xia Z, Liu Z, Cheng Q. Protein disulfide isomerases are promising targets for predicting the survival and tumor progression in glioma patients. **AGING** (Albany NY). v.12(3); 2020.

PULE MA, STRAATHOF KC, DOTTI G, HESLOP HE, ROONEY CM, BRENNER MK. A CHIMERIC T CELL ANTIGEN RECEPTOR THAT AUGMENTS CYTOKINE RELEASE AND SUPPORTS CLONAL EXPANSION OF PRIMARY HUMAN T CELLS. **MOL THER.** 12(5):933–41. 2005. ROBERT C, ET AL. IPILIMUMAB PLUS DACARBAZINE FOR PREVIOUSLY UNTREATED METASTATIC MELANOMA. **N. ENGL. J.** MED. 364:2517–2526. 2011.

ROUX KJ, KIM IN D, BURKE B. BIOID: A SCREEN FOR PROTEIN-PROTEIN INTERACTIONS. **CURRENT PROTOCOLS IN PROTEIN SCIENCE.** 19.23.1-19.23.14. 2013.

SHARMA P, WAGNER K, WOLCHOK JD, ALISSON JP. NOVEL CANCER IMMUNOTHERAPY AGENTS WITH SURVIVAL BENEFIT: RECENT SUCCESSES AND NEXT STEPS. **NAT REV CANCER**. 11(11): 805–812. 2012.

SOFFIENTINI, PAOLO and BACHI, ANGELA. STAGE-diging: A novel in-gel digestion processing for proteomics samples. **Journal of Proteomics**. 140 (2016) 48–54. 2016.

SUCULARLI, C., & ARSLANTAS, M. Computational prediction and analysis of deleterious cancer associated missense mutations in DYNC1H1. **Molecular and Cellular Probes**, 34, 21–29. .2017.

TAYLOR RT, BEST SM. 2011. Assessing ubiquitination of viral proteins: Lessons from flavivirus NS5. Methods 55: 166–171. CrossRefMedlineGoogle Scholar

YOU B, HUANG S, QIN Q, YI B, YUAN Y, XU Z, SUN J. 2013. Glyceraldehyde-3phosphate dehydrogenase interacts with proapoptotic kinase mst1 to promote cardiomyocyte apoptosis. PLoS One 8: e58697. Google Scholar

TOPALIAN SL, HODI FS, BRAHMER JR, ET AL. SAFETY, ACTIVITY, AND IMMUNE CORRELATES OF ANTI-PD-1 ANTIBODY IN CANCER. **N ENGL J MED.** v.366, n26, p. 2443–2454. 2012.

TRIEBEL F, JITSUKAWA S, BAIXERAS E, ROMAN-ROMAN S, GENEVEE C, VIEGAS-PEQUIGNOT E, HERCEND T. LAG-3, A NOVEL LYMPHOCYTE ACTIVATION GENE CLOSELY RELATED TO CD4. **THE JOURNAL OF EXPERIMENTAL MEDICINE**. 171:1393–1405. 1990.

(https://bioinfogp.cnb.csic.es/tools/venny/)

VOGELSANG, G. B., LEE, L. & BENSEN-KENNEDY, D. M. PATHOGENESIS AND TREATMENT OF GRAFT-VERSUS-HOST DISEASE AFTER BONE MARROW TRANSPLANT. **ANNU. REV. MED**. 54, 29–52. 2003.

XU F, LIU J, LIU D, LIU B, WANG M, HU Z, DU X, ET AL. LSECTIN EXPRESSED ON MELANOMA CELLS PROMOTES TUMOR PROGRESSION BY INHIBITING ANTITUMOR T-CELL RESPONSES. **CANCER RESEARCH.** 74:3418–3428. 2014.

XU S, SANKAR S, NEAMATI N. PROTEIN DISULFIDE ISOMERASE: A PROMISING TARGET FOR CANCER THERAPY. **DRUG DISCOV TODAY.** 19:222–40. 2014.

WEINER, L. M.; MURRAY, J. C.; SHUPTRINE, C. W. ANTIBODY-BASED IMMUNOTHERAPY CANCER. **CELL**. V. 148, N. 6, P. 1081–1084. 2012.

WIEMANN, B.; STARNES, C. O. COLEY'S TOXINS, TUMOR NECROSIS FACTOR AND CANCER RESEARCH: A HISTORICAL PERSPECTIVE. **PHARMACOLOGY & THERAPEUTICS**, V. 64, N. 3, P. 529–564. 1994.

WOLCHOK, J. D. ET AL. NIVOLUMAB PLUS IPILIMUMAB IN ADVANCED MELANOMA. THE NEW ENGLAND JOURNAL OF MEDICINE. V 369, N. 2, P. 122–133. 2013.

WORKMAN CJ, DUGGER KJ, VIGNALI DA. CUTTING EDGE: MOLECULAR ANALYSIS OF THE NEGATIVE REGULATORY FUNCTION OF LYMPHOCYTE ACTIVATION GENE-3. **JOURNAL OF IMMUNOLOGY**. 169:5392–5395. 2002.

WYKES MN, LEWIN SR. IMMUNE CHECKPOINT BLOCKADE IN INFECTIOUS DISEASES. NAT REV IMMUNOL. 18(2):91-104. 2018.

8. APÊNDICES

8.1. Apêndice 1: Quadro de proteínas encontradas no ensaio de BioID em células MOLT4

Accession	Protein Name	Accession	Protein Name
P46063	ATP-dependent DNA helicase Q1 O	Q9BSJ8	Extended synaptotagmin-1 OS=Homo sapie
Q13423	NAD(P) transhvdrogenase, mitocho	P61011	Signal recognition particle 54 kDa protein OS
Q9NQ55	Suppressor of SWI4 1 homolog OS	P11766	Alcohol dehvdrogenase class-3 OS=Homo s
P46013	Proliferation marker protein Ki-67 O	Q9H4L4	Sentrin-specific protease 3 OS=Homo saple
P49916	DNA ligase 3 OS=Homo sapiens G	P63241	Eukarvotic translation initiation factor 5A-1 O
Q53HW7	Sulfide dehvdrogenase like (Fragme	Q96A26	Protein FAM162A OS=Homo sapiens GN=FA
Q96CW1	AP-2 complex subunit mu OS=Hom	095758	Polypyrimidine tract-binding protein 3 OS=Ho
B2RWN5	HEAT repeat containing 1 OS=Hom	P14635	G2/mitotic-specific cvclin-B1 OS=Homo sapi
Q96F07	Cytoplasmic FMR1-interacting prote	P51649	Succinate-semialdehvde dehvdrogenase, m
P08574	Cytochrome c1, heme protein, mitod	Q15008	26S proteasome non-ATPase regulatory sub
Q6PKG0	La-related protein 1 OS=Homo sapi	Q9Y512	Sorting and assembly machinery componen
Q14527	Helicase-like transcription factor OS	Q5T9A4	ATPase family AAA domain-containing protei
075691	Small subunit processome compor	Q14669	E3 ubiguitin-protein ligase TRIP12 OS=Hom
P57088	Transmembrane protein 33 OS=Ho	Q9NXG2	THUMP domain-containing protein 1 OS=Ho
O00410	Importin-5 OS=Homo sapiens GN=	P20618	Proteasome subunit beta type-1 OS=Homos
Q5JY65	Crooked neck-like protein 1 OS=Ho	Q6IPN0	Reticulon OS=Homo sapiens GN=RTN4 PE
Q9Y2L1	Exosome complex exonuclease RR	P18031	Tyrosine-protein phosphatase non-receptor
P00387	NADH-cvtochrome b5 reductase 3 0	P19525	Interferon-induced, double-stranded RNA-ad
Q9NXF1	Testis-expressed sequence 10 prot	P62258	14-3-3 protein epsilon OS=Homo sapiens G
P55039	Developmentally-regulated GTP-bin	075746	Calcium-binding mitochondrial carrier protei
P51148	Ras-related protein Rab-5C OS=Ho	P55084	Trifunctional enzyme subunit beta, mitochon
094874	E3 UFM1-protein ligase 1 OS=Hom	Q96QC0	Serine/threonine-protein phosphatase 1 reg
P52701	DNA mismatch repair protein Msh6	E7EVA0	Microtubule-associated protein OS=Homo s
Q9BZZ5	Apoptosis inhibitor 5 OS=Homo sag	Q9P016	Thymocyte nuclear protein 1 OS=Homo sapi
Q9H9Y2	Ribosome production factor 1 OS=F	Q86WJ1	Chromodomain-helicase-DNA-binding prote
Q96P11	Probable 28S rRNA (cvtosine-C(5))-	P17612	cAMP-dependent protein kinase catalytic sub
P30041	Peroxiredoxin-6 OS=Homo sapiens	A0A090N8G	Glvcvl-tRNA synthetase OS=Homo sapiens
Q1KMD3	Heterogeneous nuclear ribonucleor	O95470	Sphingosine-1-phosphate lvase 1 OS=Hom
Q8NI36	WD repeat-containing protein 36 OS	A3KN83	Protein strawberry notch homolog 1 OS=Hor
Q13303	Voltage-gated potassium channel s	Q86W50	Methyltransferase-like protein 16 OS=Homo
P42166	Lamina-associated polypeptide 2, is	P43490	Nicotinamide phosphoribosyltransferase OS
O14949	Cytochrome b-c1 complex subunit 8	O43516	WAS/WASL-interacting protein family member
A6NHR9	Structural maintenance of chromos	Q9UNL2	Translocon-associated protein subunit gam
P61619	Protein transport protein Sec61 sub	Q15004	PCNA-associated factor OS=Homo sapiens
Q9UBM7	7-dehydrocholesterol reductase OS	P36915	Guanine nucleotide-binding protein-like 1 O
O60231	Putative pre-mRNA-splicing factor A	Q9BWD1	Acetyl-CoA acetyltransferase, cytosolic OS=H
Q9NYP7	Elongation of very long chain fatty ac	Q15022	Polycomb protein SUZ12 OS=Homo sapiens
P61006	Ras-related protein Rab-8A OS=Ho	Q9Y2P8	RNA 3'-terminal phosphate cyclase-like prot
P60709	Actin, cytoplasmic 1 OS=Homo sapi	Q9Y265	RuvB-like 1 OS=Homo sapiens GN=RUVBL
P04844	Dolichyl-diphosphooligosaccharide	O15144	Actin-related protein 2/3 complex subunit 2 d
O43660	Pleiotropic regulator 1 OS=Homo sa	O43148	mRNA cap guanine-N7 methyltransferase O
O75390	Citrate synthase, mitochondrial OS=	Q9HDC9	Adipocyte plasma membrane-associated pr
Q9BW19	Kinesin-like protein KIFC1 OS=Hom	P32121	Beta-arrestin-2 OS=Homo sapiens GN=ARR
P24928	DNA-directed RNA polymerase II su	Q969X6	U3 small nucleolar RNA-associated protein
Q99829	Copine-1 OS=Homo sapiens GN=C	O00411	DNA-directed RNA polymerase, mitochondri
A0A087X2I1	26S protease regulatory subunit 10	Q9NZ01	Very-long-chain enoyl-CoA reductase OS=Ho
P12235	ADP/ATP translocase 1 OS=Homos	P52789	Hexokinase-2 OS=Homo sapiens GN=HK2
Q9UBU9	Nuclear RNA export factor 1 OS=Ho	Q96GD4	Aurora kinase B OS=Homo sapiens GN=AU
Q6MZM4	Putative uncharacterized protein DK	Q13616	Cullin-1 OS=Homo sapiens GN=CUL1 PE=1
Q13045	Protein flightless-1 homolog OS=Ho	O15228	Dihydroxyacetone phosphate acyltransferase

Accession	Protein Name	Accession	Protein Name
Q53HB9	DEAD (Asp-Glu-Ala-Asp) box polype	Q06210	Glutaminefructose-6-phosphate aminotran
Q9BQ52	Zinc phosphodiesterase ELAC prote	O95563	Mitochondrial pyruvate carrier 2 OS=Homo s
Q8TA92	Similar to AFG3 ATPase family gene	Q14562	ATP-dependent RNA helicase DHX8 OS=Ho
P08240	Signal recognition particle receptor	P41252	IsoleucinetRNA ligase, cytoplasmic OS=Ho
Q8WWK9	Cytoskeleton-associated protein 2 C	Q96T37	Putative RNA-binding protein 15 OS=Homo
P30153	Serine/threonine-protein phosphata	Q5H909	Melanoma-associated antigen D2 OS=Hom
P09960	Leukotriene A-4 hydrolase OS=Hom	Q13451	Peptidyl-prolyl cis-trans isomerase FKBP5 C
Q92925	SWI/SNF-related matrix-associated	Q9Y4Z0	U6 snRNA-associated Sm-like protein LSm
O14965	Aurora kinase A OS=Homo sapiens	Q15021	Condensin complex subunit 1 OS=Homo sa
Q86U86	Protein polybromo-1 OS=Homo sap	Q8TBP6	Solute carrier family 25 member 40 OS=Hon
Q15067	Peroxisomal acyl-coenzyme Aoxida	Q6ZNB6	NF-X1-type zinc finger protein NFXL1 OS=Hc
Q9Y285	PhenylalaninetRNA ligase alpha s	Q9NY12	H/ACA ribonucleoprotein complex subunit 1
Q9BYG3	MKI67 FHA domain-interacting nucle	Q15629	Translocating chain-associated membrane
O15260	Surfeit locus protein 4 OS=Homo sa	Q6UB35	Monofunctional C1-tetrahydrofolate synthase
P0DN76	Splicing factor U2AF 35 kDa subunit	Q02218	2-oxoglutarate dehydrogenase, mitochondria
O60488	Long-chain-fatty-acidCoA ligase 4	Q8IYB8	ATP-dependent RNA helicase SUPV3L1, mit
Q9BPW8	Protein NipSnap homolog 1 OS=Ho	P50570	Dynamin-2 OS=Homo sapiens GN=DNM2 P
P22392	Nucleoside diphosphate kinase B C	O75369	Filamin-B OS=Homo sapiens GN=FLNB PE
Q02790	Peptidyl-prolyl cis-trans isomerase	Q9UI10	Translation initiation factor eIF-2B subunit de
075251	NADH dehydrogenase [ubiquinone]	Q7Z460	CLIP-associating protein 1 OS=Homo sapie
Q15054	DNA polymerase delta subunit 3 OS	Q9H9G7	Protein argonaute-3 OS=Homo sapiens GN
Q9BQ39	ATP-dependent RNA helicase DDX5	Q9UNS2	COP9 signalosome complex subunit 3 OS=
Q9UIA9	Exportin-7 OS=Homo sapiens GN=2	Q71U36	Tubulin alpha-1A chain OS=Homo sapiens (
Q14232	Translation initiation factor eIF-2B si	Q7L2H7	Eukaryotic translation initiation factor 3 subu
P26368	Splicing factor U2AF 65 kDa subunit	A0A087WXU3	Extended synaptotagmin-2 OS=Homo sapie
Q9NRX1	RNA-binding protein PNO1 OS=Hon	Q3SXM5	Inactive hydroxysteroid dehydrogenase-like p
O60762	Dolichol-phosphate mannosyltranst	P62495	Eukaryotic peptide chain release factor subu
O00425	Insulin-like growth factor 2 mRNA-bi	Q9P031	Thyroid transcription factor 1-associated pro
Q9Y5M8	Signal recognition particle receptor	P61081	NEDD8-conjugating enzyme Ubc12 OS=Hor
P10768	S-formylglutathione hydrolase OS=F	O96011	Peroxisomal membrane protein 11B OS=Hc
Q8N1F7	Nuclear pore complex protein Nup9	P78346	Ribonuclease P protein subunit p30 OS=Ho
P17706	Tyrosine-protein phosphatase non-	P49006	MARCKS-related protein OS=Homo sapiens
P19174	1-phosphatidylinositol 4,5-bisphosp	P56589	Peroxisomal biogenesis factor 3 OS=Homo
Q13177	Serine/threonine-protein kinase PA	Q16401	26S proteasome non-ATPase regulatory sub
Q5SY16	Polynucleotide 5'-hydroxyl-kinase No	P11216	Glycogen phosphorylase, brain form OS=Ho
O43395	U4/U6 small nuclear ribonucleoprot	O95239	Chromosome-associated kinesin KIF4A OS
Q05DU1	GNL3L protein (Fragment) OS=Horr	P07384	Calpain-1 catalytic subunit OS=Homo sapie
P25789	Proteasome subunit alpha type-4 O	O75190	DnaJ homolog subfamily B member 6 OS=F
Q9BRJ6	Uncharacterized protein C7orf50 OS	P33176	Kinesin-1 heavy chain OS=Homo sapiens G
Q6YN16	Hydroxysteroid dehydrogenase-like	Q9BY42	Protein RTF2 homolog OS=Homo sapiens (
Q15269	Periodic tryptophan protein 2 homol	Q9BUT1	3-hydroxybutyrate dehydrogenase type 2 OS:
P14550	Alcohol dehydrogenase [NADP(+)] C	O14950	Myosin regulatory light chain 12B OS=Homo
O43324	Eukaryotic translation elongation fac	P60900	Proteasome subunit alpha type-6 OS=Homo
P78371	T-complex protein 1 subunit beta OS	Q5T7U1	General transcription factor 3C polypeptide 5
Q5QJE6	Deoxynucleotidyltransferase termina	Q9H3N1	Thioredoxin-related transmembrane protein
Q96S44	TP53-regulating kinase OS=Homos	Q9UNX4	WD repeat-containing protein 3 OS=Homo s
P04818	Thymidylate synthase OS=Homo sa	075323	Protein NipSnap homolog 2 OS=Homo sapi
Q9NWH9	SAFB-like transcription modulator O	P50750	Cyclin-dependent kinase 9 OS=Homo sapie
P22830	Ferrochelatase, mitochondrial OS=	Q8IXI2	Mitochondrial Rho GTPase 1 OS=Homo sap
Q9BVI4	Nucleolar complex protein 4 homolo	Q99543	DnaJ homolog subfamily C member 2 OS=F
Q7L014	Probable ATP-dependent RNA helic	Q13094	Lymphocyte cytosolic protein 2 OS=Homo sa
P48651	Phosphatidylserine synthase 1 OS=	Q8IY37	Probable ATP-dependent RNA helicase DHX

Accession	Protein Name	Accession	Protein Name
P0DMV9	Heat shock 70 kDa protein 1B OS=F	Q9BVJ6	U3 small nucleolar RNA-associated protein
Q9NV31	U3 small nucleolar ribonucleoprote	Q53GF0	Cytidine 5'-monophosphate N-acetylneuram
P28482	Mitogen-activated protein kinase 1 C	Q59EK3	Adaptor-related protein complex 1, mu 1 sub
P50502	Hsc70-interacting protein OS=Hom	Q8NE86	Calcium uniporter protein, mitochondrial OS
P24941	Cyclin-dependent kinase 2 OS=Hon	Q9BY44	Eukaryotic translation initiation factor 2A OS=
O00767	Acyl-CoA desaturase OS=Homo sa	O43303	Centriolar coiled-coil protein of 110 kDa OS=
P49720	Proteasome subunit beta type-3 OS	Q9Y3Y2	Chromatin target of PRMT1 protein OS=Hom
Q13131	5'-AMP-activated protein kinase cata	F8WAJ0	Probable ATP-dependent RNA helicase DD
Q92797	Symplekin OS=Homo sapiens GN=	P23921	Ribonucleoside-diphosphate reductase larg
Q9HAV4	Exportin-5 OS=Homo sapiens GN=2	Q53GT4	Dipeptidylpeptidase III isoform 1 variant (Fra
P67812	Signal peptidase complex catalytic s	Q9NQS7	Inner centromere protein OS=Homo sapiens
Q99661	Kinesin-like protein KIF2C OS=Horr	P21796	Voltage-dependent anion-selective channel
Q8NBT6	cDNA FLJ90758 fis, clone SKNMC1	P00505	Aspartate aminotransferase, mitochondrial
Q53G58	Coronin (Fragment) OS=Homo sap	P22033	Methylmalonyl-CoAmutase, mitochondrial C
P61201	COP9 signalosome complex subur	P30566	Adenylosuccinate lyase OS=Homo sapiens
P35232	Prohibitin OS=Homo sapiens GN=F	P40937	Replication factor C subunit 5 OS=Homo sa
Q15029	116 kDa U5 small nuclear ribonucle	Q9Y2T2	AP-3 complex subunit mu-1 OS=Homo sapi
O15258	Protein RER1 OS=Homo sapiens G	Q8N1G2	Cap-specific mRNA (nucleoside-2'-O-)-meth
Q9UJA5	tRNA (adenine(58)-N(1))-methyltran	Q9NYH9	U3 small nucleolar RNA-associated protein
Q8WVV9	Heterogeneous nuclear ribonucleop	P53985	Monocarboxylate transporter 1 OS=Homo sa
Q9P1F3	Costars family protein ABRACL OS=	Q15005	Signal peptidase complex subunit 2 OS=Ho
P60059	Protein transport protein Sec61 sub	Q96HE7	ERO1-like protein alpha OS=Homo sapiens
Q53F35	Acidic (Leucine-rich) nuclear phosp	Q9Y230	RuvB-like 2 OS=Homo sapiens GN=RUVBL
Q5U5X0	Complex III assembly factor LYRM7	Q9Y320	Thioredoxin-related transmembrane protein
Q7Z4W1	L-xylulose reductase OS=Homo sap	Q07955	Serine/arginine-rich splicing factor 1 OS=Ho
O43818	U3 small nucleolar RNA-interacting	P84090	Enhancer of rudimentary homolog OS=Hom
O75694	Nuclear pore complex protein Nup1	Q8NEJ9	Neuroguidin OS=Homo sapiens GN=NGDN
Q9NQG5	Regulation of nuclear pre-mRNA do	Q12788	Transducin beta-like protein 3 OS=Homo sa
Q9Y2K7	Lysine-specific demethylase 2A OS	Q96TA2	ATP-dependent zinc metalloprotease YME1L
O15145	Actin-related protein 2/3 complex su	O75306	NADH dehydrogenase [ubiquinone] iron-sul
P08758	Annexin A5 OS=Homo sapiens GN=	Q9H061	Transmembrane protein 126A OS=Homo sa
O60524	Nuclear export mediator factor NEM	P36871	Phosphoglucomutase-1 OS=Homo sapiens
Q6PD62	RNA polymerase-associated protein	O14744	Protein arginine N-methyltransferase 5 OS=
O43684	Mitotic checkpoint protein BUB3 OS:	Q8WYA6	Beta-catenin-like protein 1 OS=Homo sapier
P17858	ATP-dependent 6-phosphofructokin	P11021	78 kDa glucose-regulated protein OS=Homo
O15254	Peroxisomal acyl-coenzyme A oxida	Q92621	Nuclear pore complex protein Nup205 OS=H
Q9NZB2	Constitutive coactivator of PPAR-gar	Q86YP4	Transcriptional repressor p66-alpha OS=Ho
Q6U8A4	Ubiquitin-specific protease 7 isoform	Q06203	Amidophosphoribosyltransferase OS=Homo
P41240	Tyrosine-protein kinase CSK OS=H	Q9BWS9	Chitinase domain-containing protein 1 OS=
O75027	ATP-binding cassette sub-family B r	O43592	Exportin-T OS=Homo sapiens GN=XPOT PE
P11908	Ribose-phosphate pyrophosphokin	Q08881	Tyrosine-protein kinase ITK/TSK OS=Homo
O14646	Chromodomain-helicase-DNA-bind	Q96N66	Lysophospholipid acyltransferase 7 OS=Hor
Q03519	Antigen peptide transporter 2 OS=H	Q9BTX1	Nucleoporin NDC1 OS=Homo sapiens GN=
P25440	Bromodomain-containing protein 2	Q9NZL4	Hsp70-binding protein 1 OS=Homo sapiens
P09622	Dihydrolipoyl dehydrogenase, mitoc	P29372	DNA-3-methyladenine glycosylase OS=Hom
Q5UIP0	Telomere-associated protein RIF1 (Q9Y678	Coatomer subunit gamma-1 OS=Homo sap
O60216	Double-strand-break repair protein	Q13492	Phosphatidylinositol-binding clathrin assem
P54577	TyrosinetRNA ligase, cytoplasmic	P22695	Cytochrome b-c1 complex subunit 2, mitoch
Q9NTJ3	Structural maintenance of chromose	Q8IX18	Probable ATP-dependent RNA helicase DH
Q7Z6Z7	E3 ubiquitin-protein ligase HUWE1	Q13505	Metaxin-1 OS=Homo sapiens GN=MTX1 PE=
O43252	Bifunctional 3'-phosphoadenosine 8	Q9GZR5	Elongation of very long chain fatty acids prote
Q7Z3K3	Pogo transposable element with ZN	Q59GP4	IIvB (Bacterial acetolactate synthase)-like iso

Accession	Protein Name	Accession	Protein Name
Q9HC03	Dolichyl-phosphate beta-glucosyltra	P18085	ADP-ribosylation factor 4 OS=Homo sapiens
O95864	Fatty acid desaturase 2 OS=Homo s	Q16512	Serine/threonine-protein kinase N1 OS=Hon
Q96QE3	ATPase family AAA domain-containi	P46926	Glucosamine-6-phosphate isomerase 1 OS
Q9NRK6	ATP-binding cassette sub-family B r	Q8WUY8	N-acetyltransferase 14 OS=Homo sapiens 0
P49748	Very long-chain specific acyl-CoA de	P27708	CAD protein OS=Homo sapiens GN=CAD Pl
Q13041	P67 OS=Homo sapiens PE=2 SV=1	Q16891	MICOS complex subunit MIC60 OS=Homo s
Q96BW9	Phosphatidate cytidylyltransferase, i	Q96G03	Phosphoglucomutase-2 OS=Homo sapiens
Q13155	Aminoacyl tRNA synthase complex-	Q9NP50	Protein FAM60A OS=Homo sapiens GN=FAM
Q9P275	Ubiquitin carboxyl-terminal hydrolas	Q9Y315	Deoxyribose-phosphate aldolase OS=Homo
P49589	CysteinetRNA ligase, cytoplasmic	Q8TED0	U3 small nucleolar RNA-associated protein
Q8IY18	Structural maintenance of chromoso	Q9BXW7	Cat eye syndrome critical region protein 5 OS
Q9NPQ8	Synembryn-AOS=Homo sapiens G	Q12789	General transcription factor 3C polypeptide 1
Q6F5E8	Capping protein, Arp2/3 and myosin	Q6DHZ8	Activity-dependent neuroprotector homeobox
Q14146	Unhealthy ribosome biogenesis pro	P35610	Sterol O-acyltransferase 1 OS=Homo sapier
O75880	Protein SCO1 homolog, mitochondr	Q9Y221	60S ribosome subunit biogenesis protein N
Q15691	Microtubule-associated protein RP/I	P61088	Ubiquitin-conjugating enzyme E2 N OS=Hon
Q9Y394	Dehydrogenase/reductase SDR fan	Q7Z478	ATP-dependent RNA helicase DHX29 OS=H
Q969Z0	Protein TBRG4 OS=Homo sapiens	Q92600	Cell differentiation protein RCD1 homolog O
Q8NBU5	ATPase family AAA domain-containi	P48730	Casein kinase I isoform delta OS=Homo sa
A0A076MIL9	NADH-ubiquinone oxidoreductase o	P52907	F-actin-capping protein subunit alpha-1 OS=
P13489	Ribonuclease inhibitor OS=Homo s	Q86SK9	Stearoyl-CoA desaturase 5 OS=Homo sapie
P20073	Annexin A7 OS=Homo sapiens GN=	Q6PI48	AspartatetRNA ligase, mitochondrial OS=H
P31948	Stress-induced-phosphoprotein 1 C	Q9H9T3	Elongator complex protein 3 OS=Homo sapi
Q13555	Calcium/calmodulin-dependent pro	P27448	MAP/microtubule affinity-regulating kinase 3
P61966	AP-1 complex subunit sigma-1A OS	Q02241	Kinesin-like protein KIF23 OS=Homo sapier
Q8NF37	Lysophosphatidylcholine acyltransfe	Q13098	COP9 signalosome complex subunit 1 OS=
Q71VH6	1-acyl-sn-glycerol-3-phosphate acyl	A0A0F7KYT8	Fragile X mental retardation autosomal hom
075821	Eukaryotic translation initiation facto	Q53GW1	Vesicle transport-related protein isoform a va
P41743	Protein kinase C iota type OS=Hom	P09884	DNA polymerase alpha catalytic subunit OS=
Q52LJ0	Protein FAM98B OS=Homo sapiens	Q9NVH1	DnaJ homolog subfamily C member 11 OS=
000178	GTP-binding protein 1 OS=Homo sa	Q9HBL7	Plasminogen receptor (KT) OS=Homo sapie
Q8N9T8	Protein KRI1 homolog OS=Homo sa	Q92900	Regulator of nonsense transcripts 1 OS=Ho
Q8TEQ6	Gem-associated protein 5 OS=Hom	Q86XN6	Zinc finger protein 761 OS=Homo sapiens G
Q96CS3	FAS-associated factor 2 OS=Homo	Q12873	Chromodomain-helicase-DNA-binding prote
Q9NUU7	ATP-dependent RNA helicase DDX	P25788	Proteasome subunit alpha type-3 OS=Homo
Q9Y2Z4	TyrosinetRNA ligase, mitochondria	Q15070	Mitochondrial inner membrane protein OXA1
Q92890	Ubiquitin fusion degradation protein	000743	Serine/threonine-protein phosphatase 6 cata
Q6NUR1	Non-SMC condensin I complex, sub	075400	Pre-mRNA-processing factor 40 homolog A
Q8IWA0	WD repeat-containing protein 75 OS	095707	Ribonuclease P protein subunit p29 OS=Ho
Q15785	Mitochondrial import receptor subur	P28070	Proteasome subunit beta type-4 OS=Homos
Q6L8Q7	2',5'-phosphodiesterase 12 OS=Hol	P49588	AlaninetRNA ligase, cytoplasmic OS=Hom
Q9BZL6	Serine/threonine-protein kinase D2	P53004	Biliverdin reductase AOS=Homo sapiens Gi
Q5HYL4	Putative uncharacterized protein DK	Q10471	Polypeptide N-acetylgalactosaminyltransfera
P51665	26S proteasome non-Al Pase regul	Q13112	Chromatin assembly factor 1 subunit B OS=
Q12931	Heat shock protein 75 kDa, mitocho	Q15120	IPyruvate denydrogenase (acetyl-transferring
Q14258	E3 ubiquitin/ISG15 ligase TRIM25 C		Stauten, RNA binding protein, homolog 2 (Di
	Auasun-3 US=Homo sapiens GN=A		ransiormation/transcription domain-associ
Q0P1A2	Lysophospholipid acyltransferase 5		Drate a group output it hat a transformer of the second se
	A-kinase anchor protein 17AUS=HC		Transmomherene protein 214 OC
	Protein NRDE2 nomolog US=Homo		riansmembrane protein 214 US=Homo sap
	Probable 400 repeat-containing protein 82 OS		Senne/threonine-protein kinase WARK2 US=
043709	Propable 185 rRNA (guanine-N(7))-	Q8WWY3	104/06 small nuclear ribonucleoprotein Prp3

Accession	Protein Name
Q969V3	Nicalin OS=Homo sapiens GN=NCI
Q96CM8	Acyl-CoA synthetase family member
Q96FV9	THO complex subunit 1 OS=Homo s
Q96H79	Zinc finger CCCH-type antiviral prote
Q96PU4	E3 ubiquitin-protein ligase UHRF2 (
Q9BQA9	Uncharacterized protein C17orf62 O
Q9BRJ7	Protein syndesmos OS=Homo sapi
Q9H4M9	EH domain-containing protein 1 OS
Q9NUD5	Zinc finger CCHC domain-containin
Q2M2R1	ANAPC7 protein (Fragment) OS=Ho
Q15526	Surfeit locus protein 1 OS=Homo sa
Q96G23	Ceramide synthase 2 OS=Homo sa
P53990	IST1 homolog OS=Homo sapiens G
Q15637	Splicing factor 1 OS=Homo sapiens
O94925	Glutaminase kidney isoform, mitoch
P28702	Retinoic acid receptor RXR-beta OS
Q10570	Cleavage and polyadenylation speci
Q12824	SWI/SNF-related matrix-associated
Q13472	DNA topoisomerase 3-alpha OS=H
Q5TI65	Mitochondrial pyruvate carrier OS=H
Q8N8A6	ATP-dependent RNA helicase DDX5
Q96L91	E1A-binding protein p400 OS=Home
Q9BV44	THUMP domain-containing protein 3
Q9H4L7	SWI/SNF-related matrix-associated
Q8IX01	SURP and G-patch domain-containi
Q13459	Unconventional myosin-IXb OS=Hor
Q13724	Mannosyl-oligosaccharide glucosid
Q53EL6	Programmed cell death protein 4 O
P40763	Signal transducer and activator of tra
P23025	DNA repair protein complementing
Q9BUN8	Derlin-1 OS=Homo sapiens GN=DE
095373	Importin-7 OS=Homo sapiens GN=I
P53350	Serine/threonine-protein kinase PLK
Q9Y2U8	Inner nuclear membrane protein Ma
Q01831	DNA repair protein complementing
Q6IBS0	I winfilin-2 OS=Homo sapiens GN=
P00813	Adenosine deaminase OS=Homo s
	Depnospho-CoA kinase domain-co
P49642	DNA primase small subunit OS=Ho
Q9Y241	HIG1 domain family member 1A, mi

8.2. Apêndice 2: Quadro de proteínas encontradas na condição LAG3WT através do ensaio de imunoprecipitação em HEK293T

Protein names	Gene names	MS/MS	*Log t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	LAGWT2_1	LAGWT2_2
LAG3	LAG3	1035	6,597042847	12,65856361	23,3484	23,3547	36,00456	36,01565
78 kDa glucose-regulated protein	HEL-S-89n	844	3,423159775	10,215415	23,0858	23,4806	33,47762	33,51958
Neutral alpha-glucosidase AB	HEL-S-164nA	346	3,676052234	7,956451416	22,9768	22,7559	30,85683	30,78877
Tubulin beta-4B chain	TUBB2C	257	1,252714769	1,808396339	27,616	26,7262	28,94207	29,01694
RuvB-like 2	RUVBL2	231	3,224326155	6,140708923	23,9888	23,9445	30,25575	29,95892
Tubulin alpha-1B chain	TUBA1B	184	2,515975564	1,657465935	27,9513	27,7684	29,52444	29,51026
Heterogeneous nuclear ribonucleoprotein M	HNRNPM	175	0,910168658	0,335488319	27,2655	27,4743	27,78282	27,62798
RuvB-like 1	RUVBL1	144	1,909917807	5,500315666	22,1608	23,3925	28,27075	28,28317
Cytoskeleton-associated protein 4	CKAP4	141	3,371298945	5,703004837	23,2707	23,4066	28,94559	29,1377
Protein disulfide-isomerase A6	PDIA6	141	3,094297534	6,75274086	22,866	22,4829	29,42033	29,434
Heterogeneous nuclear ribonucleoprotein H	HNRNPH1	137	2,457906245	0,738482475	26,664	26,5779	27,36695	27,35187
ADP/ATP translocase 2	SLC25A5	114	3,006583016	0,899544716	27,7206	27,7449	28,60678	28,65779
Endoplasmic reticulum resident protein 44	ERP44	111	2,206400512	6,06226635	22,5386	23,4991	29,08335	29,07887
Heat shock protein HSP 90-beta	HSP90AB1	110	1,703780443	0,859577179	26,037	26,2583	26,95416	27,06023
Ubiquitin-60S ribosomal protein L40	UBB	101	3,659328447	6,310359955	24,6521	24,8221	31,00865	31,0862
Probable ATP-dependent RNA helicase DDX5	DDX5	97	1,670938105	1,163775444	23,4729	23,6383	24,87103	24,56767
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1	RPN1	94	3,447399593	4,216856003	23,3621	23,4006	27,67553	27,52088
Prohibitin-2	PHB2	77	2,81514591	3,38186264	23,1565	23,4147	26,63796	26,69697
Transitional endoplasmic reticulum ATPase	HEL-S-70	71	1,265642817	2,824842453	22,1894	23,4742	25,41558	25,89772
Endoplasmin	TRA1	68	2,197646965	5,0748806	22,0532	22,8647	27,55149	27,51616
Elongation factor 1-gamma	EEF1G	67	0,863251289	0,411684036	26,368	26,0338	26,64609	26,57903
Coatomer subunit alpha	COPA	61	0,521631845	0,591024399	22,831	23,4641	24,02572	23,45136
UDP-glucose:glycoprotein glucosyltransferase 1	UGGT1	59	2,353860831	3,704839706	23,2461	22,752	26,71516	26,69259
Transmembrane protein 43	TMEM43	58	1,747331692	2,724755287	22,9375	23,0892	25,37653	26,09969
Protein transport protein Sec61 subunit alpha isoform 1	SEC61A1	55	1,663435002	3,921247482	23,2453	24,3829	27,88163	27,58899
Eukaryotic initiation factor 4A-I	EIF4A1	50	3,216904623	3,027636528	23,8108	23,6981	26,83099	26,73312
Tubulin beta chain	TUBB	49	1,738634528	1,401581764	26,6203	27,0024	28,23215	28,19371
Peroxiredoxin-4	HEL-S-97n	49	2,549034429	4,622456551	22,9901	23,4819	27,86968	27,84721
60S acidic ribosomal protein P0-like	RPLP0	47	0,52250796	1,900420189	22,3211	22,502	25,68089	22,94299
Clathrin heavy chain 1	CLTC	47	1,736771571	2,788381577	22,8349	22,9914	26,07625	25,32677
Prolyl 3-hydroxylase 1	LEPRE1	46	1,404685593	3,517126083	23,9342	22,4955	26,72025	26,74368
DnaJ homolog subfamily B member 11	DNAJB11	46	1,770732504	3,434140205	21,9604	22,8663	25,84967	25,84529
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase 48 kDa subuni	t DDOST	44	3,468987385	4,45522213	23,2684	23,1206	27,61386	27,68559
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3A	hCG_2032701	43	3,079309723	3,69060421	23,2585	23,3949	27,09919	26,9354

Protein names	Gene names	MS/MS	*Log t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	LAGWT2_1	LAGWT2_2
Renin receptor	ATP6AP2	42	2,934052695	2,629953384	23,6957	23,8114	26,45218	26,31479
Thioredoxin-related transmembrane protein 1	TMX1	42	1,963838326	2,917134285	23,5528	22,9581	26,09768	26,24744
Translocon-associated protein subunit delta	SSR4	39	1,640870221	1,904263496	23,8621	23,2785	25,4485	25,5006
Peptidyl-prolyl cis-trans isomerase	HEL-S-39	36	3,389614369	2,073381424	22,6944	22,7744	24,79541	24,82022
60S ribosomal protein L11	RPL11	36	1,095748909	1,465678215	22,5508	23,3762	24,27042	24,58795
Exportin-2	CSE1L	35	1,432260518	1,977770805	22,7684	23,531	25,21479	25,04018
60S ribosomal protein L18	RPL18	33	2,279732708	1,827908516	22,1787	22,3664	24,19468	24,00624
DnaJ homolog subfamily C member 10	DNAJC10	33	2,02052001	2,366347313	22,9211	22,8136	25,4602	25,00723
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2	RPN2	30	1,455853023	0,97403717	23,2623	23,5494	24,50003	24,25976
Cytoplasmic dynein 1 heavy chain 1	DYNC1H1	29	2,057229706	1,879732132	23,0438	22,71	24,69732	24,81592
Heat shock protein 105 kDa	HSPH1	28	1,406524507	0,627655983	23,1389	23,2811	23,73107	23,94423
Sigma non-opioid intracellular receptor 1	hCG_20471	28	2,665641942	2,289582253	22,5367	22,7074	24,97548	24,84785
MHC class I antigen	HLA-C	27	3,37968658	6,157993317	22,4454	22,6204	28,78126	28,60049
Erlin-2	ERLIN1	27	1,853651747	1,474782944	23,8144	23,9317	25,51418	25,18147
40S ribosomal protein S11	RPS11	27	1,895357187	1,020382881	23,0794	23,2834	24,146	24,25753
Cartilage-associated protein	CRTAP	26	3,124654646	2,346422195	23,188	23,1846	25,59702	25,46843
DnaJ homolog subfamily A member 1	DNAJA1	26	1,67752447	2,791212082	23,1217	22,3221	25,60899	25,41722
Transmembrane emp24 domain-containing protein 10	TMED10	25	2,990266633	2,287139893	24,0469	24,1459	26,43748	26,32965
Heterogeneous nuclear ribonucleoprotein F	HNRPF	25	2,313462044	0,999993324	23,39	23,5202	24,48075	24,4295
Torsin-3A	TOR3A	25	1,893907864	2,19653511	22,9911	22,8723	24,88474	25,37166
Transmembrane 9 superfamily member 2	TM9SF2	24	2,127305345	2,186163902	23,1814	23,3215	25,26112	25,61409
Nicastrin	NCSTN	24	2,518316353	1,674696922	23,514	23,4903	25,08517	25,26849
DnaJ homolog subfamily C member 3	DNAJC3	23	1,119790128	1,812433243	23,0247	24,0797	25,31389	25,41538
60S ribosomal protein L4	RPL4	23	0,68664315	0,969013214	23,4958	22,4559	24,01129	23,87839
Chondroitin sulfate synthase 2	CHPF	23	2,864468104	1,153781891	22,6482	22,5845	23,79858	23,7417
Dermcidin	DCD	21	1,819944489	1,568832397	23,3143	23,5907	24,88339	25,15919
Probable glutathione peroxidase 8	GPX8	21	1,040634727	2,0487957	22,2473	23,5669	25,03523	24,87647
GPI-anchor transamidase	PIGK	20	0,957424881	0,678478241	22,7322	22,5687	23,09674	23,56116
60S ribosomal protein L14	RPL14	19	1,284724319	0,590397835	23,5768	23,3089	23,99231	24,07415
SUN domain-containing protein 2	UNC84B	18	1,572383544	0,953226089	22,8402	22,9965	24,01026	23,73293
Transmembrane emp24 domain-containing protein 9	TMED9	18	2,573049932	2,085073471	23,1973	23,3367	25,26953	25,4346
Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3	PTPLAD1	18	2,065967936	2,744077682	22,9611	23,4488	25,87117	26,02684
Glypican-4	GPC4	18	2,814550849	2,961140633	22,9387	22,7275	25,84235	25,74609
Nucleophosmin	NPM1	17	2,766341466	2,289698601	22,4848	22,658	24,89989	24,82231
Polypyrimidine tract-binding protein 1	PTBP1	17	1,273307122	0,405250549	24,1449	24,2393	24,68266	24,51202
Glutaminyl-peptide cyclotransferase-like protein	QPCTL	17	2,370811923	2,281787872	22,689	22,3918	24,80725	24,83711
Protein names	Gene names	MS/MS	*Log t-test P-value	-test Difference	CTRL2_1	CTRL2_2	LAGWT2_1	LAGWT2_2
--	------------	-------	---------------------	------------------	---------	---------	----------	----------
Protein ERGIC-53	LMAN1	16	1,648425012	3,746775627	22,3734	22,5518	26,77367	25,6451
Fatty acid synthase	FASN	16	1,254242541	1,636387825	22,7078	22,8704	24,82036	24,03053
Ribosomal protein L15	RPL15	15	1,988024335	1,126606941	23,0906	23,235	24,19978	24,37908
Surfeit locus protein 4	SURF4	15	0,980922024	0,548944473	23,9198	23,5392	24,31001	24,24685
Signal peptidase complex subunit 3	SPCS3	15	1,310164659	1,994932175	22,5449	23,444	24,89948	25,07928
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3B	STT3B	15	0,831088217	0,822174072	23,1244	22,4317	23,51545	23,68496
UPF0556 protein C19orf10	C19orf10	15	1,272208326	1,858776093	23,5709	22,676	24,96437	24,99998
Heat shock 70 kDa protein 6	HSPA6	14	2,724707677	3,675924301	25,155	25,4725	28,97123	29,00804
Nicalin	NCLN	12	1,458027142	1,157338142	22,9902	23,4336	24,36152	24,37696
Protein canopy homolog 2	CNPY2	12	3,498117944	2,96132946	22,6891	22,6415	25,57954	25,67376
Protein FAM3A	FAM3A	11	0,760432169	1,024338722	22,3911	23,3781	23,91442	23,90343
Phospholipase D3	PLD3	10	0,785704311	1,03638649	22,6553	22,8204	23,30076	24,24771
60S ribosomal protein L13a	RPL13A	10	0,907133078	0,649272919	22,6744	22,6732	23,0705	23,57565
Lamin-B receptor	LBR	9	3,225122606	3,06463623	23,1456	23,2874	26,25724	26,30503
V-type proton ATPase subunit S1	FLJ00383	9	1,832150441	1,067667007	22,1343	22,219	23,12038	23,36826
Derlin-1	DERL1	8	0,616904577	0,413043022	22,8964	23,2987	23,36038	23,6608
Trifunctional enzyme subunit beta, mitochondrial	HADHB	8	2,467305201	1,540206909	23,0532	22,9426	24,6093	24,46688
Protein disulfide-isomerase A4	PDIA4	7	1,9473198	1,727966309	22,9361	23,0878	24,9088	24,57097
45 kDa calcium-binding protein	SDF4	5	2,110687639	0,91945076	23,044	23,1906	24,07218	24,00136
Protein disulfide-isomerase	HEL-S-269	5	0,918355339	1,628412247	23,5599	22,3241	24,48597	24,65485

8.3 Apêndice 3: Quadro de proteínas encontradas na condição EPDEL através do ensaio de imunoprecipitação em HEK 293T.

Protein names	Gene names	MS/MS *	-Log t-test P-value	t-test Difference	EPDEL1_1	EPDEL1_2	CTRL2_1	CTRL2_2
LAG3	LAG3	1035	4,778253425	12,50608444	35,90858	35,80667	23,34842	23,35467
78 kDa glucose-regulated protein	HEL-S-89n	844	3,428363621	10,22432232	33,5013	33,51371	23,08578	23,48059
Neutral alpha-glucosidase AB	HEL-S-164nA	346	3,638375184	7,515329361	30,40993	30,35342	22,97677	22,75592
Heterogeneous nuclear ribonucleoproteins A2/B1	HNRNPA2B1	316	3,878702155	3,82615757	31,32753	31,41261	27,53267	27,55516
Tubulin beta-4B chain	TUBB2C	257	1,264987037	1,85012722	29,08747	28,95499	27,61597	26,72624
Collagen alpha-1(l) chain	COL1A1	253	2,754504034	7,55567646	30,83387	30,95982	23,03009	23,65225
Glycogen phosphorylase, liver form	PYGL	243	2,220803896	7,030456543	29,97719	29,92592	22,37399	23,46821
RuvB-like 2	RUVBL2	231	4,379963484	6,311936378	30,24434	30,31279	23,98876	23,94449
Tubulin alpha-1B chain	TUBA1B	184	2,560390901	2,264921188	30,04856	30,20105	27,95133	27,76844
Heterogeneous nuclear ribonucleoprotein M	HNRNPM	175	2,250530594	1,461369514	28,79662	28,86594	27,26553	27,47429
Serpin H1	SERPINH1	154	3,771965681	4,970438957	28,46813	28,48865	23,44413	23,57176
RuvB-like 1	RUVBL1	144	2,062500215	6,58538723	29,39758	29,32648	22,16084	23,39245
Cytoskeleton-associated protein 4	CKAP4	141	3,841987887	5,736765862	29,06438	29,08644	23,27071	23,40657
Protein disulfide-isomerase A6	PDIA6	141	2,875393877	5,982365608	28,55153	28,76205	22,86599	22,48286
Heterogeneous nuclear ribonucleoprotein H	HNRNPH1	137	3,307571744	2,400627136	29,05297	28,99013	26,66397	26,57788
60 kDa heat shock protein, mitochondrial	HSPD1	132	2,160953736	0,364505768	27,68365	27,66675	27,33994	27,28145
Heterogeneous nuclear ribonucleoprotein A1	HNRNPA1	132	1,789550669	3,638505936	28,69661	28,745	25,55101	24,61358
ADP/ATP translocase 2	SLC25A5	114	3,307945124	1,203399658	28,95992	28,91236	27,72058	27,7449
Endoplasmic reticulum resident protein 44	ERP44	111	2,247295521	6,367563248	29,35888	29,41393	22,5386	23,49909
Heat shock protein HSP 90-beta	HSP90AB1	110	1,371103932	0,680562973	26,73441	26,92196	26,03695	26,25829
Ubiquitin-60S ribosomal protein L40	UBB	101	2,754395525	4,950551033	29,87744	29,49779	24,65207	24,82206
Probable ATP-dependent RNA helicase DDX5	DDX5	97	3,362088432	4,629313469	28,13511	28,23466	23,47288	23,63827
Collagen alpha-2(I) chain	COL1A2	96	3,758921393	6,986451149	29,71093	29,796	22,68518	22,84884
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1	RPN1	94	3,300969263	3,900416374	27,36686	27,19667	23,36207	23,40063
Heterogeneous nuclear ribonucleoprotein U	HNRNPU	92	1,058357713	0,608447075	27,80741	27,78862	27,38212	26,99701
Heterogeneous nuclear ribonucleoprotein A3	HNRNPA3	84	3,607207481	4,735040665	27,79166	27,80236	23,13622	22,98773
Prohibitin-2	PHB2	77	2,8274012	3,561724663	26,79996	26,8947	23,15647	23,41473
Histone H4	HIST1H4H	74	1,285976341	0,425871849	28,83156	28,89842	28,53427	28,34397
Transitional endoplasmic reticulum ATPase	HEL-S-70	71	1,632091048	4,76527977	27,22803	27,96615	22,18939	23,47422
Endoplasmin	TRA1	68	2,1456771	4,772791862	27,23416	27,22931	22,05319	22,8647
40S ribosomal protein S4	RPS4X	67	1,10997014	0,303587914	27,09386	26,99075	26,81238	26,66506
Leucine-rich repeat-containing protein 59	LRRC59	66	2,126070202	2,350209236	27,05538	27,21771	24,59872	24,97395
	HLA-C	65	2,474256167	3,665873528	26,62937	26,7239	23,21833	22,80319
40S ribosomal protein S3	RPS3	64	2,050311975	3,184276581	26,21819	25,76221	22,60706	23,00478
Collagen, type I, alpha 1, isoform CRA_a	COL1A1	62	3,690675111	7,704072952	31,18258	31,24774	23,406	23,61616
Coatomer subunit alpha	COPA	61	1,957623321	3,007906914	26,12035	26,1905	22,83099	23,46405
UDP-glucose:glycoprotein glucosyltransferase 1	UGGT1	59	2,427059387	4,282186508	27,19216	27,37028	23,24611	22,75196
Heterogeneous nuclear ribonucleoprotein H3	HNRPH3	58	2,942945103	3,806698799	28,43655	28,42482	24,75251	24,49546
Transmembrane protein 43	TMEM43	58	3,561016856	4,575815201	27,59114	27,58721	22,93752	23,0892

Protein names	Gene names	MS/MS ³	*-Log t-test P-value	t-test Difference	EPDEL1_1	EPDEL1_2	CTRL2_1	CTRL2_2
Pyrroline-5-carboxylate reductase 2	PYCR2	55	2,752146445	2,54958725	25,78564	25,62692	23,08434	23,22905
Protein transport protein Sec61 subunit alpha isoform 1	SEC61A1	55	1,810078279	4,52167511	28,36005	28,31142	23,24527	24,38286
40S ribosomal protein S13	RPS13	54	1,649880873	3,142150879	26,24771	26,10891	23,50937	22,56295
Pyrroline-5-carboxylate reductase	PYCR1	53	1,454894374	2,238375664	25,89661	25,74953	23,16034	24,00905
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3	PLOD3	53	2,823173563	3,319024086	26,5611	26,30861	23,14134	23,09032
40S ribosomal protein S9	RPS9	51	3,065479772	3,867195129	26,72338	26,8889	22,8613	23,0166
Glycogen phosphorylase, brain form	PYGB	51	2,287986	3,001077652	26,32146	26,50484	23,21622	23,60793
Eukaryotic initiation factor 4A-I	EIF4A1	50	2,48649308	2,318430901	26,19304	25,95265	23,81075	23,69808
Tubulin beta chain	TUBB	49	0,574894967	0,864922523	27,14336	28,20918	26,62031	27,00239
Peroxiredoxin-4	HEL-S-97n	49	2,2703658	3,553525925	26,87795	26,70108	22,99005	23,48192
ATP synthase subunit O, mitochondrial	ATP5O	48	1,606201248	0,963583946	26,45419	26,53321	25,38073	25,67949
60S acidic ribosomal protein P0-like	RPLP0	47	2,751151166	2,960114479	25,28563	25,45764	22,32105	22,502
Clathrin heavy chain 1	CLTC	47	2,074458739	1,898426056	24,65464	24,96847	22,83485	22,9914
Cleavage and polyadenylation specificity factor subunit 5	NUDT21	46	1,390954857	1,212602615	26,68083	27,05082	25,48176	25,82469
DnaJ homolog subfamily C member 16	DNAJC16	46	2,380587611	3,102706909	26,40873	26,57888	23,57301	23,20919
Prolyl 3-hydroxylase 1	LEPRE1	46	1,438228302	3,669945717	26,92739	26,84218	23,93416	22,49553
DnaJ homolog subfamily B member 11	DNAJB11	46	2,074334885	5,051042557	27,35212	27,57665	21,96042	22,86626
RNA-binding protein FUS	FUS	45	2,786310488	4,421087265	27,32457	27,40479	22,76912	23,11806
4F2 cell-surface antigen heavy chain	SLC3A2	45	1,608882778	3,542699814	27,1033	26,07218	23,27928	22,8108
ATPase family AAA domain-containing protein 3A	ATAD3A	45	5,057300471	3,275008202	26,45494	26,46925	23,18055	23,19363
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase 48 kDa subunit	DDOST	44	3,54658191	4,386033058	27,58341	27,57766	23,26838	23,12062
ATP-dependent RNA helicase DDX3X	DDX3X	44	3,244341935	3,164800644	26,60244	26,68097	23,41233	23,54147
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3A	hCG_2032701	43	3,130540973	3,129749298	26,40539	26,50749	23,25846	23,39491
ATP synthase subunit gamma	ATP5C1	43	1,502244278	2,293542862	25,62517	25,38103	23,60798	22,81114
Signal recognition particle receptor subunit beta	SRPRB	43	4,279095981	2,315096855	25,83687	25,86785	23,53079	23,54374
Renin receptor	ATP6AP2	42	2,975699419	3,331410408	26,99324	27,17665	23,69569	23,81137
Thioredoxin-related transmembrane protein 1	TMX1	42	2,24790807	3,957089424	27,18376	27,24127	23,55276	22,95809
Translocon-associated protein subunit delta	SSR4	39	2,053473219	3,088815689	26,641	26,67721	23,86211	23,27847
40S ribosomal protein S2	RPS2	38	1,402112427	2,290045738	25,27252	25,42111	23,52075	22,59279
40S ribosomal protein S19	RPS19	36	1,902573154	1,946872711	25,97552	26,00125	23,82203	24,261
Peptidyl-prolyl cis-trans isomerase	HEL-S-39	36	3,785992894	3,189793587	25,91611	25,93233	22,69443	22,77443
60S ribosomal protein L11	RPL11	36	1,731826712	3,030469894	25,9244	26,06355	22,55082	23,37619
Mitochondrial import inner membrane translocase subunit TIM50	TIMM50	35	2,684389415	3,269205093	25,85353	25,61501	22,37589	22,55424
Exportin-2	CSE1L	35	1,354405249	1,802783966	24,86055	25,04444	22,76842	23,531
60S ribosomal protein L18	RPL18	33	2,795030482	3,600845337	25,76373	25,98307	22,1787	22,36641
RNA-binding protein 14	RBM14	33	2,598215705	2,268118858	26,24264	26,44784	24,02714	24,12709
DnaJ homolog subfamily C member 10	DNAJC10	33	3,092744883	3,551804543	26,50469	26,33366	22,92112	22,81362
60S ribosomal protein L7	RPL7	32	2,037109783	1,875477791	25,55473	25,21605	23,44614	23,57368
40S ribosomal protein S3a	RPS3A	31	2,554972671	2,93081665	26,10855	25,83535	22,96782	23,11445
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2	PLOD2	31	2,687105135	1,280054092	24,56802	24,62461	23,36703	23,26549
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1	PLOD1	30	2,026514393	2,489171982	25,27299	25,73505	22,93904	23,09065

Protein names	Gene names	MS/MS *	-Log t-test P-value	t-test Difference	EPDEL1_1	EPDEL1_2	CTRL2_1	CTRL2_2
DAZ-associated protein 1	DAZAP1	30	3,200938138	3,720050812	26,30859	26,38487	22,54144	22,71192
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2	RPN2	30	2,10243246	2,906638145	26,52911	26,09587	23,2623	23,54941
Transferrin receptor protein 1	TFRC	29	1,638477069	1,894395828	25,13481	25,31178	23,60748	23,05032
Alpha-galactosidase A	GLA	29	1,523656799	3,379590034	25,93344	26,45317	22,27473	23,3527
Histone H2A	HIST1H2AH	28	2,961101741	5,22509861	28,02675	28,01866	22,9705	22,62471
Heat shock protein 105 kDa	HSPH1	28	1,666866094	1,745597839	24,70509	25,20609	23,13893	23,28105
Sigma non-opioid intracellular receptor 1	hCG_20471	28	2,849279619	3,369976044	25,89816	26,08596	22,53673	22,70744
Heat shock protein HSP 90-alpha	HSP90AA1	28	0,911635031	1,07562542	24,20494	24,00992	22,62759	23,43602
Emerin	EMD	28	2,246339928	1,857542038	25,6593	25,72161	23,69593	23,9699
	IGL@	28	1,251593983	0,223276138	25,62433	25,65322	25,36222	25,46877
Voltage-dependent anion-selective channel protein 2	VDAC2	27	2,541009625	1,63084507	24,26999	24,23052	22,53399	22,70483
MHC class I antigen		27	2,876809487	4,324882507	26,7265	26,98902	22,44536	22,6204
Erlin-2	ERLIN1	27	2,537906848	1,4740448	25,29341	25,40077	23,81437	23,93172
40S ribosomal protein S11	RPS11	27	2,705680869	2,857913971	25,96356	26,11504	23,07942	23,28335
60S ribosomal protein L30	RPL30	26	1,893023735	2,570137024	25,91964	25,9077	23,637	23,05007
Cartilage-associated protein	CRTAP	26	3,785223113	2,497595787	25,65196	25,71584	23,18801	23,18459
Heterogeneous nuclear ribonucleoprotein A/B	HNRNPAB	26	0,979344823	1,888800621	24,75267	24,8931	22,27263	23,59554
DnaJ homolog subfamily A member 1	DNAJA1	26	1,611458476	2,553215027	25,3507	25,19952	23,12167	22,32212
40S ribosomal protein S25	RPS25	26	1,78949634	1,374920845	25,44313	25,63281	24,01317	24,31293
Transmembrane emp24 domain-containing protein 10	TMED10	25	2,394474512	2,773283005	26,70015	27,03926	24,04691	24,14593
Heterogeneous nuclear ribonucleoprotein F	HNRPF	25	1,775370939	0,496627808	23,95411	23,9494	23,39003	23,52023
Torsin-3A	TOR3A	25	3,118227545	2,397633553	25,30002	25,35857	22,99105	22,87228
Transmembrane 9 superfamily member 2	TM9SF2	24	1,929068995	1,550219536	24,95624	24,64708	23,18139	23,32149
Nodal modulator 1	NOMO3	24	1,934476006	1,816302299	25,39562	25,02357	23,32668	23,45989
Nicastrin	NCSTN	24	2,543323517	1,845629692	25,44601	25,24952	23,51395	23,49032
ADP/ATP translocase 3	SLC25A6	24	1,118118375	2,107949257	24,9623	24,98255	23,4821	22,24685
60S ribosomal protein L10	RPL10	23	2,233506264	1,918206215	24,90132	25,15653	23,03725	23,18419
DnaJ homolog subfamily C member 3	DNAJC3	23	1,574467335	3,232398987	26,67694	26,89227	23,02468	24,07973
Protein S100	S100A9	23	1,287203467	2,106087685	24,82469	24,88409	22,25121	23,2454
Histone H3	H3F3B	23	3,362512334	5,621631622	28,56289	28,68104	23,1015	22,89916
60S ribosomal protein L4	RPL4	23	0,971988228	1,487475395	24,36533	24,56128	23,49578	22,45588
ATP synthase subunit beta	ATP5B	23	1,165150783	1,242033958	24,03649	24,21416	23,21415	22,55243
Chondroitin sulfate synthase 2	CHPF	23	2,87936575	2,219545364	24,76172	24,91008	22,6482	22,58452
Probable ATP-dependent RNA helicase DDX17	DDX17	22	2,189525652	2,668822289	25,6108	25,52707	22,6886	23,11162
RNA-binding motif protein, X chromosome	RBMX	22	1,083380907	2,818949699	25,64287	25,63716	23,68534	21,95679
Pre-mRNA-processing-splicing factor 8	PRPF8	22	0,899525411	0,391539574	23,78487	24,05978	23,60011	23,46145
Dermcidin	DCD	21	1,105289128	0,612594604	23,94584	24,18427	23,31425	23,59067
Tetratricopeptide repeat protein 13	DKFZp667K091	≀ 21	1,600847577	1,563407898	24,96667	25,4474	23,56691	23,72034
Probable glutathione peroxidase 8	GPX8	21	1,214177566	2,703454971	25,37494	25,84608	22,24726	23,56685
GPI-anchor transamidase	PIGK	20	2,816370485	2,129608154	24,76421	24,79595	22,73224	22,5687

Protein names	Gene names	MS/MS	*-Log t-test P-value	t-test Difference	EPDEL1_1	EPDEL1_2	CTRL2_1	CTRL2_2
60S ribosomal protein L8	RPL8	20	1,718475675	1,777355194	25,49293	25,55897	23,50142	23,99576
GRAM domain-containing protein 1A	GRAMD1A	20	2,7728373	1,664058685	24,87056	24,98355	23,30162	23,22437
Lamin-B1	LMNB1	20	1,827922866	1,215792656	23,88036	24,16092	22,75204	22,85765
60S ribosomal protein L13	RPL13	19	2,169720897	1,686372757	24,71487	24,78526	23,19859	22,9288
Splicing factor 3B subunit 3	SF3B3	19	0,699691182	0,430153847	24,22486	24,13281	23,97185	23,52552
60S ribosomal protein L14	RPL14	19	1,668191107	0,959360123	24,35239	24,45199	23,57675	23,30891
Interleukin enhancer-binding factor 2	ILF2	19	2,237726838	1,981848717	24,64894	24,6457	22,51409	22,81686
Annexin	ANXA1	19	2,621532969	2,952353477	25,49399	25,23202	22,47192	22,34939
Small nuclear ribonucleoprotein Sm D2	SNRPD2	19	2,148787729	3,638132095	26,22916	26,04642	22,20533	22,79398
SUN domain-containing protein 2	UNC84B	18	1,741084666	2,552222252	25,13085	25,81034	22,84022	22,99652
Transmembrane emp24 domain-containing protein 9	TMED9	18	2,696276896	1,934209824	25,14927	25,25314	23,19732	23,33666
Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3	PTPLAD1	18	1,514415247	1,440454483	24,72926	24,56151	22,96106	23,4488
Glypican-4	GPC4	18	2,065596036	1,562170029	24,29474	24,49576	22,93869	22,72747
60S ribosomal protein L12	RPL12	18	1,849087265	1,967338562	25,37395	25,08784	23,45199	23,07512
60S ribosomal protein L10a	RPL10A	18	1,073213073	2,446565628	25,7984	26,03783	24,22224	22,72086
Nuclear pore membrane glycoprotein 210	NUP210	18	1,291745809	0,871339798	24,29243	24,02115	23,43898	23,13192
Protein THEM6	THEM6	18	1,326677838	1,866890907	25,42924	24,97937	22,98236	23,69247
Histone H2B	HIST1H2BC	17	3,383763633	4,920100212	27,43245	27,53193	22,47528	22,6489
Heterogeneous nuclear ribonucleoprotein U-like protein 1	HNRNPUL1	17	2,19812445	1,996297836	25,44266	25,15449	23,23346	23,37109
Heterogeneous nuclear ribonucleoprotein D-like	HNRPDL	17	2,656877688	1,66840744	25,07725	24,99632	23,30117	23,43559
Nucleophosmin	NPM1	17	2,734597649	2,046837807	24,63384	24,60264	22,48481	22,65799
60S ribosomal protein L18a	RPL18A	17	1,784130808	2,179079056	25,01253	24,57375	22,79265	22,43547
60S ribosomal protein L37a	RPL37A	17	1,341321393	1,429466248	25,14367	24,57039	23,56072	23,29441
Glutaminyl-peptide cyclotransferase-like protein	QPCTL	17	2,381026312	2,517108917	24,99097	25,12404	22,68901	22,39177
40S ribosomal protein S8	RPS8	17	0,789198602	0,74468708	23,99369	24,08213	22,95254	23,63391
Nucleolar RNA helicase 2	DDX21	17	1,477732695	2,899018288	25,22041	25,14748	21,7436	22,82625
Transmembrane emp24 domain-containing protein 5	TMED5	17	3,129929772	3,849409103	26,99529	27,20378	23,26159	23,23866
Protein ERGIC-53	LMAN1	16	1,948569225	1,535593033	23,86022	24,13618	22,37338	22,55184
Cytochrome c oxidase subunit NDUFA4	NDUFA4	16	0,509528402	0,673003197	24,22575	24,22251	24,04945	23,0528
Peroxiredoxin-2	HEL-S-2a	16	1,53820879	1,14070034	23,87764	23,74776	22,48447	22,85953
60S ribosomal protein L7a	RPL7A	16	0,80465992	1,487797737	24,93728	24,92447	22,77237	24,11379
Serine/threonine-protein phosphatase PGAM5, mitochondrial	PGAM5	16	0,93282632	1,966328621	24,52307	25,70812	23,58931	22,70922
Coiled-coil domain-containing protein 134	CCDC134	16	1,074780129	1,757308006	24,72578	25,30911	22,79988	23,72039
Ribosomal protein L15	RPL15	15	2,379029279	1,713126183	24,96036	24,79154	23,09062	23,23503
Transmembrane protein 33	TMEM33	15	0,505865825	0,665481567	24,28898	24,34773	23,15741	24,14834
DnaJ homolog subfamily A member 3, mitochondrial	DNAJA3	15	1,814760014	1,891464233	25,45095	25,00731	23,42067	23,25467
Chondroitin sulfate glucuronyltransferase	CHPF2	15	0,519456622	1,142219543	24,59867	24,61824	24,29565	22,63681
40S ribosomal protein S7	RPS7	15	2,435057061	1,535809517	24,85239	24,67449	23,25588	23,19938
Surfeit locus protein 4	SURF4	15	0,797529119	0,624034882	24,14227	24,56477	23,91979	23,53918

Protein names	Gene names	MS/MS	*-Log t-test P-value	t-test Difference	EPDEL1_1	EPDEL1_2	CTRL2_1	CTRL2_2
Signal peptidase complex subunit 3	SPCS3	15	1,402932241	2,197885513	25,16216	25,22251	22,54493	23,44397
Protein transport protein Sec61 subunit beta	SEC61B	15	3,9302505	2,489889145	25,35494	25,33429	22,8298	22,87966
Stromal cell-derived factor 2-like protein 1	SDF2L1	15	2,349955251	2,353818893	25,6319	25,46463	23,32833	23,06057
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3B	STT3B	15	1,156566569	1,252182007	24,07496	23,98546	23,12435	22,43171
UPF0556 protein C19orf10	C19orf10	15	1,065930296	1,481356621	24,73019	24,47933	23,57085	22,67595
UDP-glucose:glycoprotein glucosyltransferase 2	UGGT2	15	0,958854319	1,353531837	24,16331	23,7494	23,04716	22,15849
Protein disulfide-isomerase	P4HB	14	2,711800904	2,197939873	24,35232	24,34184	22,05229	22,24599
40S ribosomal protein S16	RPS16	14	1,240844122	0,37667942	24,39931	24,56023	24,05374	24,15243
DNA replication licensing factor MCM3	HCC5	14	2,00282438	0,773213387	23,7494	23,77706	22,91361	23,06642
Importin subunit alpha	KPNA2	14	0,905615755	0,777379036	24,40555	25,01133	23,94115	23,92097
60S ribosomal protein L23a	RPL23A	14	0,611489706	0,327097893	24,00427	24,11227	23,53793	23,92443
Heat shock 70 kDa protein 6	HSPA6	14	2,716560876	3,670981407	29,01215	28,95723	25,15495	25,47246
Ig heavy chain V-I region V35	scFv	14	1,5551891	3,238845825	26,91274	26,81873	23,07679	24,17698
60S ribosomal protein L27	RPL27	13	2,581139573	1,893737793	24,80956	24,69795	22,78045	22,93959
Heterogeneous nuclear ribonucleoprotein D0	HNRNPD	13	2,053862415	1,170953751	23,89791	23,75471	22,57081	22,7399
Probable ATP-dependent RNA helicase DDX46	DDX46	13	1,584516937	1,583357811	24,08497	24,57946	22,66658	22,83113
40S ribosomal protein S6	RPS6	13	2,270500643	1,196531296	24,07227	24,1529	22,83785	22,99426
60S ribosomal protein L28	RPL28	13	1,746196609	1,605439186	24,24641	24,23294	22,41637	22,8521
Melanoma inhibitory activity protein 3	MIA3	13	1,110947533	1,824431419	24,54498	25,02445	22,47684	23,44373
Cell cycle progression protein 1	CCPG1	12	2,693855993	2,302983284	25,05155	25,182	22,7331	22,89448
Nascent polypeptide-associated complex subunit alpha	NACA	12	1,658074918	1,212135315	24,26678	24,04852	22,79897	23,09205
Nicalin	NCLN	12	1,831570706	1,971876144	25,28097	25,08659	22,9902	23,4336
Protein canopy homolog 2	CNPY2	12	2,041535493	1,489494324	24,01385	24,29579	22,68914	22,64151
40S ribosomal protein S14	RPS14	12	4,176667338	1,185420036	24,73381	24,72682	23,53588	23,55391
Magnesium transporter protein 1	MAGT1	11	2,479194106	3,432559013	25,37607	25,72101	22,01832	22,21364
Protein FAM3A	FAM3A	11	1,063061285	1,676497459	24,74853	24,37365	22,39108	23,3781
40S ribosomal protein S15a	RPS15A	11	2,954501655	1,92372036	24,66693	24,57115	22,73801	22,65262
Exostosin-2	EXT2	11	1,003446987	2,302105904	25,92863	24,59224	23,36984	22,54682
Reticulocalbin-2	RCN2	11	1,887239196	2,268537521	24,9486	25,14892	22,53937	23,02107
Rab-like protein 3	RABL3	11	0,798364282	0,84560585	23,92316	23,83316	23,41471	22,65039
Phospholipase D3	PLD3	10	1,077601713	1,003127098	23,44228	24,03967	22,65531	22,82039
60S ribosomal protein L5	RPL5	10	2,448721409	1,364168167	24,14118	24,14973	22,6998	22,86277
Very-long-chain enoyl-CoA reductase	TECR	10	1,496561731	0,688131332	23,84345	23,97185	23,11123	23,3278
Cleavage and polyadenylation specificity factor subunit 7	CPSF7	10	0,693046682	0,96844101	23,73707	24,39454	22,6964	23,49832
Tubulin alpha-1C chain	TUBA1C	10	0,519591253	0,704667091	24,03229	23,59035	22,64524	23,56807
Cleavage and polyadenylation specificity factor subunit 6	CPSF6	10	1,567496294	2,283096313	25,46874	25,63918	22,89698	23,64475
60S ribosomal protein L13a	RPL13A	10	1,822251283	0,883137703	23,44733	23,66655	22,67438	22,67323
Lamin-B receptor	LBR	9	1,950266331	0,843203545	24,00419	24,11521	23,1456	23,2874
60S ribosomal protein L34	RPL34	9	1,994531163	1,062259674	23,91223	23,77143	22,69805	22,8611

Protein names	Gene names	MS/MS	*-Log t-test P-value	t-test Difference	EPDEL1_1	EPDEL1_2	CTRL2_1	CTRL2_2
Single-stranded DNA-binding protein	SSBP1	9	1,643970823	1,290665627	24,15653	23,79808	22,60286	22,77043
V-type proton ATPase subunit S1	FLJ00383	9	3,1154666	1,958343506	24,10109	24,1689	22,1343	22,21901
Calreticulin	HEL-S-99n	9	3,832305386	1,820560455	24,96715	24,92316	23,12259	23,12659
MHC class I antigen	HLA-A	9	2,054532709	3,251774788	26,48866	26,30775	23,44025	22,85261
Small nuclear ribonucleoprotein Sm D1	SNRPD1	9	1,6676519	1,805399895	24,99503	25,01721	23,46954	22,93189
Deleted in autism protein 1	C3orf58	9	0,782936072	1,045331001	23,63589	24,18548	22,46355	23,26716
IgG H chain		9	1,986072886	3,36107254	26,13046	26,09313	23,09443	22,40702
Calcyclin-binding protein	CACYBP	8	0,462778677	0,663274765	23,36466	23,17779	22,07572	23,14019
DNA replication licensing factor MCM7	MCM7	8	2,269827752	1,907888412	23,58095	23,76466	21,65872	21,87111
Nucleotide exchange factor SIL1	SIL1	8	1,498935867	0,508934021	23,85918	23,98963	23,34941	23,48153
Nucleolysin TIAR	TIAL1	8	1,549883262	1,777097702	24,4632	24,70208	23,08603	22,52505
Chitinase domain-containing protein 1	CHID1	8	1,216305229	0,313123703	23,89541	23,79907	23,46909	23,59915
40S ribosomal protein S27	RPS27	8	0,802548252	1,790747643	25,03225	25,16511	22,50081	24,11505
Polyadenylate-binding protein 1	PABPC1	7	1,668384004	1,01388073	24,16974	24,35111	23,36724	23,12585
Protein disulfide-isomerase A4	PDIA4	7	2,483035864	1,515439987	24,48456	24,57016	22,93605	23,0878
Small nuclear ribonucleoprotein-associated protein	SNRPN	7	0,531920081	0,512774467	23,49167	23,62109	23,40134	22,68588
DNA replication licensing factor MCM5	MCM5	6	1,053209379	1,084015846	24,20985	24,10462	22,73144	23,415
45 kDa calcium-binding protein	SDF4	5	2,163751575	1,018387794	24,09313	24,17828	23,04401	23,19063
RNA-binding protein EWS	EWSR1	5	1,62676882	0,677641869	24,47358	24,29733	23,64886	23,76677
Beta-hexosaminidase	HEXA	5	1,159756634	0,281116486	23,30299	23,34557	22,96805	23,11828
Protein disulfide-isomerase	HEL-S-269	5	0,630471654	1,048315048	24,0653	23,91534	23,55989	22,32412
Prolyl 3-hydroxylase 3	LEPREL2	5	1,299973783	0,612211227	23,64218	23,8825	23,22668	23,07358
		4	1,89524441	1,469449043	23,87708	23,83682	22,22134	22,55367
Myosin-9	MYH9	3	2,265315946	1,284116745	23,51316	23,52719	22,14132	22,3308
DnaJ homolog subfamily A member 2	DNAJA2	3	2,242958355	3,264153481	25,0258	25,47865	21,8873	22,08884
Peptidyl-prolyl cis-trans isomerase-like 4	PPIL4	3	2,028174365	0,911890984	23,05547	22,97456	22,02395	22,18229
Probable Xaa-Pro aminopeptidase 3	XPNPEP3	3	0,653491708	0,641004562	23,10189	22,4977	22,36563	21,95196

8.4. Apêndice 4: Quadro de proteínas encontradas na condição KMUT através do ensaio de imunoprecipitação em HEK293T.

Protein names	Gene names l	MS/MS	*-Log t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	KMUT1_1	KMUT1_2
LAG3	LAG3	1035	6,231949101	12,45568657	23,3484	23,35467	35,81624	35,79822
78 kDa glucose-regulated protein	HEL-S-89n	844	3,4160538	10,07700253	23,0858	23,48059	33,36372	33,35666
Neutral alpha-glucosidase AB	HEL-S-164nA	346	3,671512021	7,5809021	22,9768	22,75592	30,43986	30,45464
Heterogeneous nuclear ribonucleoproteins A2/B1	HNRNPA2B1	316	4,245865775	3,389583588	27,5327	27,55516	30,95643	30,91056
Tubulin beta-4B chain	TUBB2C	257	1,034137057	1,386425018	27,616	26,72624	28,4689	28,64616
Collagen alpha-1(l) chain	COL1A1	253	2,706384968	7,021533966	23,0301	23,65225	30,34149	30,38391
Glycogen phosphorylase, liver form	PYGL	243	1,988777139	5,37640667	22,374	23,46821	28,34143	28,25359
RuvB-like 2	RUVBL2	231	4,924406591	6,415947914	23,9888	23,94449	30,38288	30,38227
Tubulin alpha-1B chain	TUBA1B	184	2,381367113	1,570446968	27,9513	27,76844	29,38616	29,4745
Heterogeneous nuclear ribonucleoprotein M	HNRNPM	175	1,580774951	0,762541771	27,2655	27,47429	28,20313	28,06178
Serpin H1	SERPINH1	154	3,464257912	3,702266693	23,4441	23,57176	27,18499	27,23544
RuvB-like 1	RUVBL1	144	1,999362208	6,141654015	22,1608	23,39245	28,98378	28,85281
Cytoskeleton-associated protein 4	CKAP4	141	2,709244169	5,390148163	23,2707	23,40657	28,95748	28,5001
Protein disulfide-isomerase A6	PDIA6	141	2,9115788	5,977258682	22,866	22,48286	28,73641	28,56696
Heterogeneous nuclear ribonucleoprotein H	HNRNPH1	137	2,379129668	1,721993446	26,664	26,57788	28,23991	28,44593
Heterogeneous nuclear ribonucleoprotein A1	HNRNPA1	132	1,389542057	2,580280304	25,551	24,61358	27,92598	27,39917
ADP/ATP translocase 2	SLC25A5	114	4,142607513	1,844290733	27,7206	27,7449	29,56718	29,58689
Endoplasmic reticulum resident protein 44	ERP44	111	2,223439	6,184350967	22,5386	23,49909	29,19481	29,21157
Heat shock protein HSP 90-beta	HSP90AB1	110	1,454237018	0,583042145	26,037	26,25829	26,74957	26,71175
Ubiquitin-60S ribosomal protein L40	UBB	101	3,323112165	5,23729229	24,6521	24,82206	29,89807	30,05064
Probable ATP-dependent RNA helicase DDX5	DDX5	97	2,596876594	3,570314407	23,4729	23,63827	27,28569	26,96609
Collagen alpha-2(l) chain	COL1A2	96	3,865041952	7,034892082	22,6852	22,84884	29,80951	29,7943
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1	RPN1	94	3,803475567	3,967469215	23,3621	23,40063	27,30295	27,39468
Heterogeneous nuclear ribonucleoprotein U	HNRNPU	92	1,433120551	1,041158676	27,3821	26,99701	28,30308	28,15837
Heterogeneous nuclear ribonucleoprotein A3	HNRNPA3	84	3,005314238	4,007293701	23,1362	22,98773	26,96741	27,17112
Annexin	HEL-S-270	81	1,896900361	0,948515892	27,5505	27,34494	28,42882	28,36369
40S ribosomal protein S18	RPS18	81	0,451768151	0,603560448	26,6775	27,67122	27,6967	27,85911
Prohibitin-2	PHB2	77	3,177324679	5,196936607	23,1565	23,41473	28,51856	28,44652
Transitional endoplasmic reticulum ATPase	HEL-S-70	71	1,691745293	4,44414711	22,1894	23,47422	27,23681	27,3151
Endoplasmin	TRA1	68	2,045446426	4,276843071	22,0532	22,8647	26,78432	26,68726
40S ribosomal protein S4	RPS4X	67	1,944182402	0,7084589	26,8124	26,66506	27,42766	27,46669
Leucine-rich repeat-containing protein 59	LRRC59	66	1,722835551	1,405217171	24,5987	24,97395	26,13436	26,24875
MHC class I antigen	HLA-C	65	2,154391396	4,041217804	23,2183	22,80319	27,32139	26,78257
40S ribosomal protein S3	RPS3	64	2,190764298	3,243466377	22,6071	23,00478	25,87933	26,21945
Collagen, type I, alpha 1, isoform CRA_	COL1A1	62	3,503294789	7,012119293	23,406	23,61616	30,45689	30,58951
Coatomer subunit alpha	COPA	61	1,946394381	2,952898979	22,831	23,46405	26,0878	26,11303
UDP-glucose:glycoprotein glucosyltransferase 1	UGGT1	59	1,183211194	2,248038292	23,2461	22,75196	24,69381	25,80033

Protein names	Gene names M	IS/MS	*-Log t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	KMUT1_1	KMUT1_2
Heterogeneous nuclear ribonucleoprotein H3	HNRPH3	58	2,550836012	3,512687683	24,7525	24,49546	28,27209	28,00126
Transmembrane protein 43	TMEM43	58	3,44624259	4,009382248	22,9375	23,0892	27,02062	27,02485
Protein transport protein Sec61 subunit alpha isoform 1	SEC61A1	55	1,814748652	4,54324913	23,2453	24,38286	28,36778	28,34685
40S ribosomal protein S13	RPS13	54	1,672066888	3,21258831	23,5094	22,56295	26,3025	26,195
Pyrroline-5-carboxylate reductase	PYCR1	53	1,030436433	1,300148964	23,1603	24,00905	24,83326	24,93643
40S ribosomal protein S9	RPS9	51	3,21738313	4,016237259	22,8613	23,0166	26,89389	27,01648
Glycogen phosphorylase, brain form	PYGB	51	0,733558957	0,428039551	23,2162	23,60793	23,92868	23,75154
Eukaryotic initiation factor 4A-I	EIF4A1	50	3,061282642	1,958576202	23,8108	23,69808	25,72573	25,70026
Peroxiredoxin-4	HEL-S-97n	49	2,228009608	3,381700516	22,9901	23,48192	26,52955	26,70583
ATP synthase subunit O, mitochondrial	ATP5O	48	1,416856393	0,781986237	25,3807	25,67949	26,26189	26,3623
60S acidic ribosomal protein P0-like	RPLP0	47	2,990263683	3,270418167	22,3211	22,502	25,73456	25,62931
Clathrin heavy chain 1	CLTC	47	2,938701593	2,521722794	22,8349	22,9914	25,40009	25,46961
DnaJ homolog subfamily C member 16	DNAJC16	46	2,375913874	2,83365345	23,573	23,20919	26,25497	26,19453
Prolyl 3-hydroxylase 1	LEPRE1	46	1,33945121	3,25682354	23,9342	22,49553	26,53092	26,41241
DnaJ homolog subfamily B member 11	DNAJB11	46	2,035875974	4,71036911	21,9604	22,86626	27,16844	27,07898
RNA-binding protein FUS	FUS	45	2,466365893	2,99092865	22,7691	23,11806	25,91768	25,95136
4F2 cell-surface antigen heavy chain	SLC3A2	45	1,685930798	2,64054966	23,2793	22,8108	25,99121	25,37997
ATPase family AAA domain-containing protein 3A	ATAD3A	45	2,941740274	3,029415131	23,1806	23,19363	26,31883	26,11418
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase 48 kDa subunit	DDOST	44	2,896924856	4,143089294	23,2684	23,12062	27,46544	27,20974
ATP-dependent RNA helicase DDX3X	DDX3X	44	2,090315937	1,496660233	23,4123	23,54147	25,09293	24,85419
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3A	hCG_2032701	43	3,191513317	3,032499313	23,2585	23,39491	26,32358	26,3948
ATP synthase subunit gamma	ATP5C1	43	1,72751583	2,887060165	23,608	22,81114	26,05354	26,1397
Desmoplakin	DSP	43	1,865886963	3,509824753	22,7018	23,1987	26,12914	26,79104
Signal recognition particle receptor subunit beta	SRPRB	43	3,492568221	3,249379158	23,5308	23,54374	26,72871	26,84458
Renin receptor	ATP6AP2	42	3,36096031	3,124045372	23,6957	23,81137	26,84745	26,9077
Thioredoxin-related transmembrane protein 1	TMX1	42	2,256491484	4,072306633	23,5528	22,95809	27,26266	27,3928
Protein S100-A8	S100A8	39	3,39958491	3,9292593	25,7912	25,92477	29,74606	29,82845
Translocon-associated protein subunit delta	SSR4	39	1,873345491	2,687375069	23,8621	23,27847	26,37382	26,14151
40S ribosomal protein S2	RPS2	38	1,539935879	2,811915398	23,5208	22,59279	26,02052	25,71686
40S ribosomal protein S19	RPS19	36	1,98654398	2,202260017	23,822	24,261	26,29511	26,19244
Peptidyl-prolyl cis-trans isomerase	HEL-S-39	36	3,183989856	3,01947403	22,6944	22,77443	25,82004	25,68777
60S ribosomal protein L11	RPL11	36	1,572584073	2,472076416	22,5508	23,37619	25,43336	25,43781
Mitochondrial import inner membrane translocase subunit TIM50	TIMM50	35	3,079856189	3,192710876	22,3759	22,55424	25,63453	25,68102
Exportin-2	CSE1L	35	0,999379056	1,11264801	22,7684	23,531	24,2548	24,26992
60S ribosomal protein L18	RPL18	33	2,738714198	2,865243912	22,1787	22,36641	25,05895	25,21664
RNA-binding protein 14	RBM14	33	1,238424875	1,000385284	24,0271	24,12709	25,32392	24,83108
DnaJ homolog subfamily C member 10	DNAJC10	33	3,376397848	2,622220993	22,9211	22,81362	25,48794	25,49124
60S ribosomal protein L7	RPL7	32	2,692091093	1,963946342	23,4461	23,57368	25,41225	25,53546

Protein names	Gene names MS	/MS	*-Log t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	KMUT1_1	KMUT1_2
40S ribosomal protein S3a	RPS3A	31	2,542144597	3,329368591	22,9678	23,11445	26,20749	26,53352
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1	PLOD1	30	1,814829954	1,203413963	22,939	23,09065	24,08805	24,34848
DAZ-associated protein 1	DAZAP1	30	2,812297694	2,201642036	22,5414	22,71192	24,84312	24,81353
Prohibitin	PHB	30	2,171966582	0,639590263	23,2408	23,33788	23,94958	23,9083
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2	RPN2	30	2,278385388	2,755785942	23,2623	23,54941	26,30205	26,02124
Transferrin receptor protein 1	TFRC	29	1,691492928	1,923204422	23,6075	23,05032	25,25566	25,24855
Alpha-galactosidase A	GLA	29	0,513279218	0,737332344	22,2747	23,3527	23,49448	23,60761
Histone H2A	HIST1H2AH	28	2,871501726	4,796886444	22,9705	22,62471	27,56129	27,6277
Sigma non-opioid intracellular receptor 1	hCG_20471	28	3,231665399	3,523334503	22,5367	22,70744	26,14715	26,14369
Heat shock protein HSP 90-alpha	HSP90AA1	28	1,246079273	1,626210213	22,6276	23,43602	24,636	24,68003
Emerin	EMD	28	2,543383893	2,792724609	23,6959	23,9699	26,56522	26,68606
Voltage-dependent anion-selective channel protein 2	VDAC2	27	3,025605386	2,994970322	22,534	22,70483	25,64861	25,58015
Phosphate carrier protein, mitochondrial	SLC25A3	27	1,150350771	0,3005476	25,6354	25,57644	25,82728	25,98564
MHC class I antigen		27	2,791866443	3,803584099	22,4454	22,6204	26,21093	26,462
Erlin-2	ERLIN1	27	2,691910265	1,350933075	23,8144	23,93172	25,20728	25,24067
40S ribosomal protein S11	RPS11	27	2,13943054	2,892237663	23,0794	23,28335	26,29934	25,8479
60S ribosomal protein L30	RPL30	26	0,654006702	0,720029831	23,637	23,05007	24,35118	23,77595
Cartilage-associated protein	CRTAP	26	2,627089199	2,061815262	23,188	23,18459	25,34844	25,14779
Heterogeneous nuclear ribonucleoprotein A/B	HNRNPAB	26	0,951652822	1,820981979	22,2726	23,59554	24,67745	24,83268
DnaJ homolog subfamily A member 1	DNAJA1	26	1,561974192	2,365900993	23,1217	22,32212	25,07366	25,10193
40S ribosomal protein S25	RPS25	26	2,284320669	2,164251328	24,0132	24,31293	26,28185	26,37275
Transmembrane emp24 domain-containing protein 10	TMED10	25	2,190363059	2,227769852	24,0469	24,14593	26,49704	26,15134
Heterogeneous nuclear ribonucleoprotein F	HNRPF	25	1,055467645	0,235230446	23,39	23,52023	23,72723	23,65349
Torsin-3A	TOR3A	25	2,743740828	2,55960083	22,9911	22,87228	25,58251	25,40002
Tran+B2:B28smembrane 9 superfamily member 2	TM9S+C2:C1	24	2,72067965	1,627555847	23,1814	23,32149	24,89111	24,86689
Nodal modulator 1	NOMO3	24	2,690146256	1,862455368	23,3267	23,45989	25,20411	25,30737
Nicastrin	NCSTN	24	1,40026308	1,498908997	23,514	23,49032	25,30907	24,69301
ADP/ATP translocase 3	SLC25A6	24	1,281431597	2,616166115	23,4821	22,24685	25,56273	25,39855
60S ribosomal protein L10	RPL10	23	2,305272352	1,443133354	23,0373	23,18419	24,6245	24,48321
DnaJ homolog subfamily C member 3	DNAJC3	23	1,412749919	2,614311218	23,0247	24,07973	26,12084	26,21219
Protein S100	S100A9	23	2,252765632	6,622759819	22,2512	23,2454	29,37803	29,36409
Histone H3	H3F3B	23	2,872417888	4,145756721	23,1015	22,89916	27,03265	27,25953
60S ribosomal protein L4	RPL4	23	0,648537037	0,908484459	23,4958	22,45588	23,8261	23,94253
ATP synthase subunit beta	ATP5B	23	0,646791556	0,630981445	23,2142	22,55243	23,66709	23,36145
Chondroitin sulfate synthase 2	CHPF	23	2,840290992	1,880997658	22,6482	22,58452	24,56145	24,43326
Junction plakoglobin	JUP	22	1,862395656	2,526101112	22,3361	22,51632	24,66714	25,23747
Probable ATP-dependent RNA helicase DDX17	DDX17	22	1,015694677	1,654712677	22,6886	23,11162	24,04185	25,0678
RNA-binding motif protein, X chromosome	RBMX	22	1,082569266	2,826601028	23,6853	21,95679	25,57239	25,72294

Protein names	Gene names MS/	MS *	-Log t-test P-value t	-test Difference	CTRL2_1	CTRL2_2	KMUT1_1	KMUT1_2
Pre-mRNA-processing-splicing factor 8	PRPF8	22	1,476579994	0,377855301	23,6001	23,46145	23,89421	23,92307
40S ribosomal protein S5	RPS5	21	1,533458195	0,894647598	23,6711	23,78796	24,76941	24,47896
Mitochondrial 2-oxoglutarate/malate carrier protein	SLC25A11	21	0,935729549	0,487668991	24,2829	24,50731	24,73908	25,02648
Dermcidin	DCD	21	2,174418971	2,177476883	23,3143	23,59067	25,51614	25,74373
Tetratricopeptide repeat protein 13	DKFZp667K0S	21	0,911823389	0,646499634	23,5669	23,72034	24,05234	24,52791
Probable glutathione peroxidase 8	GPX8	21	1,195782141	2,496476173	22,2473	23,56685	25,34702	25,46005
GPI-anchor transamidase	PIGK	20	2,295800448	1,315583229	22,7322	22,5687	23,9198	24,01231
60S ribosomal protein L8	RPL8	20	1,748577626	1,89172554	23,5014	23,99576	25,70744	25,5732
GRAM domain-containing protein 1A	GRAMD1A	20	1,007585442	1,019053459	23,3016	23,22437	24,62533	23,93876
Lamin-B1	LMNB1	20	2,734362916	1,264288902	22,752	22,85765	24,05623	24,08205
Serpin B3	SCCA2	20	2,644410317	4,921766281	23,3097	23,77267	28,50218	28,42374
60S ribosomal protein L13	RPL13	19	1,780278287	1,806912422	23,1986	22,9288	24,6774	25,06382
Interleukin enhancer-binding factor 2	ILF2	19	1,401419644	0,956497192	22,5141	22,81686	23,74714	23,4968
Annexin	ANXA1	19	3,527618653	4,236124992	22,4719	22,34939	26,6071	26,68646
Fatty acid-binding protein, epidermal	FABP5	19	1,439672201	0,339419365	26,7323	26,76294	27,02232	27,1518
Small nuclear ribonucleoprotein Sm D2	SNRPD2	19	2,084153264	3,633728027	22,2053	22,79398	26,28673	25,98005
Transmembrane emp24 domain-containing protein 9	TMED9	18	2,245954241	2,11775589	23,1973	23,33666	25,52904	25,24045
Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3	PTPLAD1	18	1,7879069	1,904356003	22,9611	23,4488	25,07606	25,1425
Glypican-4	GPC4	18	1,986552155	1,550761223	22,9387	22,72747	24,50233	24,26535
60S ribosomal protein L12	RPL12	18	1,578922438	1,137694359	23,452	23,07512	24,40581	24,39669
60S ribosomal protein L10a	RPL10A	18	1,147384586	2,662602425	24,2222	22,72086	26,10322	26,16509
Nuclear pore membrane glycoprotein 210	NUP210	18	1,255578209	0,688184738	23,439	23,13192	24,04494	23,90233
Protein THEM6	THEM6	18	1,456365315	1,848633766	22,9824	23,69247	25,18492	25,18718
Histone H2B	HIST1H2BC	17	3,195064976	3,585255623	22,4753	22,6489	26,17331	26,12137
Heterogeneous nuclear ribonucleoprotein U-like protein 1	HNRNPUL1	17	1,954559605	0,760465622	23,2335	23,37109	24,10509	24,02039
Heterogeneous nuclear ribonucleoprotein D-like	HNRPDL	17	2,258997987	1,741279602	23,3012	23,43559	24,99865	25,22066
Nucleophosmin	NPM1	17	2,902028775	2,466677666	22,4848	22,65799	25,02618	25,04997
60S ribosomal protein L18a	RPL18A	17	1,984967863	1,74966526	22,7927	22,43547	24,38093	24,34652
60S ribosomal protein L37a	RPL37A	17	1,136009115	0,836754799	23,5607	23,29441	24,46351	24,06513
Glutaminyl-peptide cyclotransferase-like protein	QPCTL	17	2,408884715	2,715770721	22,689	22,39177	25,17341	25,33892
Keratin, type II cytoskeletal 6B	KRT6B	17	2,445698768	1,449094772	28,2234	28,11212	29,68372	29,55003
Protein S100-A7	S100A7	17	2,86079422	4,63203907	22,9227	23,26461	27,74586	27,70556
40S ribosomal protein S8	RPS8	17	1,052126832	1,085959435	22,9525	23,63391	24,31368	24,44468
Keratinocyte proline-rich protein	KPRP	17	3,150566363	1,710810661	23,6551	23,56414	25,3181	25,32272
Nucleolar RNA helicase 2	DDX21	17	1,469499084	2,888973236	21,7436	22,82625	25,10189	25,2459
Transmembrane emp24 domain-containing protein 5	TMED5	17	3,513320182	4,190151215	23,2616	23,23866	27,36778	27,51277
Protein ERGIC-53	LMAN1	16	2,904422438	2,607959747	22,3734	22,55184	25,09358	25,04756
Cytochrome c oxidase subunit NDUFA4	NDUFA4	16	1,055580565	1,66071701	24,0495	23,0528	25,03695	25,38673

Protein names	Gene names MS/N	S *-Lo	g t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	KMUT1_1	KMUT1_2
Peroxiredoxin-2	HEL-S-2a	16	1,905172769	2,074017525	22,4845	22,85953	24,88516	24,60688
60S ribosomal protein L7a	RPL7A	16	0,658260065	1,193095207	22,7724	24,11379	24,72119	24,55116
Serine/threonine-protein phosphatase PGAM5, mitochondrial	PGAM5	16	1,277094855	1,867847443	23,5893	22,70922	24,93715	25,09708
Ribosomal protein L15	RPL15	15	2,712395366	1,65564537	23,0906	23,23503	24,80764	24,82929
Interleukin enhancer-binding factor 3	ILF3	15	2,205866506	0,928769112	23,2279	23,36577	24,2514	24,19978
40S ribosomal protein S7	RPS7	15	2,11600434	1,583895683	23,2559	23,19938	24,94802	24,67503
Signal peptidase complex subunit 3	SPCS3	15	1,447586283	2,328504562	22,5449	23,44397	25,27551	25,37039
Protein transport protein Sec61 subunit beta	SEC61B	15	3,3186756	3,281378746	22,8298	22,87966	26,20357	26,06864
UPF0556 protein C19orf10	C19orf10	15	1,127695488	1,633406639	23,5709	22,67595	24,60422	24,9094
Matrin-3	MATR3	14	2,605155636	2,211011887	22,7255	22,88722	24,94226	25,09245
60S ribosomal protein L23a	RPL23A	14	1,221367446	0,828323364	23,5379	23,92443	24,6484	24,4706
Heat shock 70 kDa protein 6	HSPA6	14	2,58974251	3,726830482	25,155	25,47246	28,93731	29,14377
Ig heavy chain V-I region V35	scFv	14	1,635525432	3,564970016	23,0768	24,17698	27,14608	27,23763
60S ribosomal protein L27	RPL27	13	1,817965392	0,956049919	22,7805	22,93959	23,9049	23,72723
Heterogeneous nuclear ribonucleoprotein D0	HNRNPD	13	2,403471765	1,679406166	22,5708	22,7399	24,39846	24,27106
40S ribosomal protein S6	RPS6	13	2,819975335	2,076603889	22,8379	22,99426	24,97202	25,01329
60S ribosomal protein L28	RPL28	13	1,631079433	1,821205139	22,4164	22,8521	24,27405	24,63683
Cell cycle progression protein 1	CCPG1	12	2,548225601	1,769523621	22,7331	22,89448	24,63218	24,53445
Nascent polypeptide-associated complex subunit alpha	NACA	12	1,857563506	1,328483582	22,799	23,09205	24,21445	24,33354
Nicalin	NCLN	12	1,151117858	1,155891418	22,9902	23,4336	24,13069	24,6049
Voltage-dependent anion-selective channel protein 1	VDAC1	12	1,7870632	1,248230934	21,9854	22,25899	23,45626	23,28461
Protein canopy homolog 2	CNPY2	12	2,022994015	1,525592804	22,6891	22,64151	24,04318	24,33865
40S ribosomal protein S14	RPS14	12	1,641575106	1,954537392	23,5359	23,55391	25,1991	25,79976
Pre-mRNA-processing factor 19	PRPF19	12	0,738267347	0,624862671	22,7035	22,44813	23,48481	22,91652
Magnesium transporter protein 1	MAGT1	11	3,128603124	3,721116066	22,0183	22,21364	25,80931	25,86488
Protein FAM3A	FAM3A	11	0,895286144	1,249361038	22,3911	23,3781	24,10821	24,15969
40S ribosomal protein S15a	RPS15A	11	3,338531714	2,032434464	22,738	22,65262	24,71921	24,73629
Exostosin-2	EXT2	11	1,01980221	1,630449295	23,3698	22,54682	24,94418	24,23338
14-3-3 protein theta	YWHAQ	11	0,76390405	0,619713783	22,8489	23,41446	23,84221	23,66058
60S ribosomal protein L35	RPL35	11	1,150310324	1,500152588	24,0145	23,18424	25,02526	25,17379
Rab-like protein 3	RABL3	11	0,701978748	0,836080551	23,4147	22,65039	23,64801	24,08926
Skin-specific protein 32	XP32	11	1,083652734	0,467812538	23,4361	23,68871	23,96235	24,09812
Phospholipase D3	PLD3	10	1,183645018	1,018039703	22,6553	22,82039	23,49436	24,01742
60S ribosomal protein L5	RPL5	10	2,044563439	0,852108002	22,6998	22,86277	23,63168	23,63511
Cleavage and polyadenylation specificity factor subunit 6	CPSF6	10	1,440202906	1,983541489	22,897	23,64475	25,14876	25,36005
60S ribosomal protein L13a	RPL13A	10	1,656642857	0,323013306	22,6744	22,67323	22,94805	23,04559
Lamin-B receptor	LBR	9	2,069033227	1,426970482	23,1456	23,2874	24,75557	24,53136
60S ribosomal protein L34	RPL34	9	1,129382052	0,360962868	22,6981	22,8611	23,2055	23,07557

Protein names	Gene names MS/MS	*-Log t-test P-value	e t-test Difference	CTRL2_1 CTRL2_2	KMUT1_1	KMUT1_2
Calreticulin	HEL-S-99n 9	2,56582702	6 1,113488197	23,1226 23,12659	24,17995	24,29621
MICOS complex subunit MIC60	IMMT 9	1,16986508	4 0,407704353	3 23,5322 23,72783	23,98364	24,09176
MHC class I antigen	HLA-A 9	1,77098592	5 3,758730888	3 23,4403 22,85261	26,50606	27,30426
60S ribosomal protein L3	RPL3 9	1,06680444	8 1,793375969	21,7487 22,83855	23,94985	24,22413
IgG H chain	9	2,05957032	6 3,745063782	2 23,0944 22,40702	26,41987	26,5717
Trifunctional enzyme subunit beta, mitochondrial	HADHB 8	1,49943691	9 1,037169456	3 23,0532 22,94258	23,85424	24,21586
40S ribosomal protein S27	RPS27 8	0,87684824	4 1,988359451	22,5008 24,11505	25,31261	25,27998
Calmodulin-like protein 5	CALML5 5	5 4,17456244	3 3,030061722	2 23,1112 23,15165	26,14717	26,17577
Arginase-1	ARG1 4	0,80465031	7 0,896270752	2 23,2645 22,45787	23,73252	23,78237
	4	1,45594911	8 0,959042549	22,2213 22,55367	23,26685	23,42624
Cathepsin D	CTSD 2	1,46212517	4 2,610394478	3 21,3689 21,59504	24,57721	23,6075
40S ribosomal protein S20	RPS20 2	0,9077255	9 0,878825188	8 22,7175 23,10351	24,0712	23,50749
Heat shock cognate 71 kDa protein	HSPA8 1	0,65965456	4 0,817744255	5 23,153 23,12395	24,41828	23,49412

8.5. Apêndice 5: Quadro de proteínas encontradas na condição DMUT através do ensaio de imunoprecipitação em HEK 293T.

Protein names	Gene names	MS/MS *-	Log t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	DMUT2_1	DMUT2_2
LAG3	LAG3	1035	7,194413065	12,6245594	23,34842	23,35467	35,97675	35,97545
78 kDa glucose-regulated protein	HEL-S-89n	844	3,369912417	9,554034233	23,08578	23,48059	32,83854	32,8359
Neutral alpha-glucosidase AB	HEL-S-164nA	346	3,660510307	7,482055664	22,97677	22,75592	30,34181	30,355
Heterogeneous nuclear ribonucleoproteins A2/B1	HNRNPA2B1	316	3,792223887	3,944531441	27,53267	27,55516	31,43961	31,53728
Tubulin beta-4B chain	TUBB2C	257	1,081197446	1,446839333	27,61597	26,72624	28,6159	28,61999
Collagen alpha-1(I) chain	COL1A1	253	3,049265393	10,41242218	23,03009	23,65225	33,76584	33,74134
Glycogen phosphorylase, liver form	PYGL	243	2,244614979	7,232824326	22,37399	23,46821	30,1209	30,18695
RuvB-like 2	RUVBL2	231	1,976957596	5,359638214	23,98876	23,94449	29,88059	28,77194
Tubulin alpha-1B chain	TUBA1B	184	2,419813405	1,985358238	27,95133	27,76844	29,76329	29,92719
Serpin H1	SERPINH1	154	3,684525391	6,589337349	23,44413	23,57176	30,16734	30,02723
RuvB-like 1	RUVBL1	144	2,000083622	6,139361382	22,16084	23,39245	28,97394	28,85807
Cytoskeleton-associated protein 4	CKAP4	141	3,04379702	4,959010124	23,27071	23,40657	28,1648	28,4305
Protein disulfide-isomerase A6	PDIA6	141	3,006141351	6,110081673	22,86599	22,48286	28,77162	28,79739
Heterogeneous nuclear ribonucleoprotein H	HNRNPH1	137	2,431789242	1,757035255	26,66397	26,57788	28,47611	28,27981
60 kDa heat shock protein, mitochondrial	HSPD1	132	1,868102355	0,467556953	27,33994	27,28145	27,82481	27,73169
Heterogeneous nuclear ribonucleoprotein A1	HNRNPA1	132	1,852209103	3,917358398	25,55101	24,61358	29,02422	28,97509
ADP/ATP translocase 2	SLC25A5	114	3,893368778	1,965352058	27,72058	27,7449	29,71669	29,67949
Endoplasmic reticulum resident protein 44	ERP44	111	2,164554187	5,777684212	22,5386	23,49909	28,78013	28,81293
Ubiquitin-60S ribosomal protein L40	UBB	101	3,159278322	4,974134445	24,65207	24,82206	29,61151	29,81089
Probable ATP-dependent RNA helicase DDX5	DDX5	97	2,791059608	3,658189774	23,47288	23,63827	27,33569	27,09184
Collagen alpha-2(I) chain	COL1A2	96	4,172978599	10,20104122	22,68518	22,84884	32,95097	32,98514
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1	RPN1	94	4,286941933	3,892596245	23,36207	23,40063	27,25368	27,29421
Heterogeneous nuclear ribonucleoprotein U	HNRNPU	92	0,894166317	0,618017197	27,38212	26,99701	27,65635	27,95881
Heterogeneous nuclear ribonucleoprotein A3	HNRNPA3	84	3,214227909	4,68476963	23,13622	22,98773	27,65785	27,83563
Prohibitin-2	PHB2	77	2,877182472	5,166620255	23,15647	23,41473	28,31506	28,58939
Transitional endoplasmic reticulum ATPase	HEL-S-70	71	1,683792048	4,433562279	22,18939	23,47422	27,17921	27,35153
Endoplasmin	TRA1	68	1,97628526	4,228302956	22,05319	22,8647	26,52228	26,85222
40S ribosomal protein S4	RPS4X	67	1,721154233	0,954001427	26,81238	26,66506	27,58147	27,80397
Leucine-rich repeat-containing protein 59	LRRC59	66	2,283137929	2,593103409	24,59872	24,97395	27,39002	27,36886
	HLA-C	65	2,474622896	3,999951363	23,21833	22,80319	26,90667	27,11476
40S ribosomal protein S3	RPS3	64	2,173983698	2,890515327	22,60706	23,00478	25,8268	25,56607
	COL1A1	62	3,899226474	10,20715141	23,406	23,61616	33,76406	33,67241
Coatomer subunit alpha	COPA	61	1,757739262	2,606811523	22,83099	23,46405	25,90164	25,60702
UDP-glucose:glycoprotein glucosyltransferase 1	UGGT1	59	1,892221016	3,539646149	23,24611	22,75196	26,85911	26,21825

Protein names	Gene names M	S/MS *-	Log t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	DMUT2_1	DMUT2_2
Heterogeneous nuclear ribonucleoprotein H3	HNRPH3	58	2,815993945	4,014359474	24,75251	24,49546	28,54804	28,72865
Transmembrane protein 43	TMEM43	58	3,09191755	4,476594925	22,93752	23,0892	27,59235	27,38755
Pyrroline-5-carboxylate reductase 2	PYCR2	55	3,535507789	6,084233284	23,08434	23,22905	29,16639	29,31547
Protein transport protein Sec61 subunit alpha isoform 1	SEC61A1	55	1,846757148	4,71769619	23,24527	24,38286	28,52141	28,54211
40S ribosomal protein S13	RPS13	54	1,709488036	3,337138176	23,50937	22,56295	26,37078	26,37582
Pyrroline-5-carboxylate reductase	PYCR1	53	2,266049977	5,760612488	23,16034	24,00905	29,31012	29,38049
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3	PLOD3	53	4,369339168	4,648978233	23,14134	23,09032	27,7483	27,78132
40S ribosomal protein S9	RPS9	51	3,32996595	3,729194641	22,8613	23,0166	26,64623	26,69006
Glycogen phosphorylase, brain form	PYGB	51	2,029266016	2,72886467	23,21622	23,60793	26,3205	25,96137
Eukaryotic initiation factor 4A-I	EIF4A1	50	3,03592701	1,862524986	23,81075	23,69808	25,61198	25,6219
Tubulin beta chain	TUBB	49	1,228533265	0,80476284	26,62031	27,00239	27,68992	27,5423
Peroxiredoxin-4	HEL-S-97n	49	2,363778929	3,743388176	22,99005	23,48192	27,00282	26,95593
ATP synthase subunit O, mitochondrial	ATP5O	48	1,620814898	0,995389938	25,38073	25,67949	26,57335	26,47766
60S acidic ribosomal protein P0-like	RPLP0	47	2,574233796	3,489142418	22,32105	22,502	25,74448	26,05685
Clathrin heavy chain 1	CLTC	47	2,963216332	2,370847702	22,83485	22,9914	25,28457	25,28337
Cleavage and polyadenylation specificity factor subunit 5	NUDT21	46	1,555729292	1,00780201	25,48176	25,82469	26,65239	26,66966
DnaJ homolog subfamily C member 16	DNAJC16	46	2,466972271	3,143205643	23,57301	23,20919	26,56248	26,50612
Prolyl 3-hydroxylase 1	LEPRE1	46	1,474936879	4,079630852	23,93416	22,49553	27,55808	27,03086
DnaJ homolog subfamily B member 11	DNAJB11	46	2,069781326	4,879859924	21,96042	22,86626	27,27693	27,30947
RNA-binding protein FUS	FUS	45	2,508014164	3,188055038	22,76912	23,11806	26,16714	26,09615
4F2 cell-surface antigen heavy chain	SLC3A2	45	1,988652446	2,656476974	23,27928	22,8108	25,56477	25,83827
ATPase family AAA domain-containing protein 3A	ATAD3A	45	3,097909857	3,288248062	23,18055	23,19363	26,38261	26,56806
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase 48 kDa subunit	DDOST	44	3,557384666	4,482904434	23,26838	23,12062	27,66682	27,68799
ATP-dependent RNA helicase DDX3X	DDX3X	44	1,052120139	1,253174782	23,41233	23,54147	24,33497	25,12518
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3A	hCG_2032701	43	3,063390674	2,946089745	23,25846	23,39491	26,21934	26,32622
ATP synthase subunit gamma	ATP5C1	43	1,706471662	2,824486732	23,60798	22,81114	26,08726	25,98083
Signal recognition particle receptor subunit beta	SRPRB	43	3,699687431	2,664616585	23,53079	23,54374	26,23898	26,16479
Renin receptor	ATP6AP2	42	2,343466502	3,075130463	23,69569	23,81137	27,02823	26,62909
Thioredoxin-related transmembrane protein 1	TMX1	42	2,225191048	3,842849731	23,55276	22,95809	27,11585	27,08071
Translocon-associated protein subunit delta	SSR4	39	1,999341538	2,93501091	23,86211	23,27847	26,55457	26,45602
40S ribosomal protein S2	RPS2	38	1,623567892	2,986965179	23,52075	22,59279	26,11313	25,97434
40S ribosomal protein S19	RPS19	36	1,987050319	2,146895409	23,82203	24,261	26,18098	26,19584
Peptidyl-prolyl cis-trans isomerase	HEL-S-39	36	3,552992288	3,506594658	22,69443	22,77443	26,28396	26,19809
60S ribosomal protein L11	RPL11	36	1,668049484	2,784891129	22,55082	23,37619	25,79052	25,70628
Mitochondrial import inner membrane translocase subunit TIM50	TIMM50	35	3,178813925	3,553341866	22,37589	22,55424	25,99787	26,03894
Exportin-2	CSE1L	35	1,142098987	1,528883934	22,76842	23,531	24,47054	24,88665
60S ribosomal protein L18	RPL18	33	2,897139258	3,026893616	22,1787	22,36641	25,35259	25,2463
RNA-binding protein 14	RBM14	33	1,921195123	0,458824158	24,02714	24,12709	24,52743	24,54445
DnaJ homolog subfamily C member 10	DNAJC10	33	3,390487098	2,942177773	22,92112	22,81362	25,78434	25,83475

Protein names	Gene names	MS/MS *-	Log t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	DMUT2_1	DMUT2_2
60S ribosomal protein L7	RPL7	32	2,92550751	2,388046265	23,44614	23,57368	25,95007	25,84585
40S ribosomal protein S3a	RPS3A	31	3,084105325	3,59184742	22,96782	23,11445	26,5604	26,70556
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2	PLOD2	31	2,595057542	4,293208122	23,36703	23,26549	27,82025	27,39869
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1	PLOD1	30	2,890121791	3,597732544	22,93904	23,09065	26,50791	26,71725
DAZ-associated protein 1	DAZAP1	30	2,589553777	2,776439667	22,54144	22,71192	25,29067	25,51557
Prohibitin	PHB	30	1,181047255	0,762658119	23,24082	23,33788	24,25234	23,85167
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2	RPN2	30	1,86342885	2,337803841	23,2623	23,54941	25,97989	25,50743
Transferrin receptor protein 1	TFRC	29	1,81911359	2,312627792	23,60748	23,05032	25,71495	25,56811
Alpha-galactosidase A	GLA	29	1,380046449	2,604754448	22,27473	23,3527	25,31351	25,52343
Cytoplasmic dynein 1 heavy chain 1	DYNC1H1	29	1,200155796	0,884784698	23,04382	22,70995	23,92479	23,59855
Histone H2A	HIST1H2AH	28	2,512445706	3,424043655	22,9705	22,62471	26,30103	26,14227
Heat shock protein 105 kDa	HSPH1	28	1,966256395	0,87840271	23,13893	23,28105	24,02985	24,14694
Sigma non-opioid intracellular receptor 1	hCG_20471	28	2,870382041	3,559427261	22,53673	22,70744	26,08239	26,28063
Heat shock protein HSP 90-alpha	HSP90AA1	28	1,013567879	1,270474434	22,62759	23,43602	24,16392	24,44063
Emerin	EMD	28	2,513889475	2,493506432	23,69593	23,9699	26,30729	26,34555
Voltage-dependent anion-selective channel protein 2	VDAC2	27	3,166333922	3,301903725	22,53399	22,70483	25,90928	25,93335
Phosphate carrier protein, mitochondrial	SLC25A3	27	1,691187898	0,278784752	25,63539	25,57644	25,85707	25,91232
MHC class I antigen		27	2,823021857	3,682452202	22,44536	22,6204	26,32833	26,10233
Erlin-2	ERLIN1	27	2,352326987	1,180685997	23,81437	23,93172	25,00089	25,10658
40S ribosomal protein S11	RPS11	27	2,150349672	2,668999672	23,07942	23,28335	26,05171	25,64905
60S ribosomal protein L30	RPL30	26	0,981173446	0,914406776	23,637	23,05007	24,12731	24,38857
Cartilage-associated protein	CRTAP	26	2,941760531	3,348528862	23,18801	23,18459	26,42151	26,64815
Heterogeneous nuclear ribonucleoprotein A/B	HNRNPAB	26	0,920505794	1,802514076	22,27263	23,59554	24,92674	24,54646
DnaJ homolog subfamily A member 1	DNAJA1	26	1,549879538	2,456383705	23,12167	22,32212	25,31154	25,04502
40S ribosomal protein S25	RPS25	26	2,233973942	2,078663826	24,01317	24,31293	26,18722	26,29621
Transmembrane emp24 domain-containing protein 10	TMED10	25	3,231347899	2,66262722	24,04691	24,14593	26,80045	26,71764
Heterogeneous nuclear ribonucleoprotein F	HNRPF	25	1,154888635	0,46018219	23,39003	23,52023	24,02623	23,8044
Torsin-3A	TOR3A	25	3,155122471	2,251994133	22,99105	22,87228	25,17862	25,18869
Transmembrane 9 superfamily member 2	TM9SF2	24	2,429126466	2,002321243	23,18139	23,32149	25,35427	25,15325
Nodal modulator 1	NOMO3	24	2,93389406	1,976464272	23,32668	23,45989	25,35877	25,38073
Nicastrin	NCSTN	24	2,382152693	1,634372711	23,51395	23,49032	25,24144	25,03158
ADP/ATP translocase 3	SLC25A6	24	1,282200718	2,595935822	23,4821	22,24685	25,45538	25,46544
60S ribosomal protein L10	RPL10	23	1,93805732	1,737556458	23,03725	23,18419	24,67498	25,02158
DnaJ homolog subfamily C member 3	DNAJC3	23	1,294202783	2,987906456	23,02468	24,07973	27,00078	26,07944
Histone H3	H3F3B	23	2,818036224	2,639209747	23,1015	22,89916	25,65903	25,62006
60S ribosomal protein L4	RPL4	23	0,918924901	1,367456436	23,49578	22,45588	24,40217	24,2844
ATP synthase subunit beta	ATP5B	23	1,292912055	1,437644005	23,21415	22,55243	24,38765	24,25422
Chondroitin sulfate synthase 2	CHPF	23	3,615385594	2,320487022	22,6482	22,58452	24,95394	24,91975
Junction plakoglobin	JUP	22	1,299481881	0,992529869	22,33609	22,51632	23,63157	23,2059

Protein names	Gene names M	IS/MS *-I	_og t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	DMUT2_1	DMUT2_2
Probable ATP-dependent RNA helicase DDX17	DDX17	22	1,828148084	1,71907711	22,6886	23,11162	24,60654	24,63184
RNA-binding motif protein, X chromosome	RBMX	22	0,883853538	2,151885033	23,68534	21,95679	24,93679	25,00911
40S ribosomal protein S5	RPS5	21	2,703703923	1,385580063	23,67111	23,78796	25,135	25,09523
Probable glutathione peroxidase 8	GPX8	21	1,235331414	2,642683983	22,24726	23,56685	25,64614	25,45334
GPI-anchor transamidase	PIGK	20	2,513590857	1,484107971	22,73224	22,5687	24,14437	24,12479
GRAM domain-containing protein 1A	GRAMD1A	20	2,491734177	1,275039673	23,30162	23,22437	24,59946	24,47661
Lamin-B1	LMNB1	20	1,684544848	0,957695961	22,75204	22,85765	23,89208	23,63301
60S ribosomal protein L13	RPL13	19	2,197103109	1,73913002	23,19859	22,9288	24,83745	24,7682
60S ribosomal protein L14	RPL14	19	1,027535306	0,509519577	23,57675	23,30891	24,05408	23,85062
Interleukin enhancer-binding factor 2	ILF2	19	1,743326704	1,469337463	22,51409	22,81686	24,26578	24,00385
Annexin	ANXA1	19	2,622145847	3,812892914	22,47192	22,34939	26,04727	26,39983
Small nuclear ribonucleoprotein Sm D2	SNRPD2	19	1,967414272	2,813794136	22,20533	22,79398	25,30264	25,32426
SUN domain-containing protein 2	UNC84B	18	2,177653701	1,317429543	22,84022	22,99652	24,16139	24,31022
Transmembrane emp24 domain-containing protein 9	TMED9	18	1,486565037	1,194284439	23,19732	23,33666	24,2514	24,67115
Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3	PTPLAD1	18	1,726818254	1,792539597	22,96106	23,4488	24,94708	25,04785
Glypican-4	GPC4	18	2,0732335	1,671201706	22,93869	22,72747	24,39139	24,61717
60S ribosomal protein L12	RPL12	18	1,558800166	1,352017403	23,45199	23,07512	24,74653	24,48462
60S ribosomal protein L10a	RPL10A	18	1,067558989	2,41516304	24,22224	22,72086	25,97629	25,79714
Nuclear pore membrane glycoprotein 210	NUP210	18	1,271948297	0,836162567	23,43898	23,13192	24,25212	23,9911
Protein THEM6	THEM6	18	1,589795887	2,240392685	22,98236	23,69247	25,6682	25,48742
Histone H2B	HIST1H2BC	17	3,113561406	4,604929924	22,47528	22,6489	27,07316	27,26087
Heterogeneous nuclear ribonucleoprotein D-like	HNRPDL	17	2,660881001	1,937105179	23,30117	23,43559	25,24463	25,36633
Nucleophosmin	NPM1	17	2,713754046	2,472942352	22,48481	22,65799	24,97832	25,11036
Polypyrimidine tract-binding protein 1	PTBP1	17	1,765410075	0,403458595	24,14491	24,23927	24,57022	24,62087
60S ribosomal protein L18a	RPL18A	17	2,173292595	2,176042557	22,79265	22,43547	24,80425	24,77595
60S ribosomal protein L37a	RPL37A	17	1,215190872	0,588425636	23,56072	23,29441	24,0899	23,94208
Glutaminyl-peptide cyclotransferase-like protein	QPCTL	17	2,376300798	2,303936005	22,68901	22,39177	24,86358	24,82508
Nucleolar RNA helicase 2	DDX21	17	1,447800431	2,881692886	21,7436	22,82625	25,30709	25,02614
Transmembrane emp24 domain-containing protein 5	TMED5	17	3,749452325	4,177705765	23,26159	23,23866	27,37327	27,48239
Protein ERGIC-53	LMAN1	16	1,518173464	1,841568947	22,37338	22,55184	24,62003	23,98833
Fatty acid synthase	FASN	16	1,984615108	1,086340904	22,70776	22,87035	23,95163	23,79917
Peroxiredoxin-2	HEL-S-2a	16	1,888061847	1,643317223	22,48447	22,85953	24,33695	24,29369
Serine/threonine-protein phosphatase PGAM5, mitochondrial	PGAM5	16	1,326289172	2,024197578	23,58931	22,70922	25,29281	25,05412
Ribosomal protein L15	RPL15	15	1,484179785	1,274399757	23,09062	23,23503	24,21186	24,66259
Interleukin enhancer-binding factor 3	ILF3	15	1,884761916	0,761807442	23,22787	23,36577	24,11307	24,00419
DnaJ homolog subfamily A member 3, mitochondrial	DNAJA3	15	1,877395812	0,993494987	23,42067	23,25467	24,25075	24,41158
Chondroitin sulfate glucuronyltransferase	CHPF2	15	0,536970691	1,198494911	24,29565	22,63681	24,52235	24,8071
40S ribosomal protein S7	RPS7	15	1,465605339	1,151931763	23,25588	23,19938	24,16262	24,59651
Surfeit locus protein 4	SURF4	15	0,985420009	0,850805283	23,91979	23,53918	24,80853	24,35205

Protein names	Gene name	s MS/MS *-	Log t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	DMUT2_1	DMUT2_2
Signal peptidase complex subunit 3	SPCS3	15	1,040443149	2,400913239	22,54493	23,44397	24,75918	26,03154
Protein transport protein Sec61 subunit beta	SEC61B	15	2,992471091	2,602204323	22,8298	22,87966	25,53617	25,37769
Stromal cell-derived factor 2-like protein 1	SDF2L1	15	2,681972722	3,445310593	23,32833	23,06057	26,55704	26,72247
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3B	STT3B	15	0,754604364	0,893523216	23,12435	22,43171	23,93373	23,40938
UPF0556 protein C19orf10	C19orf10	15	0,872587982	1,145800591	23,57085	22,67595	24,13195	24,40646
UDP-glucose:glycoprotein glucosyltransferase 2	UGGT2	15	0,808280802	1,001756668	23,04716	22,15849	23,5386	23,67055
Protein disulfide-isomerase	P4HB	14	2,524160455	2,561414719	22,05229	22,24599	24,8122	24,60891
Matrin-3	MATR3	14	2,165025255	1,526816368	22,72547	22,88722	24,23535	24,43097
DNA replication licensing factor MCM3	HCC5	14	0,965532247	0,354480743	22,91361	23,06642	23,4462	23,2428
Importin subunit alpha	KPNA2	14	1,767899762	0,460846901	23,94115	23,92097	24,45205	24,33176
60S ribosomal protein L23a	RPL23A	14	0,803438092	0,442083359	23,53793	23,92443	24,12305	24,22347
Heat shock 70 kDa protein 6	HSPA6	14	2,345138049	2,901069641	25,15495	25,47246	28,10044	28,32911
Ig heavy chain V-I region V35	scFv	14	1,684601317	3,909097672	23,07679	24,17698	27,68886	27,38311
60S ribosomal protein L27	RPL27	13	1,856726007	1,006387711	22,78045	22,93959	23,95615	23,77666
Heterogeneous nuclear ribonucleoprotein D0	HNRNPD	13	2,182706387	1,190097809	22,57081	22,7399	23,79808	23,89282
40S ribosomal protein S6	RPS6	13	2,24956749	1,930316925	22,83785	22,99426	24,96899	24,72375
U1 small nuclear ribonucleoprotein A	SNRPA	13	1,977407958	0,47969532	25,36963	25,27991	25,78324	25,82568
Procollagen galactosyltransferase 1	COLGALT1	13	1,238798463	1,52355957	23,27407	22,63773	24,69221	24,26671
Cell cycle progression protein 1	CCPG1	12	1,237067837	0,930131912	22,7331	22,89448	23,96376	23,52409
Nicalin	NCLN	12	1,644469732	1,731191635	22,9902	23,4336	24,79754	25,08865
Voltage-dependent anion-selective channel protein 1	VDAC1	12	1,063287266	0,604449272	21,98541	22,25899	22,85892	22,59439
Protein canopy homolog 2	CNPY2	12	1,8911577	1,279083252	22,68914	22,64151	23,79996	24,08886
40S ribosomal protein S14	RPS14	12	1,600820839	0,736926079	23,53588	23,55391	24,40041	24,16323
Pre-mRNA-processing factor 19	PRPF19	12	1,175012912	0,562304497	22,70347	22,44813	23,05351	23,2227
Magnesium transporter protein 1	MAGT1	11	3,038560332	3,525270462	22,01832	22,21364	25,68426	25,59824
40S ribosomal protein S15a	RPS15A	11	3,154888313	1,71206665	22,73801	22,65262	24,42259	24,39218
Exostosin-2	EXT2	11	0,871042201	1,628356934	23,36984	22,54682	25,11112	24,06225
60S ribosomal protein L35	RPL35	11	0,974504467	1,26036644	24,0145	23,18424	25,02492	24,69456
Reticulocalbin-2	RCN2	11	1,480453069	1,717873573	22,53937	23,02107	24,28673	24,70946
Phospholipase D3	PLD3	10	2,280652858	1,174494743	22,65531	22,82039	23,93409	23,8906
60S ribosomal protein L5	RPL5	10	1,809199726	1,357585907	22,6998	22,86277	24,28933	23,98841
Very-long-chain enoyl-CoA reductase	TECR	10	1,658021952	0,784826279	23,11123	23,3278	24,052	23,95669
Cleavage and polyadenylation specificity factor subunit 7	CPSF7	10	1,527599529	2,279045105	22,6964	23,49832	25,39901	25,3538
Cleavage and polyadenylation specificity factor subunit 6	CPSF6	10	1,57652884	2,260205269	22,89698	23,64475	25,56628	25,49586
Lamin-B receptor	LBR	9	2,264675285	1,156486511	23,1456	23,2874	24,32499	24,42098
Single-stranded DNA-binding protein	SSBP1	9	2,142531413	1,357949257	22,60286	22,77043	24,12463	23,96455
V-type proton ATPase subunit S1	FLJ00383	9	3,465969208	2,392756462	22,1343	22,21901	24,55655	24,58228
Small nuclear ribonucleoprotein Sm D1	SNRPD1	9	1,198814931	1,03190136	23,46954	22,93189	24,27824	24,18699
		9	2,085314583	3,768479347	23,09443	22,40702	26,52175	26,51665

Protein names	Gene names MS	5/MS *-L	_og t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	DMUT2_1	DMUT2_2
DNA replication licensing factor MCM7	MCM7	8	2,286023423	1,794559479	21,65872	21,87111	23,63378	23,48517
Trifunctional enzyme subunit beta, mitochondrial	HADHB	8	2,100449261	0,782142639	23,05318	22,94258	23,82309	23,73696
Putative eukaryotic translation initiation factor 2 subunit 3-like protein	EIF2S3L	8	1,405694159	0,583797455	22,97196	23,05058	23,48247	23,70767
40S ribosomal protein S27	RPS27	8	0,733254375	1,611922264	22,50081	24,11505	24,98637	24,85334
DNA replication licensing factor MCM5	MCM5	6	0,768632708	0,747047424	22,73144	23,415	23,91798	23,72255
60S ribosomal protein L9	RPL9	6	0,616263401	0,655093193	23,2148	23,08485	23,41171	24,19813
Cyclin-dependent kinase 1	CDK1	3	2,352162111	1,895723343	22,79618	22,95457	24,67206	24,87014
Myosin-9	MYH9	3	1,547806172	0,749660492	22,14132	22,3308	23,07316	22,89828
Fatty aldehyde dehydrogenase	DKFZp686E23	3	1,054795932	1,680128098	24,03621	22,97649	25,11358	25,25936
Probable Xaa-Pro aminopeptidase 3	XPNPEP3	3	1,365575711	0,97256279	22,36563	21,95196	23,15923	23,10348
Collagen alpha-1(III) chain	COL3A1	1	1,516214425	1,244774818	23,52863	23,08588	24,57311	24,53095

8.6. Apêndice 6: Quadro de proteínas encontradas exclusivamente em CARLAG3WT,EPDEL,KMUT e DMUT, quando comparadas

simultaneamente, através do ensaio de imunoprecipitação

PROTEIN NAME	GENE NAME	MS/MS	*Log t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	LAGWT2_1	LAGWT2_2
EXCLUSIVAS LAG3 WT								
Elongation factor 1-gamma	EEF1G	67	0,863251289	0,411684036	26,36796	26,03378	26,64609	26,57903
Derlin-1	DERL1	8	0,616904577	0,413043022	22,89644	23,29865	23,36038	23,6608
EXCLUSIVAS EPDEL								
Endoplasmic reticulum resident protein 44	ERP44	111	2,247295521	6,367563248	29,35888	29,41393	22,5386	23,49909
Splicing factor 3B subunit 3	SF3B3	19	0,699691182	0,430153847	24,22486	24,13281	23,97185	23,52552
Coiled-coil domain-containing protein 134	CCDC134	16	1,074780129	1,757308006	24,72578	25,30911	22,79988	23,72039
Transmembrane protein 33	TMEM33	15	0,505865825	0,665481567	24,28898	24,34773	23,15741	24,14834
40S ribosomal protein S16	RPS16	14	1,240844122	0,37667942	24,39931	24,56023	24,05374	24,15243
Probable ATP-dependent RNA helicase DDX46	DDX46	13	1,584516937	1,583357811	24,08497	24,57946	22,66658	22,83113
Melanoma inhibitory activity protein 3	MIA3	13	1,110947533	1,824431419	24,54498	25,02445	22,47684	23,44373
Tubulin alpha-1C chain	TUBA1C	10	0,519591253	0,704667091	24,03229	23,59035	22,64524	23,56807
Deleted in autism protein 1	C3orf58	9	0,782936072	1,045331001	23,63589	24,18548	22,46355	23,26716
Calcyclin-binding protein	CACYBP	8	0,462778677	0,663274765	23,36466	23,17779	22,07572	23,14019
Nucleotide exchange factor SIL1	SIL1	8	1,498935867	0,508934021	23,85918	23,98963	23,34941	23,48153
Nucleolysin TIAR	TIAL1	8	1,549883262	1,777097702	24,4632	24,70208	23,08603	22,52505
Chitinase domain-containing protein 1	CHID1	8	1,216305229	0,313123703	23,89541	23,79907	23,46909	23,59915
Polyadenylate-binding protein 1	PABPC1	7	1,668384004	1,01388073	24,16974	24,35111	23,36724	23,12585
Small nuclear ribonucleoprotein-associated protein	SNRPN	7	0,531920081	0,512774467	23,49167	23,62109	23,40134	22,68588
RNA-binding protein EWS	EWSR1	5	1,62676882	0,677641869	24,47358	24,29733	23,64886	23,76677
Beta-hexosaminidase	HEXA	5	1,159756634	0,281116486	23,30299	23,34557	22,96805	23,11828
Prolyl 3-hydroxylase 3	LEPREL2	5	1,299973783	0,612211227	23,64218	23,8825	23,22668	23,07358
DnaJ homolog subfamily A member 2	DNAJA2	3	2,242958355	3,264153481	25,0258	25,47865	21,8873	22,08884
Peptidyl-prolyl cis-trans isomerase-like 4	PPIL4	3	2,028174365	0,911890984	23,05547	22,97456	22,02395	22,18229

PROTEIN NAME	GENE NAME	MS/MS	*Log t-test P-value	t-test Difference	CTRL2_1	CTRL2_2	LAGWT2_1	LAGWT2_2
EXCLUSIVAS KMUT								
Annexin	HEL-S-270	81	1,896900361	0,948515892	27,55054	27,34494	28,42882	28,36369
40S ribosomal protein S18	RPS18	81	0,451768151	0,603560448	26,67748	27,67122	27,6967	27,85911
Desmoplakin	DSP	43	1,865886963	3,509824753	22,70183	23,1987	26,12914	26,79104
Protein S100-A8	S100A8	39	3,39958491	3,9292593	25,79122	25,92477	29,74606	29,82845
60S ribosomal protein L30	RPL30	26	0,654006702	0,720029831	23,637	23,05007	24,35118	23,77595
Mitochondrial 2-oxoglutarate/malate carrier protein	SLC25A11	21	0,935729549	0,487668991	24,28292	24,50731	24,73908	25,02648
Serpin B3	SCCA2	20	2,644410317	4,921766281	23,30972	23,77267	28,50218	28,42374
Fatty acid-binding protein, epidermal	FABP5	19	1,439672201	0,339419365	26,73234	26,76294	27,02232	27,1518
Keratin, type II cytoskeletal 6B	KRT6B	17	2,445698768	1,449094772	28,22343	28,11212	29,68372	29,55003
Protein S100-A7	S100A7	17	2,86079422	4,63203907	22,92274	23,26461	27,74586	27,70556
Keratinocyte proline-rich protein	KPRP	17	3,150566363	1,710810661	23,65506	23,56414	25,3181	25,32272
14-3-3 protein theta	YWHAQ	11	0,76390405	0,619713783	22,84889	23,41446	23,84221	23,66058
Skin-specific protein 32	XP32	11	1,083652734	0,467812538	23,43613	23,68871	23,96235	24,09812
MICOS complex subunit MIC60	IMMT	9	1,169865084	0,407704353	23,53216	23,72783	23,98364	24,09176
Calmodulin-like protein 5	CALML5	5	4,174562443	3,030061722	23,11116	23,15165	26,14717	26,17577
Arginase-1	ARG1	4	0,804650317	0,896270752	23,26447	22,45787	23,73252	23,78237
Cathepsin D	CTSD	2	1,462125174	2,610394478	21,36889	21,59504	24,57721	23,6075
40S ribosomal protein S20	RPS20	2	0,90772559	0,878825188	22,71753	23,10351	24,0712	23,50749
Heat shock cognate 71 kDa protein	HSPA8	1	0,659654564	0,817744255	23,15296	23,12395	24,41828	23,49412
EXCLUSIVAS DMUT								
U1 small nuclear ribonucleoprotein A	SNRPA	13	1,977407958	0,47969532	25,36963	25,27991	25,78324	25,82568
Procollagen galactosyltransferase 1	COLGALT1	13	1,238798463	1,52355957	23,27407	22,63773	24,69221	24,26671
otic translation initiation factor 2 subunit 3-like protein	EIF2S3L	8	1,405694159	0,583797455	22,97196	23,05058	23,48247	23,70767
60S ribosomal protein L9	RPL9	6	0,616263401	0,655093193	23,2148	23,08485	23,41171	24,19813
Cyclin-dependent kinase 1	CDK1	3	2,352162111	1,895723343	22,79618	22,95457	24,67206	24,87014
Fatty aldehyde dehydrogenase	DKFZp686E23276	3	1,054795932	1,680128098	24,03621	22,97649	25,11358	25,25936
Collagen alpha-1(III) chain	COL3A1	1	1,516214425	1,244774818	23,52863	23,08588	24,57311	24,53095

9. ANEXOS

9.1. Anexo A

Parecer CIBio - solicitação de trabalho com OGM classe I

Rio de Janeiro, 01/09/2012

Prezado Dr. Martin Hernan Bonamino

Em resposta à sua solicitação para a manipulação de OGM classe I no protocolo nº 007/2012, "Modificação de linfócitos com receptores quiméricos de antígenos (CARs)", informamos que o mesmo foi analisado pela CIBio tendo sido APROVADO sem pendências.

Atenciosamente,

MM 12____

Martin H. Bonamino

Presidente CIBio - INCA

9.2. Anexo B

Mapas finais após clonagens de Epdel, Kmut e DMUT ao plasmídeo pcDNA 3.1 que contém sequência da BirA*2.

Esquema do mapa final do plasmídeo que contém o CAR EPdel BirA*2.

Esquema do mapa final do plasmídeo que contém o CAR Kmut BirA*2.

Esquema do mapa final do plasmídeo que contém o CAR DMUT BirA*2.